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Abstract: Using a previously obtained structure theorem for (w1,w2)-tempered ultradistributions by the classical Riesz representation

theorem, we investigate the action of the Ornstein-Uhlenbeck semigroup on (w1,w2)-tempered ultradistributions. As a result, we

observe that these tempered ultradistributions can be represented as boundary values to the heat equation ut −Au = 0, for t > 0.
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1 Introduction

Distributions are a special class of generalized functions
devised by L. Schwartz in order to provide a satisfactory
framework for the Fourier transform (see [1]). Recently,
the theory of distributions has been used in microlocal
analysis, signal processing, image processing and
wavelets.

The Schwartz space S, as defined by L. Schwartz (see
[2]), consists of all C∞(Rn) functions ϕ such that the
functions and their derivatives decay rapidly at infinity;∥∥xα ∂ β ϕ

∥∥
∞
< ∞ for every pair of multi-indices α,β ∈Nn.

The dual space of S is the space S
′ of tempered

distributions. In 1963, the theory of ultradistributions was
introduced by A. Beurling as a generalization of Schwartz
distributions. This generalization aimed to find an
appropriate context for his work on pseudo-analytic
extensions (see [3]).

In 1967, G. Björck introduced the Beurling-Björck
space Sw of test functions for tempered ultradistributions
which expanded the space S

′ of tempered distributions,
and extended the work of Hörmander on existence,
nonexistence, and regularity of solutions of differential
equations with constant coefficient in addition to studying
the convolution (see [4]). The Beurling-Björck space Sw,
as defined by G. Björck, consists of all C∞(Rn) functions

ϕ such that

∥∥∥ekw(x)∂ β ϕ
∥∥∥

∞
< ∞ and

∥∥∥ekw(x)∂ β ϕ̂
∥∥∥

∞
< ∞

for all β ∈ Nn, where w is a subadditive weight function
satisfying the classical Beurling conditions. The

topological dual S
′
w of Sw is a space of generalized

functions, called w−tempered ultradistributions. When
w(x) = log(1 + |x|), the Beurling- Björck space Sw

becomes the Schwartz space S (see [5] and [6]).

In [7], the authors introduced the space Sw1,w2
of all

C∞(Rn) functions ϕ such that

∥∥∥ekw1(x)∂ β ϕ
∥∥∥

∞
< ∞ and

∥∥∥ekw2(x)∂ β ϕ̂
∥∥∥

∞
< ∞ for all k ∈ N and β ∈ N

n , where w1

and w2 are two weights satisfying the classical Beurling
conditions. The topological dual S

′
w1,w2

of Sw1,w2
is a

space of generalized functions, called (w1,w2)-tempered
ultradistributions. Moreover, they proved a structure
theorem for functionals T ∈ S

′
w1,w2

using the classical
Riesz representation theorem.

In this paper, we use the structure theorem for
(w1,w2)-tempered ultradistributions by the classical
Riesz representation theorem obtained in [7] to
investigate the action of the Ornstein-Uhlenbeck
semigroup on (w1,w2)-tempered ultradistributions. As a
result, we observe that these tempered ultradistributions
can be represented as boundary valus to the heat equation
ut −Au = 0, for t > 0. We prove that given ϕ ∈ Sw1,w2

,
there is a solution ϕt(x) of the heat equation, for which
ϕt(x) converges to ϕ in Sw1,w2

, in the strong dual
topology. Our work is inspired by a substantial body of
work on the generalized functions of Gelfand-Shilov
spaces pioneered by Hamed Obiedat and Lloyd Edgar [8].

The symbols C∞, C∞
0 , Lp, etc., denote the usual spaces

of functions defined on Rn, with complex values. |·|
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indicates the Euclidean norm on Rn, while ‖·‖p indicates
the p-norm in the space Lp, where 1 ≤ p ≤ ∞. In general,
we work on the Euclidean space R

n till we find a more
appropriate one. Partial derivatives will be denoted by ∂ α ,
where α is a multi-index (α1, ...,αn) in Nn

0. We will use
the standard abbreviations |α| = α1 + ... + αn,
xα = x

α1
1 ...xαn

n . The Fourier transform of a function f is

denoted by F ( f ) or f̂ and it will be defined as∫
Rn e−2π ixξ f (x)dx. With C0 we denote the Banach space

of continuous functions vanishing at infinity with
supremum norm. A Fréchet spaces are a locally convex
topological vector spaces that are completely metrizable.

2 Preliminary definitions and results

In [9], J. Chung et al. proved symmetric characterizations
for Gelfand-Shilov spaces via the Fourier transform in
terms of the growth of the function and its Fourier
transform which imposes no conditions on the derivative.

Theorem 1.Given w1,w2 ∈ Mc, the space Sw1,w2
can be

described as a set as well as topologically by

Sw1,w2
=

{
ϕ : Rn → C : ϕ is continuous and for all

k = 0,1,2, ..., pk (ϕ)< ∞,qk (ϕ)< ∞

}
,

where pk (ϕ) =
∥∥∥ekw1(x)ϕ

∥∥∥
∞

, qk (ϕ) =
∥∥∥ekw2(ξ )ϕ̂

∥∥∥
∞
.

The space Sw1,w2
, equipped with the family of semi-

norms

N = {pk,qk : k ∈ N0},

is a Fréchet space.

Now, we present the restrictive definition of the space
Mc of admissible functions w ( see [10], page 14).

Definition 1.([10]) With Mc we indicate the space of

functions w : Rn →R of the form w(x) = Ω (|x|), where

1.Ω : [0,∞) → [0,∞) is increasing, continuous and

concave,

2.Ω (0) = 0,

3.
∫
R

Ω(t)

(1+t2)
dt < ∞,

4.Ω (t)≥ a+b ln(1+ t) for some a ∈R and some b > 0.

Standard classes of functions w in Mc are given by

w(x)= |x|d for 0< d < 1, and w(x)= p ln(1+ |x|) for p> 0.

Remark.If N > n
b

is an integer, then

CN =

∫

Rn
e−Nw(x)dx < ∞, for all w ∈ Mc,

where b is the constant in Condition 4 of Definition 1

Remark.If τ ∈ Rn, there exist N ∈ N and a constant C > 0
such that |τ| ≤CeNw(τ). In fact, since

|τ| ≤ 1+ |τ|= eln(1+|τ|)

and applying Condition 4 of Definition 1, there exist a∈R

and b > 0 such that

ln(1+ |τ|)≤ w(τ)− a

b
.

Hence,

|τ| ≤ 1+ |τ|= eln(1+|τ|)

≤ e
w(τ)−a

b = e−
a
b e

w(τ)
b

≤ CeNw(τ)

where C = e−
a
b > 0 and N > n

b
is an integer.

The following remark benefits the proof of the main
theorem.

Remark.Using the concavity property of w(x) and that
w(0) = 0 in Definition 1 we have w(e−tx) ≥ e−tw(x) for
t ≥ 0. Indeed,

w(e−tx) = w(et e−t e−tx)

= w(e−t(et e−tx)+ (1− e−t)(0))

≥ e−tw(ete−tx)+ (1− e−t)w(0)

= e−tw(x)+ (1− e−t)(0)

= e−tw(x)

3 Characterization of the dual space S
′
w1,w2

Theorem 2.([11]) Given a functional L in the topological

dual of the space C0, there exists a unique regular complex

Borel measure µ so that

L(ϕ) =
∫

Rn
ϕdµ .

Moreover, the norm of the functional L is equal to the

total variation |µ | of the measure µ . Conversely, any such

measure µ defines a continuous linear functional on C0.

In [7], the authors employ Theorem 1 to prove the
following structure theorem for functionals in S

′
w1,w2

.

Theorem 3.([7]) Given L ∈ Sw1,w2
→ C, then the

following statements are equivalent :

(i)L ∈S
′
w1,w2

(ii)There exist two regular complex Borel measures µ1

and µ2 of finite total variation and k ∈ N0 such that

L = ekw1(x)dµ1 + ekw2(ξ )dµ2,

in the sense of S′
w1,w2

.
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The following corollary indicates an application of the
structure theorem of S′

w1,w2
stated in Theorem 3.

Corollary 1.([7]) If T ∈S
′
w1,w2

and ϕ ∈Sw1,w2
, then the

functional T ∗ϕ defined by

〈T ∗ϕ ,φ〉= 〈Ty,(ϕz,φ(x+ y)〉

coincides with the functional given by integration against

the function ψ(x) = 〈Ty,ϕ(x− y)〉.

4 Ornstein-Uhlenbeck Semigroup action on

S
′
w1,w2

The second-order differential operator defined by

A =−1

2
∆ − x ·∇,

where ∆ denotes the Laplacian operator in Rn and ∇ is the
gradient, is called Ornstein-Uhlenbeck operator in Rn. The
semi-group generated by Ornstein-Uhlenbeck operator A

is Ornstein-Uhlenbeck semi-group acting on the Hilbert
space L2(γ) where γ is the normalized Gaussian measure.
The Ornstein-Uhlenbeck semi-group (Pt)t≥0 = (eAt)t≥0 is
given by

Ptϕ(x) =

∫

Rn
Mt(x,y)ϕ(y)dγ(y) = 〈Mt(x,y),ϕ(y)〉 , (1)

where Mt(x,y) and t > 0 is the Mehler kernel and P0 is
the identity. The closed expression of the Mehler kernel
Mt(x,y) given by

Mt(x,y) =
1

πn/2(1− e−2t)n/2
e
− |y−e−t x|2

1−e−2t (2)

allows us to establish a connection between Mehler’s
kernel and the heat kernel

kt(x) =
1

(4πt)n/2
e−|x|2/4t , (3)

see [12]. After applying a dilation to the variable x, the
Ornstein-Uhlenbeck semigroup is a reparametrization of
the heat semigroup. Thus, it is not a convolution
semigroup. Indeed, if δa f (x) = f (ax) is the dilation
operator by a, and {Ft}t≥0 is the operator semigroup,
Ptϕ(x) has the following representation

Ptϕ(x) = (k(1−e−2t)/4 ∗ f )(e−tx)

= δe−t

[
k(1−e−2t)/4 ∗ f

]
(x)

= δe−t F(1−e−2t)/4 f (x),

where

Ft f (x) =
1

(4πt)n/2

∫

Rn
e−|x−y|2/4t f (y)dy, t > 0, (4)

is the heat semigroup.

Observe that Mt(x, ·) and Mt(·,y) are both in Sw1,w2
for

all α,β > 1 because both have exponential decay which
implies that the operator Pt is well defined. Then for T ∈
S

′
w1,w2

and Pt = eAt where A =− 1
2
∆ − x ·∇, we can write

the action of Pt on S
′
w1,w2

as

〈T ∗Pt ,ϕ〉= 〈Ty,< Mt(x,y),ϕ(x)〉〉, ϕ ∈Sw1,w2
. (5)

To prove that T ∗ Pt → T as t → 0+ in strong dual
topology, it is enough to prove the following result.

Theorem 4.Let B be a bounded subset of Sw1,w2
and

ϕ ∈ Sw1,w2
. Then ϕt(x) = 〈Mt(x, ·),ϕ(x)〉 → ϕ in

Sw1,w2
as t → 0+ uniformly on B.

Proof.Recall that
∫
Rn Mt(x,y)dx = ent . We can write

I = ekw1(y)
∫

Rn
Mt(x,y)ϕ(x)dx− ekw1(y)ϕ(y)

= ekw1(y)(
∫

Rn
Mt(x,y)ϕ(x)dx−ϕ(y))

= ekw1(y)(

∫

Rn
Mt(x,y)ϕ(x)dx− e−ntϕ(y)

∫

Rn
Mt(x,y)dx)

= ekw1(y)(

∫

Rn
Mt(x,y)(ϕ(x)− e−ntϕ(y))dx)

= ekw1(y)(

∫

Rn
Mt(x,y)(ϕ(x)−ϕ(y)+ϕ(y)− e−ntϕ(y))dx.

Taking the absolute value for both sides and applying the
triangle inequality, we get

|I| =
∣∣∣∣e

kw1(y)
∫

Rn
Mt(x,y)ϕ(x)dx− ekw1(y)ϕ(y)

∣∣∣∣

≤
∫

Rn
ekw1(y)Mt(x,y)

∣∣ϕ(x)−ϕ(y)+ϕ(y)− e−ntϕ(y)
∣∣dx

≤
∫

Rn
ekw1(y)Mt(x,y) |ϕ(x)−ϕ(y)|dx

+(1− e−nt)

∫

Rn
ekw1(y)Mt(x,y) |ϕ(y)|dx

= I1 + I2.

We estimate I2 as follows:

I2 = (1− e−nt)

∫

Rn
ekw1(y)Mt(x,y) |ϕ(y)|dx

≤ ent(1− e−nt)
∣∣∣
∣∣∣ekw1 ϕ

∣∣∣
∣∣∣
∞
.

Using explicit formula for Mt(x,y) and making the change

of variable u = y−e−t x√
1−e−2t

, we estimate I1 as follows:
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I1 =

∫

Rn
ekw1(y)Mt(x,y) |ϕ(x)−ϕ(y)|dx

=
1

πn/2(1− e−2t)n/2

∫

Rn
ekw1(y)e−|u|2

∣∣∣∣ϕ(
y− u

√
1− e−2t

e−t
)

−ϕ(y)

∣∣∣∣
(1− e−2t)n/2

e−nt
du

=
ent

πn/2

∫

Rn
ekw1(y)e−|u|2

∣∣∣∣ϕ(
y− u

√
1− e−2t

e−t
)−ϕ(

y

e−t
)

+ϕ(
y

e−t
)−ϕ(y)

∣∣∣∣du

≤ ent

πn/2

∫

Rn
ekw1(y)e−|u|2

∣∣∣∣∣ϕ(
y− u

√
1− e−2t

e−t
)−ϕ(

y

e−t
)

∣∣∣∣∣du

+
ent

πn/2

∫

Rn
ekw1(y)e−|u|2

∣∣∣ϕ( y

e−t
)−ϕ(y)

∣∣∣du.

Using Mean Value Theorem, there is a point u′ on the line

segment L1 from
y−u

√
1−e−2t

e−t to
y

e−t and a point u′′ on the

line segment L2 from
y

e−t to y such that

∣∣∣∣∣ϕ(
y− u

√
1− e−2t

e−t
)−ϕ(

y

e−t
)

∣∣∣∣∣=
|u|

√
1− e−2t

e−t

∣∣∇ϕ(u′)
∣∣

and

∣∣∣ϕ( y

e−t
)−ϕ(y)

∣∣∣= |y|(1− e−t)

e−t

∣∣∇ϕ(u′′)
∣∣

respectively. Thus, the estimate for I1 above now becomes

I1 ≤ ent

πn/2

∫

Rn
ekw1(y)e−|u|2 |u|

√
1− e−2t

e−t

∣∣∇ϕ(u′)
∣∣du

+
ent

πn/2

∫

Rn
ekw1(y)e−|u|2 |y|(1− e−t)

e−t

∣∣∇ϕ(u′′)
∣∣du.

Using |y| ≤ |u′′| and applying Remark 2 for |u′′|, then

|y| ≤CeNw1(y) ≤CeNw1(u
′′) (6)

for some integer N and constant C > 0. Therefore,

I1 ≤ ent

πn/2

∫

Rn
ekw1(u

′)e−|u|2 |u|
√

1− e−2t

e−t

∣∣∇ϕ(u′)
∣∣du

+
ent

πn/2

∫

Rn
ekw1(u

′′)e−|u|2 CeNw1(u
′′)(1− e−t)

e−t

∣∣∇ϕ(u′′)
∣∣du

≤ π−n/2e(n+1)t
√

1− e−2t

∣∣∣
∣∣∣ekw1 ∇ϕ

∣∣∣
∣∣∣
∞

∣∣∣
∣∣∣ue−|u|2

∣∣∣
∣∣∣
1

+Cπ−n/2et(1− e−t)
∣∣∣
∣∣∣e(N+k)w1∇ϕ

∣∣∣
∣∣∣
∞

∣∣∣
∣∣∣e−|u|2

∣∣∣
∣∣∣
1
.

The estimates obtained for I1 and I2 imply that I1 → 0 and
I2 → 0 as t → 0+ uniformly on B. Hence,

∣∣∣∣
∣∣∣∣e

kw1(
∫

Rn
Mt(x, ·)ϕ(x)dx−ϕ(·))

∣∣∣∣
∣∣∣∣
∞

→ 0 as t → 0+ (7)

uniformly on B as well. Now we prove that
∣∣∣∣
∣∣∣∣e

kw2(

∫

Rn
Mt(x,y)ϕ(x)dx−ϕ(y))(ζ )

∣∣∣∣
∣∣∣∣
∞

approaches 0 as t → 0+ uniformly on B. To do this, we
write

I′ =

∣∣∣∣e
kw2(

∫

Rn
Mt(x,y)ϕ(x)dx−ϕ(y))(ζ )

∣∣∣∣

=

∣∣∣∣e
kw2(ζ )(

∫

Rn
Mt(x,y)ϕ(x)dx)(ζ )− ekw2(ζ )(ϕ(y))(ζ )

∣∣∣∣

=

∣∣∣∣e
kw2(ζ )

1

πn/2(1− e−2t)n/2
(

∫

Rn
e
− |y−e−t x|2

1−e−2t ϕ(x)dx)(ζ )

−ekw2(ζ )ϕ̂(ζ )

∣∣∣∣

=

∣∣∣∣e
kw2(ζ )(

1

πn/2(1− e−2t)n/2
e−

(1−e−2t )|ζ |2
4 ϕ̂(e−tζ )

−ϕ̂(ζ ))

∣∣∣∣

=

∣∣∣∣e
kw2(ζ )(

1

πn/2(1− e−2t)n/2
e−

(1−e−2t )|ζ |2
4 ϕ̂(e−tζ )

−ϕ̂(e−tζ )+ ϕ̂(e−tζ )− ϕ̂(ζ ))

∣∣∣∣

≤ π−n/2ekw2(ζ )(1− e−2t)−n/2

∣∣∣∣e
− (1−e−2t )|ζ |2

4 ϕ̂(e−tζ )

−ϕ̂(e−tζ )

∣∣∣∣+ ekw2(ζ )
∣∣ϕ̂(e−tζ )− ϕ̂(ζ )

∣∣

≤ π−n/2eket w2(e
−t ζ )(1− e−2t)−n/2

∣∣∣∣e
− (1−e−2t )|ζ |2

4 − 1

∣∣∣∣
∣∣ϕ̂(e−tζ )

∣∣+ ekw2(ζ )
∣∣ϕ̂(e−tζ )− ϕ̂(ζ )

∣∣

≤ π−n/2ek[et ]w2(e
−t ζ )(1− e−2t)−n/2

∣∣∣∣e
− (1−e−2t )|ζ |2

4 − 1

∣∣∣∣
∣∣ϕ̂(e−tζ )

∣∣+ ekw2(ζ )
∣∣ϕ̂(e−tζ )− ϕ̂(ζ )

∣∣

≤ π−n/2ek([et ]+1)w2(e
−t ζ )(1− e−2t)−n/2

∣∣∣∣e
− (1−e−2t )|ζ |2

4 − 1

∣∣∣∣
∣∣ϕ̂(e−tζ )

∣∣+ ekw2(ζ )
∣∣ϕ̂(e−tζ )− ϕ̂(ζ )

∣∣

≤ π−n/2e2kw2(e
−t ζ )(1− e−2t)−n/2

∣∣∣∣e
− (1−e−2t )|ζ |2

4 − 1

∣∣∣∣
∣∣ϕ̂(e−tζ )

∣∣+ ekw2(ζ )
∣∣ϕ̂(e−tζ )− ϕ̂(ζ )

∣∣

≤ π−n/2(1− e−2t)−n/2

∣∣∣∣e
− (1−e−2t )|ζ |2

4 − 1

∣∣∣∣
∣∣∣
∣∣∣e2kw2 ϕ̂

∣∣∣
∣∣∣
∞

+ekw2(ζ )
∣∣ϕ̂(e−tζ )− ϕ̂(ζ )

∣∣
= A1 +A2.

where we used Remark 2 in the second inequality

above. Since e−
(1−e−2t )|ζ |2

4 → 1 as t → 0+ uniformly on
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compact subsets of Rn, the first term A1 converges to 0
uniformly on B. Applying the Mean Value Theorem for
the second term A2, there exists a point τ on the line
segment from e−tζ to ζ such that

∣∣∣∣ϕ̂(e
−tζ )− ϕ̂(ζ )

∣∣∣∣= (1− e−t)

∣∣∣∣ζ
∣∣∣∣
∣∣∣∣∇ϕ̂(τ)

∣∣∣∣ (8)

Using Remark 2, we estimate |ϕ̂(e−tζ )− ϕ̂(ζ )| as
follows:

∣∣ϕ̂(e−tζ )− ϕ̂(ζ )
∣∣ = (1− e−t) |ζ | |∇ϕ̂(τ)|
≤ (1− e−t) |τ| |∇ϕ̂(τ)|
≤ C(1− e−t)e−teNw2(τ) |∇ϕ̂(τ)|
≤ C

∣∣∣∣eNw2 ∇ϕ̂
∣∣∣∣

∞
(1− e−t)e−t ,

which implies that A2 converges to 0 as t → 0+. Hence,

∣∣∣∣
∣∣∣∣e

kw2(

∫

Rn
Mt(x,y)ϕ(x)dx−ϕ(y))(ζ )

∣∣∣∣
∣∣∣∣
∞

converges to 0 uniformly on B as t → 0+. This completes
the proof of Theorem 4.

5 Conclusion

The Laplacian operator and the heat semigroup serve as
prototypes for elliptic differential operators and
semigroups of operators, respectively. The
Ornstein-Uhlenbeck operator and the Ornstein-Uhlenbeck
semigroup play the role of the Laplacian and of the heat
semigroup if the Lebesgue measure is replaced by the
standard Gaussian measure γ in an infinite-dimensional
setting, as in equation (1). For our application, Theorem 4
implies that the functionals in the dual space S

′
w1,w2

can
be realized as boundary values to the differential equation
∂
∂ t

u − Au = 0, t > 0. This approach extends the result
obtained in [13] where it proved that in the sense of the
strong dual topology of the Beurling-Björck space S

′
w,

the w-tempered distributions can be realized as boundary
values to solutions of the generalized heat equation, just
as with the Gauss-Weierstrass semigroup. It is the same
result obtained in [8] for the functionals in the dual space
of Gelfand-Shilov spaces.
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