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Abstract: In this paper, we investigate proper sufficient conditions for the uniform stability (US) of the zero solution, and for the
uniform boundedness (UB) as well as uniform ultimate boundedness (UUB) of all solutions of a certain system of nonlinear non-
autonomous third-order differential equation (DE) with variable delay.

In the proofs, the method of Lyapunov functional (LF) approach is employed as a main tool and two examples are presented in the last
section to show feasibility of the established results which improve the results of the previous pieces of literature.

Keywords: (US), (UUB), (LF), third-order vector (DE), variable delay

1 Introduction

Over the last few decades, the qualitative behaviour (QB)
of solutions for ordinary scalar and vector nonlinear
(DEs) has been extensively investigated and several
results have been obtained. Stability (S) and boundedness
(B) of solutions play a key role in characterizing the
behaviour of nonlinear (DEs). For a comprehensive
investigation of this subject, we refer the reader to the
books by Burton [1], Reissig et al. [2], Yoshizawa [3] and
the references cited in these books. To verify the results of
the above-mentioned books, Lyapunov’s second method
[4] has been used.

However, the response of the system, in many
applications, can be delayed, or be established on the past
history of the system. Dynamical systems, which respond
in this way, are called delay differential equations
(DDEs). The Lyapunov’s second method has been
developed to deal with (DDEs).

Many results have been obtained on the (S) and (B) of
solutions for various second and third-order scalar vector
(DEs) without delay, see for example, [5,6,7,8,9,10,11,
12,13], etc. Since (S) and (B) are much more complicated
for (DDESs), it is worth-while to continue to investigate the
(S) and (B) of solutions for vector (DDE?5).

On the other hand, for certain third-order scalar
(DDEs), the (S) and the (B) results have been investigated

by many researchers, see, for example, [14,15,16,17,18,
19,20,21,22,23,24]. In this regard, these cited papers
present outstanding results on the (QB) of solutions for
the considered (DEs).

However, by this time, no attention was given to the
investigation of the (S) and (B) in the nonlinear vector
(DEs) of third-order with constant and variable delays,
except the works of Tun¢ and Mohammed [25], Omeike
[26], Mahmoud and Tung [27], Tung [28,29,30], and the
references therein.

In the following, we provide some background details
regarding the study of various classes of third-order vector
(DEs) with variable delay.

In [26], Omeike investigated the (S) and (B) of
nonlinear differential system (DS) of third-order with
variable delay r(z), of the following form

X+AX+BX +H(X(t—r(t))) = P(t).

Recently, in [28], Tunc has explored the (S) and (B) of
nonlinear (DS) of third-order with variable delay 7(¢), as
the following type

X+AX+GX(t—1(t)+H(X(t—1(t))) =F(t,X,X,X).

In this paper, defining (LFs), we obtain proper sufficient
conditions for the (S) and the (B) of solutions in the cases
P(-) =0 and P(-) # 0 respectively, to the following
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nonlinear non-autonomous third-order (DS) with variable
delay of the type

X + X, X)X +P(X(t—r() +c()HX( (1))
= P(')? (1)

where

P() =P, X, X(t—r(t),X,X(t—r()),X).

The equation (1) can be written in the following equivalent
system

X—v,

Y=z,

7= —®(X,Y)Z—W(Y)—H(X)+ i )z
Felt) /,‘tr@ Tu(X(5))Y (s)ds
+P(t, X, X(t—r()),Y,Y(t—r(t)),2), 2)

where 0 < r(¢) < v, vis a positive constant, which will be
defined later; X € R”; ¢ : RT — R™ " is a continuous
function, @ is an n X n-continuous symmetric function
matrix, ¥ and H are n-vector continuous functions with
¥(0) =H(0) =0 and P(-) is a vector continuous function
in their arguments; ¢ € [0,00). Moreover, it is assumed that

the Jacobian matrices Jy (X) = (%) and Jy(Y) = (%)7
] J

(i,j=1,2,...,n), exist and are continuous.

Remark 1.1. We observed the following:

() If &(X,X) = A, ¥(X(t —r(t))) = BX, c(t) as a
constant such as equal one, and P(-) = P(t), equation
(1) reduces to nonlinear (DS) of third-order with
variable delay r(¢) in [26].

() IF DX, X)=A, (X (t—r(t) =GX(t—r(t))), c(t)
as a constant such as equal one, and
P(-) = F(t,X,X,X), equation (1) reduces to nonlinear
(DS) of third-order with variable delay r(¢) in [28].
However, in this paper, we construct a new (LF) to
investigate the (UB) and (UUB) of all solutions for
(1.

(iii) Special cases of (1), when n = 1, have been
investigated by several authors in the pieces of
literature, see [15,16] and the references cited in these
sources.

2 Preliminaries

The symbol (X,Y) corresponding to any pair X and
Y of vectors in R" stands for the usual scalar product
Y, x;yi. The Euclidean length in R" will be denoted by
Il so that in particular (X,X) = ||X||> for arbitrary
X € R", and 4;(M)(i = 1,2,...,n) are the eigenvalues of
the real symmetric n X n-matrix M. The matrix M is

negative-definite, when (MX,X) < 0, for all nonzero
X eR"

The following Lemmas will be substantial for the
proofs of the main Theorems.

Lemma 2.1.[5] Let M be a real symmetric positive definite
n X n-matrix, then for any X € R”, we have

an||X|* < (MX.X) < BulX]P,

where ayy, By are the least and the greatest eigenvalues of
M, respectively.
Lemma 2.2. Assume that X =Y, ¥ = Z. Then

0 4 (X X0d0) = (1100,1),

@ #(Btw(or). 1o ) = .2

3) %(f()l(GJJ(X,GY)Y,YMG) < (D(X,Y)Y,Z).

Proof. The proof of (2) is similar to that of (1), see [27].
y

3) % /0 N 6B(X, Y)Y Y)do = /0 (G ®(X,6Y)Y,Z)do

+ [ s on). T Tida
+/01G<GJ(€D(X,GY)aY|Y)27Y>dG
By —

+/01 6 (cJ(P(X,0Y),Y|Y)Z,Y)do.

Let J(®(X,Y)Y|X) be a negative-definite and
J(P(X,Y)Y|Y) be a symmetric. It follows that

d !
< / (GD(X,0Y)Y,Y)do
dt Jo

1 1
g/ <o<;D(X,GY)Y,Z>dG+/ G%(CD(X,GY)GY,Z}dG
0 0

=o(P(X,0Y),2)|d = (P(X,Y)Y,Z).

Lemma 2.3. [27,28] Let H(X) be a continuous vector
function with H(0) = 0. Then,

(1) (H(X),H(X)) =2/0l /01 61 U (61X (016:X)X, X)d6>d 0.

(2) (H(X),X) = /01 (1 (6X)X . X)do.

Lemma 2.4. Let H(X) be a continuous vector function and that
H(0) = 0. Then,

1
a1 X|* < /0 (H(oX X))do < B |X|?,

where oy, By are the least and the greatest eigenvalues of Ji (X),
respectively.
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3 Stability

Now, we consider the (S) criteria for the general non-autonomous
delay differential system:

x(1t) = f(t,5%), %(s) =

where f: [0,00) x Cy — R" is a continuous mapping, f(¢,0) =
0, Cy = {9 € C(|—h,0],R") :||¥|| < H} and for H, < H, there
exists L(H) > 0, with | f(z,9)| < L(H;) when ||¢| < H;.
Theorem 3.1. [I] Let V(¢,9) : Cy — R be a continuous
functional satisfying a local Lipschitz condition, V(0) = 0 and
the functions W; (i = 1,2) are wedges, such that:

Hi+s), ~h<s<0,1>0, (3)

(@ Wi ([9(0)]) <V(r,9) <Wa(||]]),
(b) V3 (1,9) <0, for ® € Cy.

Then, the zero solution of (3) is (US).
The main (S) result of (1) with P(-) = 0 is the following
theorem:

Theorem 3.2. In addition to the fundamental assumptions
imposed on the functions @,%¥,H and ¢(¢) with P(-) = 0, let us
assume that there exist positive constants o, 0, 03,01, 52,53
and ¥, such that for (i = 1,2,...,n), the following conditions
hold:

(i) The matrix @ is symmetric and o < A;(®(X,
all X, Y € R™.

i) P(0) =0, Jy(Y) is symmetric and o < A;(Jy(Y)) < Ba,
forall Y € R".

(iii) H(0) =0, Jy(X) is symmetric and oz < 4;(Jy (X)) < Bs,
for all X € R”.

(1v)0<5 <7L( (1) <A<

(v) — < < ﬁq

(vz)Ogr()gy and /(1) <o, 0<w<1.

Y)) < By, for

land 4;(c') <0

=01is (US), provided that
(,LLOQ - ﬁ3Ac)(l - w)

Then, the zero solution of (1) with P(+)

Y < min Vi {p2—o)+1}B34Ac+u(l—0)B]’
(o —p)(1- )
Vi{(I=0)Bsac+ 2 u-0)f) |
Proof.

Let A and 6 be two positive constants, which will be defined
later in the proof. For the sake of brevity, we define

0 't
a@ =af [ @) Pazas

0 t
2
o[ izerazas o “

Our main tool in the proof of the Theorem 3.2 is a (LF),
Vi(-) = Vi(t,X;,Y;,Z;) defined by

u/ H(oX), d0'+/

+<c(z)H(x),Y>+u/0 (6D (X,0Y)Y,Y)do

oY),Y)do

+=(Z,Z) + u{Y,Z) + A(1). (5)

N =

Using Lemma 2.3, we observe that the above (LF) can be
rewritten as follows:

o= u [ [ ot

1 rl
+/ / o1 {Jy(0102Y)Y,Y)dordo)
0 Jo

(t)Ju(0102X)X, X )dordoy

HeHX).¥) + 312+ |P

+,Lt/01<(0'<1>(X,0'Y)— %u)y,y>do+A(t).

From the condition (i) —
2.4, we get

oz u [ [ o

[05) 1 >
By 4 —cHX)|? - —
+— I +a26() Roll

(iii) of Theorem 3.2, (4) and Lemma

1)Ju(0102X)X,X)dord oy

200
1 2 1 2
o p(an = WY I7+ S I1Z+py|l”.
Since :
o 2
—||Y + —c(t)H(X)||” > 0.
> | +a26() 0.9 =
Then

Vi() > /(;1/0'1 Gl<|:[,Lc(t)—%(:)JH(GIX):l‘IH(GIO-ZX)X7X>

1 1
doydoy + 5 |1Z+uy |+ 5#(061 Y |?

K 1 1
> SIXIP+ S 1Z+ Y |2+ Sulen =Y [?, (©)

where

K=,u0635¢(17&) > po3o; (lfg) =0,and oy —u >0,
Hop u

by the conditions (iii) — (v).
Thus, we can find a positive constant D, small enough such that

Vi() = Di(IX[>+ 1Y |17+ (1ZIP). )

Using the hypotheses of Theorem 3.2, we obtain
18 (X,¥)]| < /iy by (i), then

1 1
,u/ (o®(X,0Y)Y,Y)do g,u/ vnBi{oY,Y)do
0 0

= £ vy Iy .

H(0X) _ Jy(6X)X and H(0) =

Since 35

0, we find from (iif) that

1
[H (X))l S/O [Tu (eX)|l|IX [|[do < v/nps|IX]|.

. Jd¥ (oY)
Also, since Y

=Jy(cY)Y and ¥(0) = 0, from (ii) we find

1
PO S/O ¢ (aY)[[[[Y]ldo < v/na Y.
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Using the Cauchy-Schwarz inequality
1
[{m,m)| < [|m][[|n]| < 5(|lm]]*+ |n]|*). we have

V) < @AY
< VnB3Ac|IX|[[¥]]

(c()H (X),

1
< S VBsAc(IX [P+ 1Y),

From (vi), we obtain

0 .
/,rm /HS”Y@)HZdédS = /7 {E—1+r}Y (©)]Pag

<IVR [ (E=rer0}g

= 2 PO

=50 [ P

< Pl ®)

Similarly, we find

0 't
/,rm [ e Pagas < S Pz

1 ! 5
= = Z
370 [ I71P

IN

1
5 rlzIP. ©)

Thus, we obtain

Vi) < (,U+

+ %(\/ﬁB3Ac+M+M\/ﬁﬁl +ay/np, +M’2) Y] 10y

1 1
3 VAL P 5 (1487 2P

Hence, we have a positive constant D, satisfying

Vi) < DalIXIP + 1Y 2+ 21, (1
Now, since
d (9 t
dt /*r(t) /t+s HY(é)széds
=a=ro) [ WEPE O 12

Similarly, we find

d [0 t
dt /*r(t) /t+s HZ(é)széds
- _r/(t))/tir(t)

1Z(E)PdE +r(r)]|Z(r) ). (13)

Then, from (2), (5), (12), (13) and Lemma 2.2, we have

EV0) < COI)Y.Y) + (Z.2) — (2 (0)
—(®(X,Y)Z,Z)
+u/ X)do +( (H(X).Y)
+{(uy +2, / P25
+ (WY 427, / (6)J (X (5))Y (s)ds)

~ A=) /tirm Y ()P +2r(e) ¥ (1)

- 81=r0) [ 1ZE)PdE+ o010 (19

Now, consider the term

P—
<~//m

<P x.x) <0, by (i)

X)do + (' (NH(X),Y)

JH (o] GzX)X X)dO'de']

From conditions (i) — (iv) of Theorem 3.2 and Lemma 2.1, we
can write (14) as follows:

CVi() < —(on— By Y — (oo — )P
Y +7, ,i,@MY(S))Z(S)d”
craz, [ )Y )

—a=r@) [ V@R 2wl ()

o) [ 1) P + o)1z P

Since ||Jg(X)|| < /nP3 and by condition (iv) of Theorem 3.2,
then using the Cauchy-Schwarz inequality, we obtain

ez, [ ) s

<lurazl| [ o)y sy

<@lvl+iz) [ Vi )lds
.u\/ﬁB3Ac 2, ! s 2 o
< BR[| v GPas)

\/ﬁB3Ac' 2, ! s 2 r
B (1o [ volPas).
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Since ||Jg(Y)|| < /nB> by condition (ii) of Theorem 3.2, so
using the Cauchy-Schwarz inequality, we get

(v sz [ Jp(v(s)Z(s)ds)

t—r(t)

1/nfy 2, ! I2ds
< BB (pr [ 120 Pas)

V2 (1zpros [ 1ze1as).

Since 0 < r(t) < yand 7/ (¢) < @ by condition (vi) of Theorem
3.2, it follows that

%Vl ()= *{.Uaz —BAc—

—(061 - \/;lgﬂc

pvnBsAe | /nPsAc
+{ 2 T2

“ B By A YR

‘[ﬁzy 5Y)HZH2

—a-a)f [ @R

If we take A = \/<_B3A)(/,t+ )>0and é = (fﬁ’)(u—kl) >0,
then

EVI() {ﬂa2*ﬁ3Ac-*

7 %ﬁ(ﬁaAc +B2)y

ﬁ“‘)(w) }W

o —u -G g -

Therefore, if

Vs

P w izl

y< min|: (,LLOQ _ﬁ3Ac)(l — w)
Vi {12 = o)+ 1}BsAc + p(l — w)Ba]’

(o —p)(1 - ) }
0)B3A:+2+pu—0)Ba} ]’

vn{(l—

Then, it follows that

d
N0 < —Ds3(||Y|>+|Z|]%), forsome D3 >0.  (15)

From (7), (11) and (15) it can be seen that (LF), V; (-) satisfies all
the conditions of Theorem 3.1, so the zero solution of (1) with
P(-) =01is (US).

Hence, the proof of Theorem 3.2 is now complete.

4 Boundedness
Now, we consider a system of (DDEs)
¥=F(t,%), % =x(t+0), —r<0<0, (16)

where F : R x C — R" is a continuous mapping and takes
bounded sets into bounded sets.

The following theorem is a well-known result obtained by
Burton [1].

Theorem 4.1. Let V(r,9) : R x C — R" be a continuous
functional and is locally Lipschitz in §. If

OW(EO]) < V(eg) < Wi(1x0)]) + Wz(f,lr%ux(s)nds)

and
(i) Vae) (1,%) < — (\x(t)\) +N, for some N > 0, where
W and W; (i =1,2,3) are wedges,

then the solutions of (16) are (UB) and (UUB) for a bound B.
The following theorem is the (B) main result of (1).

Theorem 4.2. Suppose further to the conditions of Theorem 3.2,
that there exists a constant m > 0, such that ||P(-)|| < m. Then,
the solutions of (1) are (UB) and (UUB), provided that:

(Vn—1)op +2y/nP36
2ﬁ(ﬁ2+B3Ac) ’

2(pon — BsAc) + oo (vn—1)(an oo — B3 + o +207)

Y < min

2v/n{(+ o) (B + B3) + Bs. }

N (1-Ac)(Bs+20na3)
2yn{(p+of)(Br+Bs) + Bs#}

2(0 —p)+(yn—logap+ (1 —Ac)Bs
2vn{(B2+B3Ac) (1 + o)+ Bott} |

where
p+1+a0—Bs+ay +of
l—-w ’

M =
Proof.

Now, we consider the (B) of the solutions of (1). We assume
that P(-) is bounded with a bound m and the conditions of
Theorem 3.2 hold.

Consider the (LF) as
V(I,X[,Y[,Z[) :Vl (t7Xl>Yt>Zt)+V2(t>XI7YI7Zt)7 (17)

where V (+) is defined as (5) and V5 ()
as

V() = o /01 (c()H(oX),X)do + %az(al o — B3)(X, X)

+0q <C(Z‘)H(X),Y> +(O€1 [0} 7B3)<X,Z+ 061Y>

=V,(t,X;,Y:,Z;) is defined

FBVY) e Z Y 2 b oY) (8

Since A;(c(t)) > &, then we can obtain

D
Va() 2 2§3|\[33Y+061H(X)H2
oo
e B3H(x2X+(Z+aY)H2+
2

Bs \|Z+(x Y|,

© 2020 NSP
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Integrating both sides from o7 = 0 to 67 = 1 and because of
H(0) =0, we get
—2 /

Since A;(Jg (X)) < B3 by condition (iii) of Theorem 3.2, which
implies that

<C([)H JH O']X X H(O']X))dO']

51 = o [ ct(0%). X)do
2
5 [ etm(@x)x. oo

= a%/O'l <c(t)H(0'1X),{I— é]y(mx)}x>dol >0.

Thus, we obtain

Vo) > [33

X + 2T Y|?

> 2[3
Ol O
42 Hoc X+(Z+aY)|? (19)

Then, from (6), (17) and (19), we have

K 1 1
V() > *HXH2+ §\|Z+MYH2+ Eﬂ(al —p)Y|?
B3 Z+aY |+ O X)|12
H oY+ 2B X))
3
oo
422 ﬁ3\|a2X+(Z+a1Y)H2. (20)
200

From conditions (i) — (iii) of Theorem 3.2, it follows that using
the Cauchy-Schwarz inequality

Va() <
{anpracviion + ) (2= PARE G LD e

2
+{ B3Ac(a12\/ﬁ+ l) + aq (al (25} 7B3) + alz(al + ]) }HYHZ

2 2

+{%(O€10€2*ﬁ3)+

Thus, from (8), (9), (10), (17) and (21), we have

S+ flzlP e

V() < %{ﬁ3A¢-\/ﬁ(2ﬂ +1+a; +20f)
(o on —Bs) (o + o+ 1)}HXH2
+%{B3Ac\/ﬁ(a1 +1)+B3Ac+u(Bivn+1)
+2fayi (s — o)+ o+ 1) Y
J%{alaz_[g o (og +1)+p+ I}HZH2

nr /” e
a { t—r(t) 2

<\|xu2+|\Y\|2+qu2>ds}, @)

where 1 > max{A,0}.
From (5), (2) and using the conditions of Theorem 3.2, we find

% S_(IJOCZ_B3AC_MB3§C\/_ :uBZ\/_,}, A"}/)HYHZ
f(aru*ﬁﬂ;\f P, cw)uznz

+

{umf Padei_ A(]—w)} /ti,m””s)“z”’s

BB saew)} [ e as

+(uY +Z,P(+)).

In view of the condition ||P(-)|| < m, we get

(e By B, sy)uznz
[ -0 o

NN .
BB sew)} [ ) s
spam|¥] +mZ]. @

From (18), (2) and using the conditions of Theorem 3.2, we get

%Vg( )< az(alaz—ﬁ3)<X,Y> +(X1ﬁ3<Y,Y> +(X1(X2<Y,Z>

+ay(aron —B3)(Y.Y) + oy (a0 — B3) (X, Z)
—oy (o 0p —B3)(X,Z) — vnop (a0 — B3) ||IX]|[[Y]]
—V/nBs38. (a1 0n — B3)||X|]* — o (2,Z) — vnay op||Y ||| Z]]

—0} (¥, Z) —nof oo||[Y||* + i (Z,Z) + o5 (Y, Z)
+of /01 ('(t)H(0X),X)do + oy (' (t)H(X),Y)

3B Y1)+ (@10 — B3) (X PO + o (Z-+ e, P()

Honoa=B)0x. [ Al ()Z(s)ds)

Honon = By)Xelt) [ In(X()Y ()

raZray, [ Je(Y(s)Z(s)ds)

t—r(t)

+ou (Z+anY,et) /tirm Ti (X ()Y (s)ds).
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Since [[Jy(Y)|| < v/nfy by (i), oa/nlX|| < |H(X)] and
Ve (X)|| < +/nBs by (iii), we obtain

Ly,() < (- Don(ogas — Bs)|X] ¥

E 2
—VnBs8.(en o —B3) X[ = Bs (1 —Ac) ¥ ||
~(Vn=Doga|Y[|Z] - (Va—1eafen||Y|?
—ou B3 (1—Ac)[|Y [ + 2

Hanon—By)x, [

t—r(1)

+(061062—I33)<X?/tir(t>

Sy (Y (5))Z(s)ds)

Jr (X (5))Y (s)ds + P(-))

o (Z+aY, tir(ﬂfﬂns»zw)d»
+a1<Z+oc1Y,/tir@JH(X(s))Y(s)ds+P(~)>, (24)

where

o2 < a,z/o'l ('()H(0X),X)do + ay{c'(t)H(X),Y)

+& (' ()Y,Y)

2
5 -1 pl
SOC]/O /0 61<C/(l‘)JH(O'10'2X)X,X>d0'2d0'1

o B3

<
- 2

(c'(1)X,X) <0, since A;(c') 0.

Since ||P(-)|| < m and using the Cauchy-Schwarz inequality, we
can rewrite (24) as

M < (i Vasemar XY
—Vipsbaron — Bs)XI - (v~ D[ 7]

~Bs(1 - A ¥ IZ] - (VA Dod ol Y[

—aBa(1- A0 Y|P+ m{(@r o — )X + @ ¥ |+ au 2]}

+w(HXHZH/;(I)I\Z(S)szS)

no? 't
SR (s [ jzolPas)
t—r(r)
no 4
#INR (zpys [ zts)Pas)
t—r(t)

+\/EB3A¢-((;] a27B3) (HXHZYJF/;W) HY(S)Hst)

no? B3 Ae t
PR ey [ )P )

\/ﬁa1B3Ac-( 2 ! 2)
REER (WP [ IR, es)

Therefore, from (23) and (25), we get

%V(-) < (o0 = B3)m|[X||+ (1 + o )m||Y || + (o + 1)m|Z]

[

3 oo (o 0 — B3) ++/nP38: (o 0 — fB3)

—4[32(061062 —B3)y— \/Tﬁﬁ3Ac(al o — ﬁ3)7}|\x|\2

[,L\/712B3Ac v Vn—1 o (aron —B3)

—{uaz—ﬁ3Ac— 5

py/nfr
2
N

2

_{al_'u_\/ﬁﬁ3Acy_ \/ﬁﬁ2y+\/ﬁ_]

N
2

n
Y+ a1a2+(\/ﬁ—1)a12a2—\/7_a12[32y

atpiacr+anfa(1-a0+ 21— a0 -

o o
2 2 2

—?Oﬂlﬁz?’— ?alﬁSAc'}"" %

+{ ‘/ﬁg3Ac (u

(1-40) 6y}|\zu2

\/r_’B3 Ac
2

@

2

+1)+ (o100 —B3) + S-aiBsa,

NG '
wLapac-ia-o} [ e

+{@(N+1)+@(“1(Xz—ﬁ3)+40‘%ﬁ2

ot
+?alﬁz —5(1- w)}/ 12(s)|ds.
t—r(t)
Let A = Y BsActt, & =Y2Bytl, where

u+lta—fitatof

A l-o

If

(Vn—1)on +2y/nf30.
2vn(B+BsAc)
2(pon — B3Ac) +on(vin— 1) (i 0p — B3+ ou +207)
2yn{(p+of) (B2 + B3) + B34}

N (1-A0)(B3 420 a3)
2v/n{(u+ o) (B + B3) + Bs.at}

2(0n —u)+(vVn—1ogap+ (1 —Ac)Bs
2vn{(B2+BsAc) (1 +ou) + ot} |

Y < min

then we can take

K:mmax{alaz—ﬁ3,u+a,2,a1+l},
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SO (lli) H( ) 0,
dv (- 2 2 2) ( ) 1 —2x})e™ 0
—o [ IXIP+YI>+1Z)* ) + Ko ( |IX]|+ Y]+ |12 ( 1)
7 < o1+ IR + 20 111+ 17+ 1] )~

o

I\XI\2+\IY|\2+\IZI\2)

30

2
c 2
-2 P12+ (2 -KP |+ K

X1 -

3t
c 30
S—E(HXHZHIYHZHIZHZ) + 25 6)
for some o©,K > 0. Therefore, from (20), (22) and (26), the
(LF) V(-) satisfies all the conditions of Theorem 4.1, by taking
(1) = S(IX|> + [Y[]* +[12]?) and N = 37 K. Then, the
solutions of (1) are (UB) and (UUB) for a bound m.
Thus, the proof of Theorem 4.2 is completed.

5 Examples

In this section, we provide two examples to illustrate the
application of the results we obtained in the previous sections.

Example 5.1 (An application of Theorem 3.2)
As a special case of equation (1) with P(-) =0, for n =2, we
choose

94 =G 1
O(X,Y) =
1 94 ¢~ (333)

yi(t—r(t)) +tan 'y (t — r(1))
Y (—rt)) = ;
ya(t —r(t)) +tan Ly, (t — r(1))

x1(t—r(t)+xi(t— r([))e*)‘?(f*r(f))
HX(— (1) = S
xXp(t—r(t)) +xo(t — r([))g*—’fi(f*r(f))

where r(t) = 55 sin® . It follows that

() A (D(.)) =8+~ (T Ay (b(.)) = 1043 then

8<Ai(@()<Il,a1=8,B =11
(i) P(0) =0,

1
Y om) 0

Jyp((Y) =

1
0 Y =)

Therefore, we get

I

1+t —r(t)’
1

1+y3(t—r(t)’

1< A(p() <2, 00 =1, B =2.

Mw() =1+

Aa(Jp(.) =1+

0 1+ (1 —2x%)e’x%

It follows that
M () =1+(1-23)e ™,
MUn()=1+(1-23)e ™,

1 < A'I(JH()) < 2,(13 = l?ﬁ?) =2.

()
67124*1 0
W)= °
0 L 41
2(1+1) T 2
It follows that
1
M) = 37 + 5
12
Jafe() =1+,
7<l( (1)) <1,ittendsto 8 = = and A, =1
(v) Let u =5, where % ﬁ<%
(vi) Since 0 < r(r) = 558in° § < o, y = o,
and since /(1) = s sinfcos § < b, 0 = .
Next,
(Lo —B3Ac) (1 - o)
Vi[{u(2— o)+ 1}B3Ac +p(1 - )B]
31 4)
= — ~0.06566,
CV22{5(2— 45) + 11+ (5)(2)(1 - 3p)]
(g —p)(1 - o)
Vi {(l=0)BsAc+ 2+ 1 — 0)Br}
3(1— & 3(1— &
= 1( ) — = ( 402 ~0.13008,
V2{2(1- 45) +2(2+5-55)}  vV2(16 - 75)

Thus, all the conditions of Theorem 3.2 are satisfied, provided
that
¥ < min{0.06566,0.13008} ~ 0.06566.

Example 5.2 (An application of Theorem 4.2)
As a special case of equation (1), let us take for n = 2 that

114 e~ @57 1
D(X,Y) =
I 11 + e (3+3)

yi(t=r(t) +tan~"yi (t = r(r))
Pt —r) =
va(t = r(t)) +tan "y (t = r(1))

xp(t=r(t))+x(t— r(z))e*-"%(f*r(f))
H(X(t = (1)) = 7
23 (t — (1)) +x2 (1 — r(£))e 2 (1=7(1))

L .

where r(t) = g sin® 5. It follows that
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() M (D(.)) = 10+~ (01,
L(®()) = 124 ¢~ (33 then
10 < 4i(@(.) <13, 00 =10, =13

The calculations for condition (ii) and (iv) is the same as in
Example 5.1.

(iii) H(0) = 0,
14+ (1—2:3)e 0
Ju(X) = ,
0 2+ (1-2x3)e ™™
Thus, we find
M () =1+(1-23)e™,

Ao () =2+ (1-2)e %,

1 <A(Un() <3,03=1,p3=3.
(v) Let u = 6.5, where 110 < 1 < é
(vi) Since 0 < r(t) = 810 7 < 80 Y= 80 and since
P(t) = gysinfcos§ < L. B =1k
Next,

24212 4x1y121+Hx1 (1= (1) +3 (t—r (1))
P |:P1():| 14202 4xyyi 2+ (1= (1)) +y7 (= (1))

24202 Fxay2 20+ (1—1

p2(°)
1+2t2+xzy222+xz(t7r

Hence, we get

1
Y e )
POI= 1 ,
Y a0
1) <2, [p2(-)] £2, and m=2.

Then, we obtain
6.5+1+7+10+100

e 1 ~ 125.2830,
1- 160
(Va—1o+2ynpsd. _ V2-1+3V2 ~0.3293
2y/n(B> + B3 Ac) 2v20+3) T

2(pon — B3Ac) +on(v/n—1) (0 0p — B3 + oy +207)
2vn{(n+ o) (Br+ B3) + B3t}

(1—A)(B3 + 20y 03)
2\/_{( +o?)(B+B3) + s}

7+ (V2-1)7+(v2—1)(10+200)
 2v2{(6.5+100)(2+3) +3(125.283)}

2(ap —p)+(Vn—loap+(1-A4)B3
2/n{(Ba+B3Ac)(1+ o) + ot }

74+10(v/2-1)

T 2v2{(2+3)(1+ 10) +2(125.283)}

Thus, all the conditions of Theorem 4.2 are satisfied, provided
that

~0.0377,

~0.0129,

v < min{0.3293,0.0377,0.0129} ~ 0.0129.

6 Conclusion

Using (LFs), we derived the sufficient conditions for the (US)
of the zero solution, and the (UB) as well as (UUB) of all
solutions of the third-order nonlinear non-autonomous vector
(DDE) (1). We constructed two examples to illustrate our main
results of (S) and (B).
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