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Abstract: This paper presents a new authenticated encryption scheme (AES) based on elliptic curve discrete logarithm problem

(ECDLP) and discrete logarithm problem (DLP). Assume that we have one signer, and a set of U = (u1,u2, ...,ul), which represents

the verifiers group of L members. A single signer can encrypt and sign the message only if k (1 ≤ k ≤ l) or more verifiers agree to

recover the message m on behalf of the whole verifier group U . In addition, we need a system authority with the task of generating

the parameter, while a trusted clerk selected by the signer is needed to verify the signature’s validity. This scheme aims to overcome

the modular exponentiation problem utilizing elliptic curve cryptography (ECC). To attain the desired benefit of enhanced performance

and improved security, the presented technique is established based on the elliptic curve cryptosystem and discrete logarithm problems.

Moreover, it resists strong attacks and operates efficiently. Compared to similar functional techniques, it requires a lower number of

exponential and module operations.
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1 Introduction

A remarkable number of the existing Authenticated
Encryption Schemes (AESs)share the feature that they
rely on a single number theoretic cryptographic
assumption. In [1], the authors suggested a signature that
is associated with a discrete logarithm problem message
recover. The authors of [2] presented an authenticated
encryption technique relying on a modified message
recovery method of that suggested in [1]. The scheme
lacked security in application due to the fact that it
endured "known ciphertext-plaintext attack". An
improved scheme was proposed in [3]. In [4],the
proposed scheme mitigated the disadvantages of the
technique that was proposed in reference [3]. The authors
of [6] proposed a new application in AES. Reference[7]
presented an AES relying on ECDLP. Despite the fact
that the basic AESs can reduce transmission cost
effectively, those schemes still involve some drawbacks.
The message to be transmitted has to be broken into
several message segments. Subsequently, the signer sign

and encrypt every segment and communicate it to a
recipient. Hence, this will raise costs in terms of
computations and transmission. However the authors of
[5] suggested an AES incorporating message
interconnection. The author of [8] revealed that the
scheme of [5] raised an impediment, where the message
segments must be sent in the right following the other.
Although the authors of [9] presented a computationally
efficient AES with lower cost of communications, its
security was breached by [10] and [11].

In 1998 [13], the AES proposed was based on
understanding that only a single verifier might use it .
Accordingly, they advocated a (t,n) threshold signature
with AES to broaden the verification capability applied to
a single signer and an array of verifiers. In [12], the
authors expanded the scheme of [13] to put forth a (t,n)
threshold AES, which was applied to a party of signers
and a party of verifiers. However, the authors of [14]
indicated that the scheme of [12] was insecure.
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The ECC employs efficient operation and surpasses
those of alternative cryptosystems, such as the RSA and
the DSA security approaches, because ECC method
employs a smaller key size and reduced processing
complexity [17,18]. Thus,the techniques that rely on
ECDLP and DLP out performs those established on the
DLP solely reduction in exponentiation computations.
Considering these benefits, we present a novel
Authenticated Encryption Scheme established on the
ECDLP and DLP problems. The security involved in the
proposed approach is greatly enhanced because an
adversary’s ability to simultaneously unravel two hard
problems is virtually improbable.
The remainder of this paper is organized as follows: we
propose a new AES in Section Two. In Section Three,the
security properties of the proposed scheme are discussed.
Performance is addressed in section Four.In Section
Five,covers a numerical illustration of the presented
authenticated cryptosystem technique. Section Six
dedicated to discussion and conclusion.

2 The Proposed Scheme

Our scheme comprises a three-stage procedure: it starts
with parameter formation stage, then the signature and
encryption generation stage, and concludes with the stage
of message recovery. They are described in the following
subsections.

2.1 Parameter Formation Stage

Domain parameters are selected by the system authority
[16] and comprise the following:

1.A pair of large prime numbers p and q that represent
the field sizes.

2.The subsequent elliptic curve equation is defined by
the pair of coefficients a1,a2 ∈ Fp

y2 = x3 + a1x+ a2(mod p)of elliptic curveE over Fp.

thereupon p > 3 and 4a3
1 + 27a2

2 6= 0(mod p).
3.An order q generator point G = (xG,yG).
4.Two secret polynomials f (x) = ck−1xk−1 +ck−2xk−2 +
...+c1 +c0(modq) and p(x) = dk−1xk−1 +dk−2xk−2+
...+d1 +d0(modq) in which c j,d j ∈ [1,q−1] for j =
1,2, ...k− 1.

5.A private and a public keys, Y = aG and a, receptively,
for the signer. In addition to group private and public
keys, c0 and Yu = c0G , respectively, key for U .

6.An individual private and public keys, f (xi) and Yi =
f (xi)G, respectively, for every verifier ui belonging to
U such that i = 1,2, ..., l , along with xi as the public
state linked to each verifier ui.

7.The clerk’s pair of private and public keys, d0 and y =
gd0(modq), respectively.

8.The parameters of the system, p,q,E,G,Y,y,Yi for
(i = 1,2, ..., l) and Yu are published by the system
authority.

2.2 Signature and Encryption Formation Stage

If it is assumed that the signer commences with signing a
message m, the first step will be that the signer creates
her/his signature for the message m, in the ensuing
manner:

1.An integer b ∈ [1,q − 1] is chosen randomly, then
calculate B̄ = bG = (x̄, ȳ).

2.Compute Z = (a+bx̄)(modq)Yu = (xZ ,yZ), thereupon
Z is considered to be, for each of signer and the group
of verifiers U , the common session key.

3.Compute B = x̄B̄ = (xB,yB).
4.Calculate c = (mxB + xZ)(modq).
5.The digital signature is produced as:

s = (bx̄ − ca)(modq), then, the clerk, (x̄,c,s) is
communicated.
After reception of the digital signature on the message
m, the validity of the signature is confirmed by the
clerk as:

x̄B̄ = sG+ cY

To confirm the the validity of the digital signature, the
preceding equation must be fulfilled. Subsequently, the
following tasks are performed by the clerk:

6.Compute R̄ = syd0(modq).
7.The signature of the message m, (c, R̄), is sent to the

verifier group U .
8.Compute p(i) for i = 1,2, ...,k. Next, send it to the

corresponding verifier.

2.3 Message Recovery Stage

Assuming that after the signature (c, R̄) has been received,
the message m could be recovered by any k verifiers from
the verifier group U . Next, the following steps are carried
out to retrieve the message m by each participant verifier
ui(i = 1,2, ..k) :

1.Computes Li = y−wi , where

wi = p(i)
k

∏
j=1
j 6=i

0− x j

xi − x j

(modq).

2.Send Li through a secure channel to the other
participating verifiers.

3.Compute
k

∏
i=1

Li =
k

∏
i=1

y−wi = y

−

k

∑
i=1

wi

= y−p(0) = y−d0 .

4.Calculate s = R̄y−d0 = s(modq).
5.Compute A = sG+ cY = (xA,yA).
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6.Compute zi = f (xi)
k

∏
j=1
j 6=i

(
0− x j

xi − x j

)(Y +A) = (xzi
,yzi

)

7.Utilizing a secure channel, send zi to the designated
participant.

8.The key for common session is found using

Z̄ =
k

∑
i=1

Zi = (xZ̄,yZ̄).

9.Calculate m = (c− xZ̄)x
−1
A modq.

3 Security Analysis

We demonstrate that this new technique is heuristically
secure when investigated under the most common attacks
of interest within the domain of cryptosystems. These
attacks were mentioned previously. The new
cryptosystem is analyzed, we thereupon describe how the
Adversary (Adv) may attempt to breach the new scheme.
As a start, correctness of the scheme is inspected.
Subsequently, we assess security performance through
illustrating that its ability to resist all defined
cryptosystem attacks. Proving the following theorems, we
aim to confirm our new scheme’s validity.

Theorem 2.1 If the group signature (c, R̄) is created in
the signature formation stage,the message m could be
retrieved by the verifier in the message recovery stage.

Proof.Note that

A = sG+ cY = (xA,yA) = (x̄b− ca)G+ caG

= x̄bG

= x̄B̄

= B = (xB,yB)

Also we have:

Z̄ =
k

∑
i=1

Zi

=
k

∑
i=1

f (xi)
k

∏
j=1
j 6=i

(
0− x j

xi − x j

)(Y +A)

= f (0)(aG+A)

= ac0G+ c0B

= aYu + c0x̄B̄

= aYu + c0x̄bG

= aYu + bx̄Yu

= (a+ bx̄)Yu

= Z

Then,

(c− xZ̄)x
−1
A modq = (mxB + xZ − xz̄)x

−1
A

= (mxB + xZ)x
−1
A

= (mxA)x
−1
A

= m mod q

In the following section we discuss some possible
attacks against the proposed scheme and reveal that it is
secure under the protection of the ECDLP and DLP
assumption.

Attack 1. Adv desire to derive the private keys a and
c0 from the public keys Y = aG and Yu = c0G, or s/he
derives the personal private keys f (xi) from the personal
public keys Yi = f (xi)G. Hence s/he will be confronted
with the challenge of figuring out the ECDLP. Such
problem is considered to be impossible to unravel via
practical methods of computations. Accordingly, this type
of attack is futile. In addition, if the Adv attempts to
derive the private key d0 from the public key
y = gd0modq for the signer, s/he is required to untangle
the DLP, which is evidently impractical.

Attack 2. If it is assumed the number of (k− 1) from
verifiers (u1,u2, ...,u(k−1)), which desire to fabricate the

signature (c, R̄) for a message m in order to cause the kth
verifier uk to have confidence that the signer has created
the aforesaid signature. First, these k − 1 conspirators
pick, in a random fashion, three numbers (c, R̄) for
developing the falseA. This is impossible since the
attacker needs the number p(k) to compute y−d0 , and to
then extract s. Nevertheless, s/he is incapable of doing
that due to the fact that p(x) is a secret polynomial, while
the clerk is a trusted person selected by the signer.If s/he
attempts to computey−d0, s/he will encounter the DLP.

Attack 3. Consider that that Adv is capable of
unravelling the ECDLP. Under this scenario, the
adversary knows the private keys a,c0, f (xi), i = 1, ...,k.
Unfortunately, he cannot extract s because he is unable to
find y−d0 because of the predicament of DLP. Thus, he is
incapable of defining m.

Attack 4. Suppose that the attacker is capable of
unravelling the DLP. Under this scenario, the attacker
knows d0, then s/he can compute y−d0 and extract s, so
s/he can compute A. However, s/he is unable to compute
zi since s/he requires the private keys f (xk), i = 1,2, ...,k
of the corresponding verifiers group ui(i = 1,2, ...,k)
suggesting that the attacker will fail because of ECDLP.

4 Performance Evaluation

In this section, we examine performance, in terms of two
key indicators, of our scheme, namely complexity of
needed computations and communication costs. The
subsequent notations are devised for the purpose of
analyzing the scheme’s performance:

–The number of secret keys, and number of public keys,
of the scheme are SK and PK, respectively.

–Tmul denotes an executing a modular multiplication
time complexity.
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Table 1: Time complexity performance estimation and comparison

Item of Scheme by The Proposal

comparison Chen

Time Complexity Time Complexity

complexity in Tmul Complexity in Tmul

Parameter (n+ l +2)Tec−mul (29n+29l+ (2+ l)Tec−mul (298+29l)Tmul

formation 58)Tmul +Texp

stage

Signature (t +5)Tec−mul (35.24t −143.88)Tmul+ 6Tec−mul+ 659.12Tmul

formation +(2t −1)Tec−add (3t −3)Tinv Tec−add+
stage +(6t −1)Tmul 5Tmul+

+(3t −3)Tinv 2Texp

Message 3Tec−mul+ (2.12k+59.24)Tmul+ 3Tec−mul+ (89.24+242.12k+
retrieval (k+2)Tec−add+ kTinv (k+2)Tec−add+ 2k2)Tmul+

stage (2k+1)Tmul (2k+2k2 +1)Tmul+ Tinv

+kTinv kTexp+
Tinv

–Texp is a measure for performing a modular
exponentiation computation time complexity.

–Tinv presents an evaluation measure for a modular
inverse computation time complexity.

–Tec−add denotes an executing the addition of two
elliptic curve points time complexity.

–Tec−mul denotes an executing the multiplication on
elliptic curve time complexity.

–|x| stands for the bit length of x.

In order to recapitulate the performance of
cryptosystems intrems of efficiency, we adapt the
subsequent conversion provided in [15,19]. It works by
converting a number of operations units to alternate units
of execution of the modular multiplication.

Texp ≈ 240Tmul; Tec−mul ≈ 29Tmul; Tec−add ≈ 0.12Tmul.

In addition, we depicted and investigated the
efficiency performance of the newly developed
cryptosystems. The efficiency performance is heavily
dependent on the parameters used; mainly on the modulus
n. To depict the performance of each scheme, we utilize
the following criteria:

–The number of keys,
–The complexity in computations and
–The incurred costs of communication.

Table (1) summarizes the efficiency performance
comparing that of reference [10] and that of our scheme.
Our scheme needs (298 + 29l)Tmul in terms of time
complexity within the parameter formation stage,
659.12Tmul in terms of time complexity within the

signature formation stage, and
(89.24+ 242.12k+ 2k2)Tmul in terms of time complexity
within the message recovery stage, when assuming that
Tinv is negligible.

5 Numerical simulation of the AES

For purpose of validation, we illustrate an example to
show the basic principle of our developed scheme.
Practitioners are not recommended to choose keys or
parameters computed in this example in practice since
inappropriate parameters would make this scheme
vulnerable to attacks.

Assume that p = 1091, q = 1051, and consider the
elliptic curve equation E : y2 = x3 − 3x+ 69(mod1091).
The point G = (299,62) is a base point with order
q = 1051 and g = 20 ∈ Z

∗
q. We select two secret

polynomials, f (x) = 71x2 + 103x + 119(mod1051) and
p(x) = 37x2 + 61x + 83(mod1051). Then, we select a
private key a = 113 for the signer, c0 = 119 as a private
key for the group of verifier U and d0 = 83 a private key
for the clerk. Calculate the public key, as follows:

–Y = aG = 113G = (643,1012)
–Yu = c0G = 119G = (972,360)
–y = 2083 = 1032(mod1051)

We will apply our example on 3 members verifier group.
Choose x1 = 203,x2 = 164 and x3 = 373 and compute Y1 =
(691,674), Y2 = (491,895) and (491,196).

In signature generation phase, the signer generates his
or her signature for a chosen message m = 733, as follows:
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1.Select random integer b= 523∈ [1,1050] and compute
B̄ = (927,259) = (x̄, ȳ).

2.Compute Z = (1064,754) = (xz,yz).
3.Compute B = (116,321) = (xB,yB).
4.Calculate c = (mxB + xz)(modq) = 961.
5.Generate the digital signature s = (bx̄− ca)(modq) =

1021 and send it to the clerk.
After the digital signature on the message m is
received, the clerk verifies the validity of the signature
as follows:

x̄B̄ = 927(523G) = (116,321)

sG+ cY = 1021G+ 961(113)G= (116,321)

If the equation is satisfied, validity of the digital
signature is established. Then, the clerk does the
following:

6.Compute R̄ = syd0 = 236(modq).
7.Send the signature (961,236) for the message m = 733

to the verifier group U .
8.Compute p(1) = 181, p(2) = 353 and p(3) = 599 and

send it to the corresponding verifier.

After receiving the signature (c, R̄) = (961,236) any
k = 3 verfieirs can recover the message m by executing the
following steps.

1.Compute L1 = 618, L2 = 7760 and L3 = 729.
2.Send L1,L2,L3 to other participant verifier via a secure

channel.

3.Compute
k

∏
i=1

Li = 116.

4.Calculate s = R̄y−d0 = 1021(modq).
5.Compute A = sG+ cY = (116,321) = (xA,yA).
6.Compute z1 = 355G=(xz1

,yz1
), z2 = 158G=(xz2

,yz2
)

and z3 = 427G = (xz3
,yz3

)
7.Send z1, z2 and z3 to the other participant via a secure

channel.
8.Compute the common session key

Z̄ = (1064,754) = (xZ̄,yZ̄).
9.Calculate

m = (c− xZ̄)x
−1
A modq = (961−1064)(116−1) = 733.

6 Discussion and Conclusion

A remarkable number of the existing AESs in the
literature share the feature that they rely on a single
number theoretic cryptographic hard problem. Despite the
fact that these schemes emerge to be secure today, if an
Adv succeeds in solving this problem in the immanent
future, s/he will be able to recover all secret information
inclusive of secret keys and read any message in the
genuine form. Accordingly, we proposed in this paper a
new AES relying on ECDLP and DLP. This newly
developed technique excels the schemes established on a
single hard problem. In other words, it longer and higher
level of security. By virtue of the fact that in order to
compromise the scheme the attacker must simultaneously

solve two problems, and that poses an impossibility.
Moreover, we demonstrated that this new technique is
heuristically secure when investigated under the most
common attacks of interest within the domain of
cryptosystems, namely the direct attack, the DLP attack,
and the ECDLP attack. That was performed by assessing
the security performance by means of proofs and
illustrations to confirm our new scheme’s validity. In
terms of efficiency performance, we found that the new
authenticated encryption schemes needs (298+ 29l)Tmul

in the parameter formation stage, 659.12Tmul time
complexity in the signature formation stage, whereas the
message recovery stage necessitates
(89.24+ 242.12k+2k2)Tmul +Tinv time complexity.
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