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Abstract: This article focuses on the Hyers-Ulam type stability, existence and uniqueness of solutions for new types of coupled

boundary value problems involving fractional differential equations of Caputo type and augmented with Erdelyi-Kober fractional

integral boundary conditions. The nonlinearity relies on the unknown functions. The consequence of the existence is obtained through

the Leray-Schauder alternative, whereas the uniqueness of the solution relies on the Banach contraction mapping principle. We analyze

the stability of the solutions concerned in the Hyers-Ulam form. As an application, some examples are presented to illustrate the main

results. Finally, some variants of the problem are addressed.
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1 Introduction

Fractional differential equations have been used to model
some biological, chemical, technological, physical,
economic, and other applications problems. They have
become a useful tool for explaining science and
engineering models of nonlinear phenomena. In addition,
researchers have found that fractional calculus is very
useful for explaining long memory and hereditary
properties of different materials and processes, see [1–6]
and the references cited therein.
The fractional calculus with the concept of expanding the
calculus was still an elegant yet exotic theory.
Nevertheless, various examples were gathered at the end
of the last century for useful applications of this theory to
solve practical problems in different areas of natural
sciences, engineering, control theory, economics,
biomedicine, etc. See [7–15] and the references for
examples and information. Mathematicians, physicists,
chemists, engineers, etc. have begun to talk to one another
in the language of differentiation and integration with a
clearer and more accurate explanation of the real world

and life phenomena of arbitrary order and models based
on fractional calculus. Nevertheless, it was found that
most work encompasses either the fractional derivatives
of Riemann-Liouville or Caputo form. As introduced by
Arthur Erdelyi and Hermann Kober in 1940, the
Erdelyi-Kober fractional integral operator [16] is useful in
the solution of single, dual and triple integral equations
with special functions of mathematical physics in their
kernels. For example, see [17, 18] and the references cited
therein. The present paper aim to investigate the existence
and uniqueness of coupled system of fractional
differential equations for the Caputo type:

Dδ u(z) = f (z,u(z),v(z)), z ∈ [0,T ], 1 < δ ≤ 2,
Dγ v(z) = g(z,u(z),v(z)), z ∈ [0,T ], 1 < γ ≤ 2,

(1)

supplemented by Erdelyi-Kober fractional integral
boundary conditions:

u(T )=ξIθ ,ϑ
ω v(α), v(T )=ζI

σ ,ς
ρ u(β ),

u(0) = 0, v(0) = 0,
(2)

where Dδ , Dγ denote the Caputo fractional derivatives
and f ,g: [0,T ] × R × R → R are given continuous
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functions. I
θ ,ϑ
ω , I

σ ,ς
ρ are the Erdelyi-Kober fractional

integral of order ϑ ,ς > 0, ω ,ρ > 0, θ ,σ ∈ R. We define
spaces U = {u(z) : u(z) ∈ C([0,T ],R)} endowed with the
norm ‖u‖ = sup{|u(z)|,z ∈ [0,T ]}. Obviously (U,‖ · ‖) is
a Banach space. Also V = {v(z) : v(z) ∈ C([0,T ],R)}
endowed with the norm ‖v‖ = sup{|v(z)|,z ∈ [0,T ]} is a
Banach space. Then the product space (U×V,‖(u,v)‖) is
also a Banach space equipped with norm
‖(u,v)‖= ‖u‖+‖v‖. The rest of the paper is organized as
follows: Section Two handles certain basic concepts of
fractional calculus with the fundamental lemmas
associated with this problem. The existence and unique
results can be accomplished using the fixed point
theorems Leray-Schauder alternative and Banach in
section Three. Section Four addresses stability of
solutions in Hyers-Ulam and provides appropriate
stability conditions. Examples are given in section Five to
verify the results. Two new problems are considered
similar to (1)-(2), and Section Six defines the strategy for
resolving them.

2 Preliminaries

We begin with some basic definitions, properties, and
lemmas derived from [19–21].

Definition 1. The fractional integral of order δ with the

lower limit zero for a function f is defined as

Iδ f (z) =
1

Γ (δ )

∫ z

0

f (τ)

(z− τ)1−δ
dτ, z > 0, δ > 0,

provided the right hand-side is point-wise defined on

[0,∞), where Γ (·) is the gamma function, which is defined

by Γ (δ ) =
∫ ∞

0
zδ−1e−zdz.

Definition 2. The Caputo derivative of order δ for a

function f : [0,∞)→ R can be written as

CD
δ

f (z) =
1

Γ (n− δ )

∫ z

0

f n(τ)

(z− τ)δ+1−n
dτ, n− 1 < δ < n.

where δ denotes the integer part of the order δ .

Definition 3. The Erdelyi-Kober fractional integral of

order δ > 0 and ρ > 0, of a function f (z), for all

0 < z < ∞, is defined as

I
θ ,ϑ
ω f (z) =

ωz−ω(ϑ+θ)

Γ (ϑ)

∫ z

0

τωθ+ω−1

(zω − τω)1−ϑ
f (τ)dτ,

provided the right hand-side is point-wise defined on

(0,∞).

Remark. For ω = 1 the above-mentioned operator is
reduced to the Kober operator

I
θ ,ϑ
1 f (z) =

z−(ϑ+θ)

Γ (ϑ)

∫ z

0

τθ

(z− τ)1−ϑ
f (τ)dτ,

that was introduced for the first time by Kober in [22]. For
θ = 0, the Kober operator is reduced to the
Riemann-Liouville fractional integral with a power
weight:

I
0,ϑ
1 f (z) =

z−(ϑ )

Γ (ϑ)

∫ z

0

1

(z− τ)1−ϑ
f (τ)dτ, ϑ > 0.

Lemma 1. Let ϑ ,ω > 0, and θ ,δ ∈ R. Then we have

I
θ ,ϑ
ω zδ =

zδ Γ
(

θ +( δ
ω )+ 1

)

Γ
(

θ +( δ
ω )+ϑ + 1

) . (3)

Lemma 2. For δ > 0, the general solution of the fractional

differential equation CDδ u(z) = 0 is given by

u(z) = a0 + a1z+ · · ·+ an−1zn−1
,

where ai ∈R, i = 1,2, ...,n− 1, (n = [δ ]+ 1).
In view of Lemma 2, it follows that

Iδ CDδ u(z) = u(z)+ a0 + a1z+ · · ·+ an−1zn−1
,

for some ai ∈R, i = 1,2, ...,n− 1 (n = [δ ]+ 1).

Theorem 1. [Leray-Schauder alternative (see [23])] Let
T : G → G be a completely continuous operator(i.e., a
map restricted to any bounded set in G is compact). Let
Θ(T ) = {y ∈ G : y = µT (y) for some 0 < µ < 1}. Then
either the set Θ(T ) is unbounded, or T has at least one
fixed point.

Theorem 2. [Arzela-Ascoli Theorem (see [24])] A subset
F in C ([a,b],R) is relatively compact if and only if it is
uniformly bounded and equicontinuous on [a,b].

Theorem 3. [Banach Fixed Point Theorem (see [24])] Let
(G ,d) be a complete metric space, and P : H → H a
contraction mapping: d(Py,Pz) ≤ κd(y,z), where 0 <

κ < 1, for each y,z ∈H . Then, ∃ a unique fixed point y of
P in H .

Lemma 3. For f̂ , ĝ∈C([0,T ],R), the solution of the linear

system of fractional differential equations

Dδ u(z) = f̂ (z), 1 < δ ≤ 2,
Dγ v(z) = ĝ(z), 1 < γ ≤ 2,

(4)

supplemented with the coupled integral boundary

conditions (2) is equivalent to the system of integral

equations

u(z) = κ1(z)

[
ϖ1ζI

σ ,ς
ρ Jδ f̂ (β )−TJδ f̂ (T )

+T ξIθ ,ϑ
ω Jγ ĝ(α)−ϖ1J

γ ĝ(T )

]
+Jδ f̂ (z), (5)

and

v(z) = κ1(z)

[
ϖ2ξIθ ,ϑ

ω Jγ ĝ(α)−TJγ ĝ(T )
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+TζI
σ ,ς
ρ Jδ f̂ (β )−ϖ2J

δ f̂ (T )

]
+Jγ ĝ(z), (6)

where

κ1(z) =
z

T 2 − (ϖ1ϖ2)
, where T 2 − (ϖ1ϖ2) 6= 0, (7)

ϖ1 =
αξΓ (θ + 1

ω + 1)

Γ (θ + 1
ω +ϑ + 1)

, ϖ2 =
β ζΓ (σ + 1

ρ + 1)

Γ (σ + 1
ρ + ς + 1)

.(8)

Proof. By standard solution of the fractional differential
equations (4), we get

u(z) = Jδ f̂ (z)+ a1 + a2z, (9)

v(z) = Jγ ĝ(z)+ b1 + b2z, (10)

where ai,bi ∈ R, i = 1,2, are arbitrary constants. Using
the conditions u(0) = v(0) = 0, it is found that
a1 = b1 = 0. Using the boundary conditions (2) in (9) and
(10) respectively, as well as Lemma 2, we get

a2T − b2ϖ1 = ξIθ ,ϑ
ω Jγ ĝ(α)−Jδ f̂ (T ), (11)

b2T − a2ϖ2 = ζI
σ ,ς
ρ Jδ f̂ (β )−Jγ ĝ(T ). (12)

Solving the system (11) and (12), we get

a2 =
1

T 2 − (ϖ1ϖ2)

[
T ×

{
ξIθ ,ϑ

ω Jγ ĝ(α)−Jδ f̂ (T )

}

+ϖ1 ×
{

ζI
σ ,ς
ρ Jδ f̂ (β )−Jγ ĝ(T )

}]
,

b2 =
1

T 2 − (ϖ1ϖ2)

[
T ×

{
ζI

σ ,ς
ρ Jδ f̂ (β )−Jγ ĝ(T )

}

+ϖ2 ×
{

ξIθ ,ϑ
ω Jγ ĝ(α)−Jδ f̂ (T )

}]
.

Substituting the values of a1, a2, b1 and b2 in (9) and (10)
respectively, we get the solution (5) and (6).

3 Existence and Uniqueness Results

In view of Lemma 3, we define an operator G : U×V→
U×V as

G(u,v)(z) = (G1(u,v)(z),G2(u,v)(z)), (13)

where

G1(u,v)(z) = κ1(z)

[
ϖ1ζI

σ ,ς
ρ Jδ f (τ,u(τ),v(τ))(β )

−TJδ f (τ,u(τ),v(τ))(T )

+TξIθ ,ϑ
ω Jγg(τ,u(τ),v(τ))(α)

−ϖ1J
γg(τ,u(τ),v(τ))(T )

]

+Jδ f (τ,u(τ),v(τ))(z), (14)

and

G2(u,v)(z) = κ1(z)

[
ϖ2ξIθ ,ϑ

ω Jγg(τ,u(τ),v(τ))(α)

−TJγg(τ,u(τ),v(τ))(T )

+TζI
σ ,ς
ρ Jδ f (τ,u(τ),v(τ))(β )

−ϖ2J
δ f (τ,u(τ),v(τ))(T )

]

+Jγg(τ,u(τ),v(τ))(z). (15)

The following terms are used in the sequel:

Jδ f (τ,u(τ),v(τ))(z) =
1

Γ (δ )

∫ z

0

f (τ,u(τ),v(τ))dτ

(z− τ)1−δ
,

Jγg(τ,u(τ),v(τ))(z) =
1

Γ (γ)

∫ z

0

g(τ,u(τ),v(τ))dτ

(z− τ)1−γ
,

I
σ ,ς
ρ Jδ f (τ,u(τ),v(τ))(β ) =

ρβ−ρ(ς+σ)

Γ (δ )Γ (ς)

×
∫ β

0

∫ s

0

sρσ+ρ−1(s− τ)δ−1

(β ρ − sρ)1−ς

× f (τ,u(τ),v(τ))dτds,

I
θ ,ϑ
ω Jγ,g(τ,u(τ),v(τ))(α) =

ωα−ω(ϑ+θ)

Γ (γ)Γ (ϑ)

×
∫ α

0

∫ s

0

sωθ+ω−1(s− τ)γ−1

(αω − sω)1−ϑ

×g(τ,u(τ),v(τ))dτds.

In order to perform the interference with the proof, we
introduce the notations:

P1 =
T δ

Γ (δ + 1)
+ κ̂1

[
T δ+1

Γ (δ + 1)

+
ϖ1|ζ |β δ Γ (σ + δ

ρ + 1)

Γ (δ + 1)Γ (σ + δ
ρ + ς + 1)

]
, (16)

P2 = κ̂1

[
|ϖ2|T δ

Γ (δ + 1)
+

T |ζ |β δ Γ (σ + δ
ρ + 1)

Γ (δ + 1)Γ (σ + δ
ρ + ς + 1)

]
, (17)

Q1 = κ̂1

[
|ϖ1|T γ

Γ (γ + 1)
+

T |ξ |αγΓ (θ + γ
ω + 1)

Γ (γ + 1)Γ (θ + γ
ω +ϑ + 1)

]
, (18)

Q2 =
T γ

Γ (γ + 1)
+ κ̂1

[
T γ+1

Γ (γ + 1)

+
ϖ2|ξ |αγΓ (θ + γ

ω + 1)

Γ (γ + 1)Γ (θ + γ
ω +ϑ + 1)

]
, (19)

Λ = min{1− ((P1+P2)η1 +(Q1 +Q2)η̂1),

1− ((P1+P2)η2 +(Q1 +Q2)η̂2)}. (20)

Theorem 4. Assume that f ,g : [0,T ] × R
2 to R are

continuous and there exist positive constants ηi and
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η̂i ≥ 0, i = 1,2, η0 > 0, η̂0 > 0 such that

∀ ui ∈ R, i = 1,2. | f (z,u1,u2)| ≤ η0 + η1|u1|+ η2|u2|,
|g(z,u1,u2)| ≤ η̂0 + η̂1|u1| + η̂2|u2|. Furthermore,

understand that (P1 +P2)η1 + (Q1 +Q2)η̂1 < 1 and

(P1 +P2)η2 + (Q1 +Q2)η̂2 < 1. Then there exists at

least one solution for problem (1) and (2) on [0,T], where

P1, P2, Q1 and Q2 are given by (16)-(19) respectively.

Proof. First of all, we show that operator G : U×V →
U×V is completely continuous. By continuity of the f ,g

functions, operator G is continuous.

Θ ⊂ U×V are bounded. Then there exist positive
constants M f and Mg such that
| f (z,u(z),v(z))| ≤ M f , |g(z, p(z),q(z))| ≤ Mg,
∀ (u,v) ∈Θ . Then for any (u,v) ∈Θ , we can find that

|G1(u,v)(z)|

≤ κ1(z)

[
ϖ1ζI

σ ,ς
ρ Jδ | f (τ,u(τ),v(τ))|(β )

+TJδ | f (τ,u(τ),v(τ))|(T )

+TξIθ ,ϑ
ω Jγ |g(τ,u(τ),v(τ))|(α)

+ϖ1J
γ |g(τ,u(τ),v(τ))|(T )

]

+Jδ | f (τ,u(τ),v(τ))|(z)

≤ κ1(z)

[
ϖ1ζI

σ ,ς
ρ JδM f (1)(β )+TJδM f (1)(T )

+TξIθ ,ϑ
ω JγMg(1)(α)+ϖ1J

γMg(1)(T )

]

+JδM f (1)(z)

≤ M f κ̂1

Γ (δ + 1)

[
ϖ1|ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+T δ+1

]

+
M f T δ

Γ (δ + 1)
+

Mgκ̂1

Γ (γ + 1)

[
T |ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+|ϖ1|T γ

]

= M fP1 +MgQ1. (21)

Equivalently, we obtain

|G2(u,v)(z)|

≤ κ1(z)

[
ϖ2ξIθ ,ϑ

ω Jγ |g(τ,u(τ),v(τ))|(α)

+TJγ |g(τ,u(τ),v(τ))|(T )

+TζI
σ ,ς
ρ Jδ | f (τ,u(τ),v(τ))|(β )

+ϖ2J
δ | f (τ,u(τ),v(τ))|(T )

]

+Jγ |g(τ,u(τ),v(τ))|(z)

≤ κ1(z)

[
ϖ2ξIθ ,ϑ

ω JγMg(1)(α)+TJγMg(1)(T )

+TζI
σ ,ς
ρ JδM f (1)(β )+ϖ2J

δM f (1)(T )

]

+JγMg(1)(z)

≤ Mgκ̂1

Γ (γ + 1)

[
ϖ2|ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+T γ+1

]

+
MgT γ

Γ (γ + 1)
+

M f κ̂1

Γ (δ + 1)

[
T |ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+|ϖ2|T δ

]

= MgQ2 +M fP2. (22)

It follows from (21) and (22) that G is uniformly bound.
We will prove the equicontinuity of operator G. For
z1,z2 ∈ [0,T ] with z1 < z2, we have

|G1(u(z2),v(z2))−G1(u(z1),v(z1))|

≤ |κ1(z2)−κ1(z1)|
[

ϖ1ζI
σ ,ς
ρ Jδ | f (τ,u(τ),v(τ))|(β )

+TJδ | f (τ,u(τ),v(τ))|(T )

+TξIθ ,ϑ
ω Jγ |g(τ,u(τ),v(τ))|(α)

+ϖ1J
γ |g(τ,u(τ),v(τ))|(T )

]

+

∣∣∣∣∣

∫ z1

0

[(z2 − τ)δ−1−(z1 − τ)δ−1]

Γ (δ )
f (τ,u(τ),v(τ))dτ

∣∣∣∣∣

+

∣∣∣∣∣

∫ z2

z1

(z2 − τ)δ−1

Γ (δ )
f (τ,u(τ),v(τ))dτ

∣∣∣∣∣

≤ |z2 − z1|
T 2 − (ϖ1ϖ2)

{
M f

Γ (δ + 1)

[
ϖ1|ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+T δ+1

]
+

Mg

Γ (γ + 1)

[
T |ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+|ϖ1|T γ

]}
+

M f

Γ (δ + 1)
[(z2 − z1)

δ +(zδ
2 − zδ

1 )].

Hence, we got that ‖G1(u,v) − G1(u,v)‖U → 0
independent of u and v as z2 → z1. Accordingly, we get

|G2(u(z2),v(z2))−G2(u(z1),v(z1))|

≤ |κ1(z2)−κ1(z1)|
[

ϖ2ξIθ ,ϑ
ω Jγ |g(τ,u(τ),v(τ))|(α)

+TJγ |g(τ,u(τ),v(τ))|(T )

+TζI
σ ,ς
ρ Jδ | f (τ,u(τ),v(τ))|(β )
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+ϖ2J
δ | f (τ,u(τ),v(τ))|(T )

]

+

∣∣∣∣∣

∫ z1

0

[(z2 − τ)γ−1 − (z1 − τ)γ−1]

Γ (γ)
g(τ,u(τ),v(τ))dτ

∣∣∣∣∣

+

∣∣∣∣∣

∫ z2

z1

(z2 − τ)γ−1

Γ (γ)
g(τ,u(τ),v(τ))dτ

∣∣∣∣∣

≤ |z2 − z1|
T 2 − (ϖ1ϖ2)

{
Mg

Γ (γ + 1)

[
ϖ2|ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+T γ+1

]
+

M f

Γ (δ + 1)

[
T |ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+|ϖ2|T δ

]}
+

Mg

Γ (γ + 1)
[(z2 − z1)

γ +(z
γ
2 − z

γ
1)],

which imply that ‖G2(u,v) − G2(u,v)‖V → 0
independent of u and v as z2 → z1. The G(u,v) operator is
therefore equicontinuous, which makes the operator
completely continuous according to Thoerem 2. Next, we
show that the set
S = {(u,v) ∈ U ×V|(u,v) = εG(u,v),0 < ε < 1} is
bounded. Let (u,v) ∈ S, then (u,v) = εG(u,v) and for
any z ∈ [0,T ], we have
u(z) = εG1(u,v)(z), v(z) = εG2(u,v)(z).
Thus,

|u(z)| ≤ (η0 +η1‖u‖+η2‖v‖)

×
{

κ̂1

Γ (δ + 1)

[
ϖ1|ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+T δ+1

]

+
T δ

Γ (δ + 1)

}
+(η̂0 + η̂1‖u‖+ η̂2‖v‖)

×
{

κ̂1

Γ (γ + 1)

[
T |ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+|ϖ1|T γ

]}
.

Identical to the above-mentioned we can have

|v(z)| ≤ (η̂0 + η̂1‖u‖+ η̂2‖v‖)

×
{

κ̂1

Γ (γ + 1)

[
ϖ2|ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+T γ+1

]

+
T γ

Γ (γ + 1)

}
+(η̂0 + η̂1‖u‖+ η̂2‖v‖)

×
{

κ̂1

Γ (δ + 1)

[
T |ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+|ϖ2|T δ

]}
.

Hence we have

‖u‖ ≤ (η0 +η1‖u‖+η2‖v‖)P1

+(η̂0 + η̂1‖u‖+ η̂2‖v‖)Q1. (23)

Identical to the above-mentioned we can have

‖v‖ ≤ (η̂0 + η̂1‖u‖+ η̂2‖v‖)Q2

+(η0 +η1‖u‖+η2‖v‖)P2. (24)

In conjunction with the notations (23)-(24), we deduce
the following results by supporting the aforementioned
inequalities.

‖u‖+ ‖v‖ ≤ (P1 +P2)η0 +(Q1 +Q2)η̂0nonumber

+((P1 +P2)η1 +(Q1 +Q2)η̂1

+((P1 +P2)η2 +(Q1 +Q2)η̂2,

which leads to ‖(u,v)‖ ≤ (P1 +P2)η0 +(Q1 +Q2)η̂0

Λ
.

This results in the set S which is bounded. Thus, operator
G has at least one fixed point by Theorem 1 implying that
problem (1)-(2) has at least one solution on [0,T].

Next, we’ll roll the ball into solutions that make it
unique with the fixed point theorem of Banach for the
problem (1)-(2).
In order to avoid computational complexity, we presume

∆1 = N1P1 +W1Q1 +N2P1 +W2Q1, (25)

∆2 = W1Q2 +N1P2 +W2Q2 +N2P2, (26)

χ1 = K1(P1 +P2), χ2 = K2(Q1 +Q2), (27)

K1 = sup
z∈[0,T ]

f (z,0,0) < ∞, K2 = sup
z∈[0,T ]

g(z,0,0)< ∞.(28)

Theorem 5. Assume that f ,g : [0,T ] × R
2 to R are

continuous and there exist positive constants Ni (i = 1,2)
and Wi (i = 1,2) such that for all z ∈ [0,T ] and

ui,vi ∈ R(i = 1,2), we have

| f (z,x1,x2)− f (z,y1,y2)| ≤N1|x1 − y1|+N2|x2 − y2|,
|g(z,x1,x2)− g(z,y1,y2)| ≤W1|x1 − y1|+W2|x2 − y2|.
Moreover, let us understand that

∆1 +∆2 < 1, (29)

where ∆1,∆2 are specified by (25)-(26) respectively. Then

there exists a unique solution for problem (1)-(2) on

[0,T].

Proof. Let us define r̂ >
χ1+χ2

1−(∆1+∆2)
. where ∆1,∆2 and

χ1,χ2 are respectively given by (27), and show that
GBr̂ ⊂ Br̂, where the operator G is given by (13) and
Br̂ = {(u,v) ∈ U×V : ‖(u,v)‖ ≤ r̂}. For (u,v) ∈ Br̂,
z ∈ [0,T ], we have

| f (z,u(z),v(z))| ≤ N1|u(z)|+N2|v(z)|+K1

≤ N1‖u‖+N2‖v‖+K1,

|g(z,u(z),v(z))| ≤ W1‖u‖+W2‖v‖+K2.

This guides to

|G1(u,v)(z)|
≤ Jδ | f (z,u(z),v(z))− f (z,0,0,0)|+ | f (z,0,0,0)|

+κ1(z)

[
ϖ1ζI

σ ,ς
ρ Jδ | f (β ,u(β ),v(β ))− f (β ,0,0,0)|
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+| f (β ,0,0,0)|
+TJδ | f (T,u(T ),v(T ))− f (T,0,0,0)|+ | f (T,0,0,0)|
+TξIθ ,ϑ

ω Jγ |g(α,u(α),v(α))− g(α,0,0,0)|
+|g(α,0,0,0)|

+ϖ1J
γ |g(T,u(T ),v(T ))−g(T,0,0,0)|+|g(T,0,0,0)|

]

≤ (N1‖u‖+N2‖v‖+K1)

[
κ̂1

(
T δ+1

Γ (δ + 1)

+
ϖ1|ζ |β δ Γ (σ + δ

ρ + 1)

Γ (δ + 1)Γ (σ + δ
ρ + ς + 1)

)
+

T δ

Γ (δ + 1)

]

+(W1‖u‖+W2‖v‖+K2)

×κ̂1

[
T |ξ |αγΓ (θ + γ

ω + 1)

Γ (γ + 1)Γ (θ + γ
ω +ϑ + 1)

+
|ϖ1|T γ

Γ (γ + 1)

]

≤ (N1‖u‖+N2‖v‖+K1)P1

+(W1‖u‖+W2‖v‖+K2)Q1. (30)

Equivalently, we obtain

|G2(p,q)(z)|
≤ Jγ |g(z,u(z),v(z))− g(z,0,0,0)|+ |g(z,0,0,0)|

+κ1(z)

[
ϖ2ξIθ ,ϑ

ω Jγ |g(α,u(α),v(α))− g(α,0,0,0)|

+|g(α,0,0,0)|
+TJγ |g(T,u(T ),v(T ))− g(T,0,0,0)|+ |g(T,0,0,0)|
+TζI

σ ,ς
ρ Jδ | f (β ,u(β ),v(β ))− f (β ,0,0,0)|

+| f (β ,0,0,0)|

+ϖ2J
δ | f (T,u(T ),v(T ))− f (T,0,0,0)|+| f (T,0,0,0)|

]

≤ (W1‖u‖+W2‖v‖+K2)Q2

+(N1‖u‖+N2‖v‖+K1)P2. (31)

Thus, it follows from (30) and (31) that ‖G(u,v)‖ ≤ r̂, and
consequently, GBr̂ ⊂Br̂.
Now, for (u1,v1), (u2,v2) ∈ U×V and any z ∈ [0,T ], we
get

|G1(u1,v1)(z)−G1(u2,v2)(z)|

≤ κ1(z)

[
ϖ1ζI

σ ,ς
ρ Jδ | f (β ,u1(β ),v1(β ))

− f (β ,u2(β ),v2(β ))|
+TJδ | f (T,u1(T ),v1(T ))− f (T,u2(T ),v2(T ))|
+TξIθ ,ϑ

ω Jγ |g(α,u1(α),v1(α))− g(α,u2(α),v2(α))|

+ϖ1J
γ |g(T,u1(T ),v1(T ))− g(T,u2(T ),v2(T ))|

]

+Jδ | f (z,u1(z),v1(z))− f (z,u2(z),v2(z))|
≤ (N1‖u1 − u2‖+N2‖v1 − v2‖)

{
κ̂1

Γ (δ + 1)

[
ϖ1|ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+Tδ+1

]

+
T δ

Γ (δ + 1)

}
+(W1‖u1 − u2‖+W2‖v1 − v2‖)

{
κ̂1

Γ (γ + 1)

[
T |ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+ |ϖ1|T γ

]}

≤ (N1‖u1 − u2‖+N2‖v1 − v2‖)P1

+(W1‖u1 − u2‖+W2‖v1 − v2‖)Q1

≤ N1P1 +W1Q1 +N2P1 +W2Q1.

Equivalently, we obtain

|G2(u1,v1)(z)−G2(u2,v2)(z)|
≤ (W1‖u1 − u2‖+W2‖v1 − v2‖){

κ̂1

Γ (γ + 1)

[
ϖ2|ξ |αγΓ (θ + γ

ω + 1)

Γ (θ + γ
ω +ϑ + 1)

+T γ+1

]

+
T γ

Γ (γ + 1)

}
+(N1‖u1 − u2‖+N2‖v1 − v2‖)

{
κ̂1

Γ (δ + 1)

[
T |ζ |β δ Γ (σ + δ

ρ + 1)

Γ (σ + δ
ρ + ς + 1)

+ |ϖ2|T δ

]}

≤ (W1‖u1 − u2‖+W2‖v1 − v2‖)Q2

+(N1‖u1 − u2‖+N2‖v1 − v2‖)P2

≤ W1Q2 +N1P2 +W2Q2 +N2P2,

so we obtain

‖G1(u1,v1)−G1(u2,v2)‖≤∆1[‖u1−u2‖+‖v1−v2‖]. (32)

Similarly,

‖G2(u1,v1)−G2(u2,v2)‖≤∆2[‖u1−u2‖+‖v1−v2‖]. (33)

Thus, we obtain

‖G(u1,v1)−G(u2,v2)‖≤ (∆1+∆2)(‖u1−u2‖+‖v1−v2‖).
Thus, in view of the condition (29), it follows that the
operator G is a contraction. Hence it follows by Theorem
3 that the system (1)-(2) has a unique solution on [0,T ].

4 Hyers-Ulam Stability

This section discusses the stability of boundary value
problem solutions for Hyers-Ulam (1)-(2) by integral
representing its solution provided by

u(z) =G1(u,v)(z), v(z) =G2(u,v)(z), (34)

where G1 and G2 are defined by (14) and (15). Define the
following nonlinear operators
M1,M2 ∈C([0,T ],R)×C([0,T ],R)→C([0,T ],R);

Dδ u(z)− f (z,u(z),v(z)) =M1(u,v)(z), z ∈ [0,T ],
Dγ v(z)− g(z,u(z),v(z)) =M2(u,v)(z), z ∈ [0,T ],
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For some λ1,λ2 > 0, the following inequalities are
considered:

‖M1(u,v)‖ ≤ λ1, ‖M2(u,v)‖ ≤ λ2. (35)

Definition 4. The coupled system (1)-(2) is said to be

Hyers-Ulam stable, if there exist S1,S2 > 0 such that for

every solution (u∗,v∗) ∈ C([0,T ],R)×C([0,T ],R) of the

inequality (35), there exists a unique solution

(u,v) ∈ C([0,T ],R) × C([0,T ],R) of problems (1)-(2)

with

‖(u,v)− (u∗,v∗)‖ ≤S1λ1 +S2λ2.

Theorem 6. Assume that Theorem 5 assumptions hold.

Then the boundary value problem (1)-(2) is

Hyers-Ulam-stable.

Proof. Let (u,v) ∈ C([0,T ],R) × C([0,T ],R) be the
solution of (1)-(2) the problems that satisfying (14) and
(15). Let (u∗,v∗) be any solution satisfying (35):

Dδ u(z) = f (z,u(z),v(z))+M1(u,v)(z), z ∈ [0,T ],
Dγ v(z) = g(z,u(z),v(z))+M2(u,v)(z), z ∈ [0,T ],

So,

u∗(z) = G1(u
∗
,v∗)(z)+κ1(z)

[
ϖ1ζ

ρβ−ρ(ς+σ)

Γ (δ )Γ (ς)

×
∫ β

0

∫ s

0

sρσ+ρ−1(s− τ)δ−1

(β ρ − sρ)1−ς
M1(u

∗
,v∗)(τ)dτds

−T
1

Γ (δ )

∫ T

0

1

(T − τ)1−δ
M1(u

∗
,v∗)(τ)dτ

+T ξ
ωα−ω(ϑ+θ)

Γ (γ)Γ (ϑ)

×
∫ α

0

∫ s

0

sωθ+ω−1(s− τ)γ−1

(αω − sω)1−ϑ
M2(u

∗
,v∗)(τ)dτds

−ϖ1
1

Γ (γ)

∫ T

0

1

(T − τ)1−γ
M2(u

∗
,v∗)(τ)dτ

]

+
1

Γ (δ )

∫ z

0

1

(z− τ)1−δ
M1(u

∗
,v∗)(τ)dτ

It follows that

|G1(u
∗
,v∗)(z)− u∗(z)|

≤ |κ1(z)|
[
|ϖ1ζ |ρβ−ρ(ς+σ)

Γ (δ )Γ (ς)

×
∫ β

0

∫ s

0

sρσ+ρ−1(s− τ)δ−1

(β ρ − sρ)1−ς
λ1dτds

+|T | 1

Γ (δ )

∫ T

0

1

(T − τ)1−δ
λ1dτ

+|T ξ |ωα−ω(ϑ+θ)

Γ (γ)Γ (ϑ)

×
∫ α

0

∫ s

0

sωθ+ω−1(s− τ)γ−1

(αω − sω)1−ϑ
λ2dτds

+|ϖ1|
1

Γ (γ)

∫ T

0

1

(T − τ)1−γ
λ2dτ

]

+
1

Γ (δ )

∫ z

0

1

(z− τ)1−δ
λ1dτ

≤
[

κ̂1

(
T δ+1

Γ (δ + 1)
+

ϖ1|ζ |β δ Γ (σ + δ
ρ + 1)

Γ (δ + 1)Γ (σ + δ
ρ + ς + 1)

)

+
T δ

Γ (δ + 1)

]
λ1 +

[
T |ξ |αγΓ (θ + γ

ω + 1)

Γ (γ + 1)Γ (θ + γ
ω +ϑ + 1)

+
|ϖ1|T γ

Γ (γ + 1)

]
λ2

≤ P1λ1 +Q1λ2.

Similarly,

|G2(u
∗
,v∗)(z)− v∗(z)|

≤
[

κ̂1

(
T γ+1

Γ (γ + 1)
+

ϖ2|ξ |αγΓ (θ + γ
ω + 1)

Γ (γ + 1)Γ (θ + γ
ω +ϑ + 1)

)

+
T γ

Γ (γ + 1)

]
λ2 +

[
κ̂1

(
|ϖ2|T δ

Γ (δ + 1)

+
T |ζ |β δ Γ (σ + δ

ρ + 1)

Γ (δ + 1)Γ (σ + δ
ρ + ς + 1)

)]
λ1

≤ Q2λ2 +P2λ1,

where P1,P2,Q1 and Q2 are defined in (16)-(19). Thus,
the operator G, which is given by (14) and (15), can be
extracted from the fixed-point property, as follows:

|u(z)− u∗(z)|
= |u(z)−G1(u

∗
,v∗)(z)+G1(u

∗
,v∗)(z)− u∗(z)|

≤ |G1(u,v)(z)−G1(u
∗
,v∗)(z)|+ |G1(u

∗
,v∗)(z)− u∗(z)|

≤ N1P1+W1Q1+N2P1+W2Q1+P1λ1+Q1λ2. (36)

Similarly,

|v(z)− v∗(z)|
= |v(z)−G2(u

∗
,v∗)(z)+G2(u

∗
,v∗)(z)− v∗(z)|

≤ |G2(u,v)(z)−G2(u
∗
,v∗)(z)|+ |G2(u

∗
,v∗)(z)− v∗(z)|

≤ W1Q2+N1P2+W2Q2+N2P2+Q2λ2+P2λ1. (37)

According to (36) and (37)

‖(u,v)− (u∗,v∗)‖ ≤ (∆1 +∆2)‖(u,v)− (u∗,v∗)‖
+(P1 +P2)λ1 +(Q1 +Q2)λ2,

‖(u,v)− (u∗,v∗)‖ ≤ (P1 +P2)λ1 +(Q1 +Q2)λ2

1− (∆1 +∆2)
,

≤ S1λ1 +S2λ2,
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with

S1 =
(P1 +P2)

1− (∆1+∆2)
, S2 =

(Q1 +Q2)

1− (∆1+∆2)
.

Thus, the boundary value problem 1)-(2) is Hyers-Ulam
stable.

5 Examples

Example 1. Consider the fractional differential equations
given by

D
29
20u(z)=

z2+1

4
+

19

200

|u(z)|
(1+|u(z)|)+

6

125
sin |v(z)|,

D
37
20v(z)=

1+
√

z

30
+

29

400
tan−1(|u(z)|)+ 1

25

9|v(z)|
(1+|v(z)|) ,

(38)

subject to the boundary conditions,

u(1) =
1

4
I

1
9 ,

√
5

4
3
5

v
(6

5

)
, v(1) =

1

6
I

√
4

5
,

1
11

4
7

u
(7

6

)
,

u(0) = 0, v(0) = 0.
(39)

Clearly,

| f (z,u1,v1)− f (z,u2,v2)| =
19

200
|u1 − u2|+

6

125
|v1 − v2|,

|g(z,u1,v1)− g(z,u2,v2)| =
29

400
|u1 − u2|+

9

25
|v1 − v2|.

Here, δ = 29
20

, γ = 37
20

, T = 1, ξ = 1
4
, ζ = 1

6
, θ = 1

9
, ϑ =

√
5

4
,

ω = 3
5
, σ =

√
4

5
, ς = 1

11
, ρ = 4

7
, α = 6

5
, β = 7

6
. Using the

given data, it is found that

N1 =
19

200
, N2 =

6
125

, W1 =
29
400

, W2 =
9
25

,
ϖ1 = 0.17706194242075243,
ϖ2 = 0.17759374715250995, κ̂1 = 1.032465989932396,
P1 = 1.6091378876654243,
P2 = 0.29232136778641965,
Q1 = 0.2000003974982166,Q2 = 0.7716312686506392,
∆1 = 0.3166068898541344,
∆2 = 0.37553247928485944.

With ∆1 + ∆2
∼= 0.6921393691389939 < 1, so all

requirements of Theorem 6, then problem (38)-(39) has a
unique solution for [0,1], which is stable for Hyers-Ulam.

Example 2. Consider the fractional differential equation
given by

D
34
25u(z)=

1

z+1
+

1

88
sin(|u(z)|)

)
+

|v(z)|
25(1+|v(z)|) ,

D
83
50v(z)=

√
z+1+

|u(z)|
20(1+|u(z)|)+

1

60
tan−1(|v(z)|)

)
,

(40)

subject to the boundary conditions,

u(1) =
1

5
I

√
3

2 ,
1
7

2
5

v

(3

2

)
, v(1) =

1

7
I

1
8 ,

√
2

3
3
7

u

(5

4

)
,

u(0) = 0, v(0) = 0.
(41)

Clearly,

| f (z,u(z),v(z))| =
∣∣∣∣∣

1

z+ 1
+

1

88
sin(|u|)+ 1

25

|v|
(1+ |v|)

∣∣∣∣∣

≤ 5

14
+

1

88
|u|+ 1

25
|v|,

|g(z,u(z),v(z))| =
∣∣∣∣∣
√
(z+1)+

|u|
20(1+|u|)+

1

60
tan−1(|v|)

∣∣∣∣∣

≤
√

14

5
+

1

20
|u|+ 1

60
|v|.

Here, δ = 34
25

, γ = 83
50

, T = 9
5
, ξ = 1

5
, ζ = 1

7
, θ =

√
3

2
, ϑ = 1

7
,

ω = 2
5
, σ = 1

8
, ς =

√
2

3
, ρ = 3

7
, α = 3

2
, β = 5

4
. With the

given data, we find that

η0 =
5
14

, η1 =
1

88
, η2 =

1
25

, η̂0 =
√

14
5

, η̂1 =
1
20

, η̂2 =
1
60

,

ϖ1 = 0.2465635652094569,
ϖ2 = 0.10313907312479913,
κ̂1 = 0.5599505342951776,P1 = 3.700317103237051,
P2 = 0.18949925057891354,
Q1 = 0.45115862438514553,Q2 = 2.22370429860805,
we find that

Λ = min{1− ((P1 +P2)η1 +(Q1 +Q2)η̂1),1− ((P1 +
P2)η2 + (Q1 + Q2)η̂2)} ∼= 0.7998262971308081 < 1.
Thus, Theorem 4 holds assumption and the problem
(40)-(41) has at least one solution at [0, 9

5
].

Example 3. Consider the fractional differential equations
given by

D
32
25 u(z) =

z+ 1

8
+

1

12

|u(z)|
(1+ |u(z)|) +

1

45
sin |v(z)|,

D
37
25 v(z) =

z

25
+

1

16
tan−1 |u(z)|+ 1

15

4|v(z)|
(1+ |v(z)|) ,

(42)

subject to the boundary conditions,

u(1) =
1

4
I

1
9 ,

√
5

4
3
5

v
(6

5

)
, v(1) =

1

6
I

√
4

5
,

1
11

4
7

u
(7

6

)
,

u(0) = 0, v(0) = 0.
(43)

Clearly,

| f (z,u1,v1)− f (z,u2,v2)| =
1

12
|u1 − u2|+

1

45
|v1 − v2|,

|g(z,u1,v1)− g(z,u2,v2)| =
1

16
|u1 − u2|+

4

15
|v1 − v2|.

Here, δ = 32
25

, γ = 37
25

, T = 4
3
, ξ = 1

4
, ζ = 1

6
, θ = 1

9
, ϑ =

√
5

4
,

ω = 3
5
, σ =

√
4

5
, ς = 1

11
, ρ = 4

7
, α = 6

5
, β = 7

6
. Using the

given data, it is found that

N1 =
1
12

, N2 =
1

45
, W1 =

1
16

, W2 =
4

15
,

ϖ1 = 0.17706194242075243,
ϖ2 = 0.17759374715250995,
κ̂1 = 0.7635047695042699,P1 = 2.5509784407625897,
P2 = 0.33124989196843574,
Q1 = 0.2868824581156235,Q2 = 1.4546003701614751,
∆1 = 0.3637020889879994, ∆2 = 0.5137712215525982.
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With ∆1 + ∆2
∼= 0.8774733105405976 < 1. Hence, the

Theorem 5 is satisfied and here the problem (42)-(43) has
a unique solution on [0, 4

3
].

6 Discussion

We discussed existence, uniqueness and stability of
solutions for a coupled system of Caputo type fractional
differential equations supplemented by Erdelyi-Kober
fractional integral conditions through Leray-Schauder
alternative, Banach fixed-point theorem, Hyer-Ulam
stable respectively. When we have fixed the parameters
involved in the problem (ξ ,ζ ), our results have
corresponded to certain specific problems. Suppose that
taking ξ = ζ = 0 in the results provided, we present the
problems (1)-(2) with the form:

u(0) = 0, v(0) = 0, u(T )=0, v(T )=0,

Next, modifying the condition, we considered two new
problems:

u(T )=ξIθ ,ϑ
ω v(α), v(T )=ζI

σ ,ς
ρ u(β ),

u(0) = 0, v(0) = 0.
(44)

in problem (1)-(2) with

u(T )=ξJϑ v(α), v(T )=ζJς u(β ),
u(0) = 0, v(0) = 0.

(45)

u(T )=ξ

∫ α

0
v(τ)dτ, v(T )=ζ

∫ β

0
u(τ)dτ,

u(0) = 0, v(0) = 0.
(46)

In relation to the problem (1)-(2) with (45) instead of (44),
we obtain the operator T : U×V→ U×V defined by

T1(u,v)(z) = κ1(z)

[
ϖ1ζJσ+δ f (τ,u(τ),v(τ))(β )

−TJδ f (τ,u(τ),v(τ))(T )

+T ξJθ+γg(τ,u(τ),v(τ))(α)

−ϖ1J
γg(τ,u(τ),v(τ))(T )

]

+Jδ f (τ,u(τ),v(τ))(z),

and

T2(u,v)(z) = κ1(z)

[
ϖ2ξJθ+γg(τ,u(τ),v(τ))(α)

−TJγg(τ,u(τ),v(τ))(T )

+T ζJσ+δ f (τ,u(τ),v(τ))(β )

−ϖ2J
δ f (τ,u(τ),v(τ))(T )

]

+Jγg(τ,u(τ),v(τ))(z).

where

κ1(z) =
z

T 2 − (ϖ1ϖ2)
, where T 2 − (ϖ1ϖ2) 6= 0,

ϖ1 =
ξ αϑ+1

ϑ + 2
, ϖ2 =

ζβ ς+1

ς + 2
.

On the other hand, the operator T̂ : U ×V → U ×V
associated with the problem (1)-(2) involving (46) instead
of (44) is

T̂1(u,v)(z) = κ1(z)

[
ϖ1ζ

∫ β

0
Jδ f (τ,u(τ),v(τ))dτ

−TJδ f (τ,u(τ),v(τ))(T )

+Tξ

∫ α

0
Jγg(τ,u(τ),v(τ))dτ

−ϖ1J
γg(τ,u(τ),v(τ))(T )

]

+Jδ f (τ,u(τ),v(τ))(z),

and

T̂2(u,v)(z) = κ1(z)

[
ϖ2ξ

∫ α

0
Jγ g(τ,u(τ),v(τ))dτ

−TJγ g(τ,u(τ),v(τ))(T )

+Tζ
∫ β

0
Jδ f (τ,u(τ),v(τ))dτ

−ϖ2J
δ f (τ,u(τ),v(τ))(T )

]

+Jγg(τ,u(τ),v(τ))(z).

where

κ1(z) =
z

T 2 − (ϖ1ϖ2)
, where T 2 − (ϖ1ϖ2) 6= 0,

ϖ1 =
ξ α2

2
, ϖ2 =

ζβ 2

2
.

Using the operators T and T̂ for new problem analog
results (1)-(2) can be established for the new problem. We
emphasise that the above-mentioned problems are new.

7 Conclusion

In this research paper, we have effectively obtained, for the
coupled systems (1) and (2), respectively, the necessary
conditions for existence, uniqueness, and stability in the
sense of Hyers-Ulam. Use Leray-Schauder alternative and
Banach fixed point theorems to obtain the required results.
Furthermore, to the solution of the coupled systems (1)
and (2), we have established some proper conditions for
Hyers-Ulam stability. With the help of examples, we also
illustrated our main theoretical results.
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