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Abstract: The present paper addresses a coupled system of waves with indirect control. First, using Semigroup Theory we prove the

existence of solution applying the Lumer-Phillips theorem. We show the exponential decay of the solution using Nakao’s method.

Computational experiments are conducted in the one-dimensional case in order to show that the dissipative energy properties are

present. To obtain the time behavior of the energy of system, we resolve two numerical tests. Finally, in both tests, we conclude that the

system, for one-dimensional case, is dissipative with exponential stability.
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1 Introduction

Let Ω ⊂ R
n, n ≥ 1 be a bounded open domain with

smooth boundary Γ and α > 0 a coupling parameter. Let
the Lebesgue space and Sobolev spaces be L2(Ω) and
H1(Ω) (see [1] for more details). We consider the
following system of coupled wave equations

utt −∆u+ ut +αv = 0, in Ω ×R,

vtt −∆v+ vt +αu = 0, in Ω ×R,

u(x, t) = v(x, t) = 0, on Γ ×R,

(u,ut)(x,0) = (u0,u1) , in Ω ,

(v,vt)(x,0) = (v0,v1) , in Ω .

(1)

Here ∆ is the Laplacian in the space variable x and t > 0
denotes time variable and u = u(x, t). The problem (1) is
well known as system with indirect stabilization or
indirect control (see [2]) and it has been investigated by
several authors in different frameworks see [3–11, 14–27]
and the references therein. For the case of vt(x, t) = 0, i.e.
with one indirect control, the system (1) was taken into
account in [4] under compatibility assumptions and
proved the polynomial decay for the energy by
interpolation method. Later, see [5], that considered
Neumann and Robin boundary conditions, which describe
different physical situations, such as hinged or clamped

devices and under new compatibility assumptions, the
same stabilization rate was obtained. The study of
stability for coupled wave equations under various end
conditions was given in [6]. For the uniform exponential
stability of a linear system of compactly coupled wave
equations and estimate to energy decay rate in case of
nonlinear boundary feedbacks, see [7]. Nonlinear coupled
system with memory condition at the boundary was
considered in [8] where the energy decay with the same
rate of the relaxation functions was proved. Recently, [9]
addressed the exact controllability with Neumann
boundary controls for a system of linear wave equations
coupled in parallel by lower order terms on piecewise
smooth domains of the plane. The result extends the same
one obtained in [10] for linear case. In [11], the Method
of Nakao was applied to prove the exponential decay of
the solution and a numerical scheme by finite differences
method was presented to numerical solution and the
long-time decay energy. The present paper handles the
exponential stability as well as the numerical consistence.
It is organized, as follows: In Section Two, we prove the
existence of solution applying the Lumer-Phillips
theorem. In Section Three we prove the exponential
stability by Nakao’s method. In Section Four, we present
the numerical scheme to testify consistence of the wave
coupled system with indirect control in both components.

∗ Corresponding author e-mail: avila jaj@ufsj.edu.br

c© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/140306


406 J. A. J. Avila et al.: Exponential stability and numerical results...

2 Semigroup setup

Let H = H1
0 (Ω)×L2(Ω)×H1

0 (Ω)×L2(Ω) be a Hilbert
with inner product

〈U,V 〉H =
∫

Ω
[∇u1 ·∇v1 + u2v2 +∇u3 ·∇v3 + u4v4 +

α(u1v3 + u3v1)]dx

and associated norm

‖U‖2
H =

∫

Ω
[|∇u1|2 + u2

2 + |∇u3|2 + u2
4 +α(u1u3 + u3u1)]dx

where U = (u1,u2,u3,u4)
T and V = (v1,v2,v3,v4)

T .
Consider the elliptic operator A defined by

A =







0 I 0 0
∆ −I −αI 0
0 0 0 I

−αI 0 ∆ −I







with domain

D(A ) = (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×
(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω).

Denoting ut = ϕ , vt = ψ , we formally get that
U = (u,ϕ ,v,ψ)T satisfies the Cauchy problem

dU

dt
= A U,

U(0) = U0 = (u0,ϕ0,v0,ψ0)
T .

Using the inner product is easy to see that the operator A

is dissipative, that is,

Re〈A U,U〉
H

= −
∫

Ω
|ϕ |2dx−

∫

Ω
|ψ |2dx ≤ 0

Now, we will prove that 0 ∈ ρ(A ) the resolvent set of A .
In order to do so, take F = ( f1, f2, f3, f4)

T ∈ H and
consider the equation A U = F which leads to

ϕ = f1 ∈ H1
0 (Ω), (2)

∆u−αv−ϕ = f2 ∈ L2(Ω), (3)

ψ = f3 ∈ H1
0 (Ω), (4)

∆v−αu−ψ = f4 ∈ L2(Ω). (5)

Remember that v ∈ H1
0 (Ω). From vt = ψ = f3, we get

v =

∫ t

0
f3(s)ds ∈ L2(Ω).

Follows from (2), (3), (4) that

∆u = f1 + f2 +α

∫ t

0
f3(s)ds ∈ L2(Ω). (6)

From standard Theory of Linear Elliptic Equations, it
follows that (6) has a unique solution
u ∈ H2(Ω)∩H1

0 (Ω). By the same argument we see that

v ∈ H2(Ω) ∩ H1
0 (Ω). Hence, U ∈ D(A ) and as a

consequence 0 ∈ ρ(A ).

Theorem 21 The operator A is the infinitesimal

generator of C0-semigroup of contractions S(t) = etA in

H .

Proof. Since D(A ) is dense in H , A is a dissipative
operator and 0 ∈ ρ(A ) by Lumer-Phillips’theorem the
conclusion follows. (See [12], Theorem 1.2.4).

From Theory of Semigroups, we have

Theorem 22 For U0 ∈ H the system (1) has a unique

weak solution

U ∈C(R+;H ).

Moreover, if U0 ∈ D(A ), we have the following regularity

U ∈C(R+; D(A ))∩C1(R+; H ).

Proof. (See [13], Theorem 7.4).

3 Exponential stability - Nakao’s method

We start this section introducing the following result.

Lemma 31 Let E(t) be a bounded positive function,

defined in R
+ satisfying for some positive constant C0

sup
s∈[t,t+1]

E(s)≤C0[E(t)−E(t+ 1)], ∀t ≥ 0, (7)

Then, there exist positive constants M and ω such that

E(t)≤ M e−ω t , ∀t > 1.

Proof. See ( [14], Lemma 3, page 339).

We will use the previous lemma to get our principal result.

Theorem 32 The solution (u(x, t),v(x, t)) of the system

(1) satisfies

E(t)≤ M e−ωt ,∀t ≥ 1, (8)

where M and ω are positive constants and E(t) is the full

energy given by

E(t) =
1

2
|ut |2 +

1

2
|v2

t |+
1

2
|∇u|2 + 1

2
|∇v|2 +α

∫

Ω
uvdx.

Proof. Multiplying the first and second equations of the
system (1) by ut and vt , respectively, and performing
integration by parts in (0,L), we deduce that the energy
has an important property

d

dt
E(t) =−(|ut |2 + |vt |2). (9)

Integrating in [t, t + 1], we get

∫ t+1

t
(|ut |2 + |vt |2)ds = E(t)−E(t + 1) =: F2(t). (10)

Therefore, there exist t1 ∈
[

t, t +
1

4

]

and t2 ∈
[

t +
3

4
, t + 1

]

such that

|ut(ti)|+ |vt(ti)| ≤ 4F(t), i = 1,2. (11)
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Multiplying (1)1 by u and (1)2 by v, performing
integration by parts in (0,L) and adding all, we obtain

d

dt

∫

Ω
utudx +

d

dt

∫

Ω
vtvdx−|ut |2 −|vt |2 + |∇u|2 + |∇v|2

+ 2α

∫

Ω
uvdx = 0

Integrating from t1 to t2, we obtain

∫ t2

t1

(

|∇u|2 + |∇v|2 + 2α

∫

Ω
uvdx

)

dt =

∫

Ω
ut(t1)u(t1)dx

−
∫

Ω
ut(t2)u(t2)dx

+

∫

Ω
vt(t1)v(t1)dx−

∫

Ω
vt(t2)v(t2)dx+

∫ t2

t1

(|ut |2 + |vt |2)ds.

Applying Cauchy-Schwarz, we have

∫ t2

t1

(

|∇u|2 + |∇v|2 + 2α

∫

Ω
uv,dx

)

dt ≤ |ut(t1)||u(t1)|

+|ut(t2)||u(t2)|
+|vt(t1)||v(t1)|+ |vt(t2)||v(t2)|

+

∫ t2

t1

(|ut |2 + |vt |2)ds.

From (10) and (11)

∫ t2

t1

(

|∇u|2 + |∇v|2 + 2α

∫

Ω
uvdx

)

dt ≤ 4F(t)(|u(t1)|

+|u(t2)|)
+4F(t)(|v(t1)|+ |v(t2)|)

+F2(t).

Applying Poincarè inequality, we obtain Cp > 0 such that

∫ t2

t1

(

|∇u|2 + |∇v|2 + 2α

∫

Ω
uvdx

)

dt ≤ 4F(t)Cp(|∇u(t1)|

+|∇u(t2)|)
+4F(t)Cp(|∇v(t1)|+ |∇v(t2)|)

+F2(t),

and then
∫ t2

t1

(

|∇u|2 + |∇v|2 + 2α

∫

Ω
uvdx

)

dt ≤

4CpF(t) sup
s∈[t,t+1]

(|∇u(s)|+ |∇v(s)|)+F2(t).

Choosing m = max{4Cp, 1}, defining

G2(t) := m

[

F(t) sup
s∈[t,t+1]

(|∇u(s)|+ |∇v(s)|)+F2(t)

]

and adding
∫ t1

t1

(|ut |2 + |vt |2)ds

in both sides of the last inequality, we obtain
∫ t2

t1

(

|ut(t)|2 + |vt(t)|2 + |∇u|2 + |∇v|2 + 2α

∫

Ω
uvdx

)

dt ≤

F2(t)+G2(t).

Therefore there exists t∗ ∈ [t1, t2] such that

|ut(t
∗)|2 + |v2

t (t
∗)|+ |∇u(t∗)|2 + |∇v(t∗)|2 +

α

∫

Ω
u(t∗)v(t∗)dx ≤ 2[F2(t)+G2(t)]

from where follows that

E(t∗)≤ 2(F2(t)+G2(t)). (12)

Integrating (9) from t to t∗, we get

E(t) = E(t∗)+
∫ t∗

t
(|ut(s)|2 + |vt(s)|2)ds

and then

E(t)≤ E(t∗)+
∫ t+1

t
(|ut(s)|2 + |vt(s)|2)ds.

Using (10) and (12), we have

sup
s∈[t,t+1]

E(s) ≤ E(t∗)+
∫ t+1

t
(|ut(s)|2 + |vt(s)|2)ds

≤ 2[F2(t)+G2(t)]+F2(t)

≤ 3F2(t)+

m

[

F(t) sup
s∈[t,t+1]

(|∇u(s)|+ |∇v(s)|)+F2(t)

]

≤ (3+m)F2(t)+

mF(t) sup
s∈[t,t+1]

(|∇u(s)|+ |∇v(s)|)

≤ (3+m)F2(t)+mF(t) sup
s∈[t,t+1]

(2
√

2
√

E(s))

≤ (3+m)F2(t)+ 4m2F2(t)+
1

2
sup

s∈[t,t+1]

E(s),

which immediately yields

sup
s∈[t,t+1]

E(s)≤C0[E(t)−E(t+ 1)], C0 = 2(3+m+ 4m2).

The proof is complete.

4 Numerical Approaches

In this section, we analyze the analogue of (1) in 1- d, i.e.,

utt − uxx + ut +αv = 0, in (0,1)× (0,1),

vtt − vxx + vt +αu = 0, in (0,1)× (0,1),

u(0, t) = u(1, t) = 0, 0 < t < 1,

v(0, t) = v(1, t) = 0, 0 < t < 1,

u(x,0) = u0(x), ut(x,0) = u1(x), 0 < x < 1,

v(x,0) = v0(x), vt(x,0) = v1(x), 0 < x < 1,

(13)
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where the full energy is given by

E(t) :=
1

2

∫ 1

0
u2

t dx+
1

2

∫ 1

0
v2

t dx+
1

2

∫ 1

0
u2

xdx+

1

2

∫ 1

0
v2

xdx+α

∫ 1

0
uvdx

and satisfies

d

dt
E(t) =−

∫ 1

0
u2

t dx−
∫ 1

0
v2

t dx.

We note that assuming the decomposition given by φ :=
u+ v we obtain the decoupled wave equations

φtt −φxx +φt +αφ = 0, in (0,1)× (0,1), (14)

φ(0, t) = φ(1, t) = 0, 0 < t < 1, (15)

φ(x,0) = φ0(x), φt(x,0) = φ1(x), 0 < x < 1, (16)

and taking ψ := u− v we obtain

ψtt −ψxx +ψt −αψ = 0, in (0,1)× (0,1), (17)

ψ(0, t) = ψ(1, t) = 0, 0 < t < 1, (18)

ψ(x,0) = ψ0(x), ψt(x,0) = ψ1(x), 0 < x < 1. (19)

It is clear that u := (φ +ψ)/2 and v := (φ −ψ)/2 recover
the equations (13). Moreover, the total energy of the
system (14)-(16) is given by

F(t) :=
1

2

∫ 1

0
φ2

t dx+
1

2

∫ 1

0
φ2

x dx+
α

2

∫ 1

0
φ2dx, (20)

and the total energy of the system (17)-(19) is given by

G(t) :=
1

2

∫ 1

0
ψ2

t dx+
1

2

∫ 1

0
ψ2

x dx− α

2

∫ 1

0
ψ2dx. (21)

Proposition 41 The solutions of the systems (14)-(16) and

(17)-(19) are given by Fourier series developments

φ(x, t) = e−
t
2

∞

∑
k=1

[

a+k sin

(

√

k2π2 +αt

)

+

b+k cos

(

√

k2π2 +αt

)

]

sin(kπx),

ψ(x, t) = e−
t
2

∞

∑
k=1

[

a−k sin

(

√

k2π2 −αt

)

+

b−k cos

(

√

k2π2 −αt

)

]

sin(kπx),

where a±k ,b
±
k are the Fourier coefficients.

Proof. Assuming that

φ(x, t) := ϕ(x)S+(t) and ψ(x, t) := ϕ(x)S−(t)

∀t ≥ 0, x ∈ (0,1) (22)

and substituting (22) into (14) (or 17), we obtain

S′′±(t)+ S′±(t)
S±(t)

=

[

ϕ ′(x)±αϕ(x)

]

1

ϕ(x)
=−ν±. (23)

For non-trivial solutions we take ν± > 0. Then, we obtain
the eigenvalue problem to the system (14)-(16) (or (17)-
(19) ) given by

−ϕ ′(x)±αϕ(x) = ν±ϕ(x), ∀x ∈ (0,1) (24)

ϕ(0) = ϕ(1) = 0. (25)

Taking into account the homogeneous boundary
conditions (25), we can assume that the eigenfunctions
are given by ϕ(x) = sin(kπx). Hence, the eigenvalues are
given by

ν±
k = k2π2 ±α, ∀k ∈ N. (26)

Returning to (23) we obtain the equation S′′(t)+ν±S(t) =
0, for all t ∈ [0,T ]. Solving it, we obtain

S±k (t) = a±k sin

(

√

ν±
k t

)

e−
t
2 + b±k cos

(

√

ν±
k t

)

e−
t
2 ,

k ∈ N, ∀t > 0, (27)

where a±k ,b
±
k are the Fourier coefficients. Thus, the result

is established.

Proposition 42 The solutions of the systems (13) are
given by Fourier series developments

u(x, t) =
1

2
e−

t
2

∞

∑
k=1

[

a+k sin
(
√

ν+
k

t
)

+a−
k

sin
(
√

ν+
k

t
)

+

b+
k

cos
(
√

ν−
k

t
)

+b−
k

cos
(
√

ν−
k

t
)

]

sin(kπx),

v(x, t) =
1

2
e−

t
2

∞

∑
k=1

[

a+k sin
(
√

ν+
k t
)

− a−k sin
(
√

ν−
k t
)

+

b+k cos
(
√

ν+
k t
)

− b−k cos
(
√

ν−
k t
)

]

sin(kπx),

where ν±
k = k2π2 ± α and a±k ,b

±
k are the Fourier

coefficients.

Proof. The proof is immediate. We consider Proposition
41 and the fact that u = (φ +ψ)/2 and v = (φ −ψ)/2.

Now, investigate the numerical scheme in finite-difference
applied to dissipative system (13). Given J,N ∈ N, we set

∆x =
1

J + 1
, ∆ t =

1

N + 1
and introduce the nets

x0 = 0 < x1 = ∆x < ... < xJ = J∆x < xJ+1 = 1,

t0 = 0 < t1 = ∆ t < ... < tN = N∆ t < tN+1 = 1,

with x j = j∆x and tn = n∆ t, j = 0,1,2, ...,J + 1,
n = 0,1,2, ...,N + 1. We consider the following finite
difference discretization of (13) with j = 1,2, ...,J and
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n = 1,2, ...,N

un+1
j −2un

j +un−1
j

∆ t2
−

un
j+1 −2un

j +un
j−1

∆x2

+
un+1

j −un−1
j

2∆ t
+αvn

j = 0, (28)

vn+1
j −2vn

j +vn−1
j

∆ t2
−

vn
j+1 −2vn

j +vn
j−1

∆x2

+
vn+1

j −vn−1
j

2∆ t
+αun

j = 0, (29)

un
0 = un

J+1 = vn
0 = vn

J+1 = 0, (30)
(

u0
j ,v

0
j

)

=
(

u0 j,v0 j

)

, (31)

(

u1
j −u0

j

∆ t
,

v1
j −v0

j

∆ t

)

=
(

u1 j,v1 j

)

. (32)

Now, we define the energy of (28)-(32) by

En :=
∆x

2

J

∑
j=0

∣

∣

∣

∣

∣

un+1
j − un

j

∆ t

∣

∣

∣

∣

∣

2

+
∆x

2

J

∑
j=0

∣

∣

∣

∣

∣

vn+1
j − vn

j

∆ t

∣

∣

∣

∣

∣

2

+

∆x

2

J

∑
j=0

(

un+1
j+1 − un+1

j

∆x

un
j+1 − un

j

∆x

)

+
∆x

2

J

∑
j=0

(

vn+1
j+1 − vn+1

j

∆x

vn
j+1 − vn

j

∆x

)

+

α∆x

2

J

∑
j=0

(

un
jv

n+1
j + un+1

j vn
j

)

.

Proposition 43 Let (un
j ,v

n
j) be a solution of the finite

difference scheme (28)-(32). Then, for all ∆x, ∆ t ∈ (0,1)
the discrete rate of change of energy of this numerical

scheme at the tn instant of time is given by

En −En−1

∆ t
= −∆x

J

∑
j=0

∣

∣

∣

∣

un+1
j − un−1

j

2∆ t

∣

∣

∣

∣

2

−

∆x
J

∑
j=0

∣

∣

∣

∣

vn+1
j − vn−1

j

2∆ t

∣

∣

∣

∣

2

, ∀ n = 1,2, ...,N.

Proof. Multiplying (28) by ∆x(un+1
j − un−1

j )/2∆ t and

adding for 1 ≤ j ≤ J, we have

∆x
J

∑
j=1

(

un+1
j − 2un

j + un−1
j

∆ t2

un+1
j − un−1

j

2∆ t

)

−

∆x
J

∑
j=1

(

un
j+1 − 2un

j + un
j−1

∆x2

un+1
j − un−1

j

2∆ t

)

+

∆x
J

∑
j=1

∣

∣

∣

∣

un+1
j − un−1

j

2∆ t

∣

∣

∣

∣

2

+α∆x
J

∑
j=1

vn
j

(

un+1
j − un−1

j

2∆ t

)

= 0.

For instance, considering the homogeneous Dirichlet
boundary conditions, one has

I1,n := ∆x
J

∑
j=1

(

un+1
j −2un

j +un−1
j

∆ t2

un+1
j −un−1

j

2∆ t

)

=
∆x

2∆ t∆ t2

J

∑
j=1

(un+1
j +un−1

j )(un+1
j −un−1

j )−

2∆x

2∆ t∆ t2

J

∑
j=1

un
j (u

n+1
j −un−1

j )

=
∆x

2∆ t∆ t2

J

∑
j=1

(|un+1
j |2 −|un−1

j |2 −2un
j u

n+1
j +2un

j u
n−1
j )

=
∆x

2∆ t

J

∑
j=0

∣

∣

∣

∣

un+1
j −un

j

∆ t

∣

∣

∣

∣

2

− ∆x

2∆ t

J

∑
j=0

∣

∣

∣

∣

un
j −un−1

j

∆ t

∣

∣

∣

∣

2

.

I2,n := ∆x
J

∑
j=1

(

un
j+1 −2un

j +un
j−1

∆x2

un+1
j −un−1

j

2∆ t

)

=
∆x

2∆x2∆ t

J

∑
j=1

(un
j+1 −un

j )(u
n+1
j −un−1

j )+

∆x

2∆x2∆ t

J

∑
j=1

(un
j−1 −un

j )(u
n+1
j −un−1

j )

=
∆x

2∆x2∆ t

J

∑
j=0

(un
j+1un+1

j −un
j+1un−1

j −un
j u

n+1
j +un

j u
n−1
j )

+
∆x

2∆x2∆ t

J

∑
j=0

(un
j u

n+1
j+1 −un

j u
n−1
j+1 −un

j+1un+1
j+1 +un

j+1un−1
j+1)

= − ∆x

2∆ t

J

∑
j=0

(

un+1
j+1 −un+1

j

∆x

un
j+1 −un

j

∆x

)

+

∆x

2∆ t

J

∑
j=0

(

un
j+1 −un

j

∆x

un−1
j+1 −un−1

j

∆x

)

.

and

I3,n := α∆x
J

∑
j=1

vn
j

(

un+1
j − un−1

j

2∆ t

)

=
α

2

∆x

∆ t

J

∑
j=0

(

vn
ju

n+1
j − vn

ju
n−1
j

)

.
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Combining I1,n, I2,n, I3,n, we get

∆x

2

J

∑
j=0

∣

∣

∣

∣

un+1
j − un

j

∆ t

∣

∣

∣

∣

2

− ∆x

2

J

∑
j=0

∣

∣

∣

∣

un
j − un−1

j

∆ t

∣

∣

∣

∣

2

+
∆x

2

J

∑
j=0

(

un+1
j+1 − un+1

j

∆x

un
j+1 − un

j

∆x

)

−

∆x

2

J

∑
j=0

(

un
j+1 − un

j

∆x

un−1
j+1 − un−1

j

∆x

)

+ ∆x∆ t
J

∑
j=0

∣

∣

∣

∣

un+1
j − un−1

j

2

∣

∣

∣

∣

2

+

α∆x

2

J

∑
j=0

(

vn
ju

n+1
j − vn

ju
n−1
j

)

= 0.

Analogously, multiplying the equation (29) by ∆x(vn+1
j −

vn−1
j )/2∆ t, we obtain

∆x

2

J

∑
j=0

∣

∣

∣

∣

vn+1
j − vn

j

∆ t

∣

∣

∣

∣

2

− ∆x

2

J

∑
j=0

∣

∣

∣

∣

vn
j − vn−1

j

∆ t

∣

∣

∣

∣

2

+
∆x

2

J

∑
j=0

(

vn+1
j+1 − vn+1

j

∆x

vn
j+1 − vn

j

∆x

)

−

∆x

2

J

∑
j=0

(

vn
j+1 − vn

j

∆x

vn−1
j+1 − vn−1

j

∆x

)

+ ∆x∆ t
J

∑
j=0

∣

∣

∣

∣

vn+1
j − vn−1

j

2

∣

∣

∣

∣

2

+

α∆x

2

J

∑
j=0

(

un
jv

n+1
j − un

jv
n−1
j

)

= 0.

Adding the two last equations, we can write

En −En−1 =−∆x∆ t
J

∑
j=0

∣

∣

∣

∣

un+1
j − un−1

j

2∆ t

∣

∣

∣

∣

2

−

∆x∆ t
J

∑
j=0

∣

∣

∣

∣

vn+1
j − vn−1

j

2∆ t

∣

∣

∣

∣

2

, ∀ n = 1,2, ...,N. (33)

Therefore, we obtain the desired result.

4.1 Stability Analysis

In order to obtain a numerical solution corresponding to
Proposition 42, we will perform a stability analysis of the
finite difference scheme (28)-(32). Anticipate the stability
condition is given in the following proposition.

Proposition 44 (Stability conditions) The system

(28)-(32) is stable if and only if

∆ t ≤ ∆x
√

1+ α∆x2

4

. (34)

Proof. The proof is an immediate consequence of the
inequalities (53), (54).

In order to motivate our approach, let us recall the
particular solutions of the Proposition 42 for the
continuous problem (13). If we use the complex form
(27) for the functions S±k (t), these solutions take the form

uk(x, t) =
1

2
e−

t
2

(

e±
√

k2π2+αt +e±
√

k2π2−αt

)

sin(kπx), (35)

vk(x, t) =
1

2
e−

t
2

(

e±
√

k2π2+αt −e±
√

k2π2−αt

)

sin(kπx). (36)

Let ϕk =
(

ϕk,1,ϕk,2, . . . ,ϕk,J ,
)

be the vector with
components ϕk, j = sin(kπx j), j = 1,2, . . . ,J. For the
finite difference scheme (28)− (32), we will consider
possible solutions of the form

un
j =

1

2
ϕk, ja

n and vn
j =

1

2
ϕk, jb

n, (37)

where a,b is a complex number. The particular solutions
given by (35) and (36) will always have the property that

|uk(x, t)| ≤ 1 and |vk(x, t)| ≤ 1.

It is, therefore, reasonable to demand that the particular
solutions (37) of the difference scheme have a
corresponding property. Thus, we shall require that

|a| ≤ 1 and |b| ≤ 1.

To be more precise in our assertion, we note that assuming
the decomposition given by φn

j := un
j + vn

j , we obtain the
discrete wave equations for j = 1,2, ...,J and n= 1,2, ...,N

φn+1
j − 2φn

j +φn−1
j

∆ t2
−

φn
j+1 − 2φn

j +φn
j−1

∆x2

+
φn+1

j −φn−1
j

2∆ t
+αφn

j = 0, (38)

φn
0 = φn

J+1 = 0, (39)

φ0
j = φ0 j,

φ1
j −φ0

j

∆ t
= φ1 j (40)

and taking ψn
j := un

j − vn
j , we obtain

ψn+1
j −2ψn

j +ψn−1
j

∆ t2
−

ψn
j+1 −2ψn

j +ψn
j−1

∆x2

+
ψn+1

j −ψn−1
j

2∆ t
−αψn

j = 0 (41)

ψn
0 = ψn

J+1 = 0, (42)

ψ0
j = ψ0 j,

ψ1
j −ψ0

j

∆ t
= ψ1 j. (43)

In order to create a stability criterion, we will perform a
stability analysis of the finite difference scheme. For the
finite difference scheme (38)-(40), we will consider
possible solutions of the form

φn
j = ϕk, jγ

n, k, j = 1,2, ...,J, n = 1,2, ...,N, (44)

where γ is a complex number. We shall, therefore, require
that

|γ| ≤ 1. (45)
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Assuming (44) and substituting into (38)-(40), we obtain

ϕ j
γn+1 − 2γn + γn−1

∆ t2
− γn ϕ j+1 − 2ϕ j +ϕ j−1

∆x2

+ϕ j
γn+1 − γn−1

2∆ t
+αϕ jγ

n = 0.

So,

1

γn

[

γn+1 − 2γn + γn−1

∆ t2
+

γn+1 − γn−1

2∆ t

]

= (46)

1

ϕ j

[

ϕ j+1 − 2ϕ j +ϕ j−1

∆x2
−αϕ j

]

=−ν. (47)

For non-trivial solutions, we take ν > 0. Then, we obtain
the eigenvalue problem to the system (38)− (40) given by

−ϕ j+1 − 2ϕ j +ϕ j−1

∆x2
+αϕ j = νϕ j (48)

ϕ0 = ϕJ+1 = 0. (49)

Based on, from (48) it follows that the corresponding
eigenvalues

νk =
4

∆x2
sin2

(kπ∆x

2

)

+α.

Therefore the left side of (46), we obtain

γ2 − 2

(

2− s

2+∆ t

)

γ +

(

2−∆ t

2+∆ t

)

= 0, (50)

where s = νk∆ t2 = 4 ∆ t2

∆x2 sin2
(

kπ∆x
2

)

+α∆ t2. Hence, if we

let r be the mesh ratio r = ∆ t/∆x, s ∈ (0,4r2 +α∆ t2). To
be more precise, let us note that the roots a of (50) will
depend on s, i.e., γ = γ(s). Since s ∈ (0,4r2 +α∆ t2), we
will define the scheme to be stable as long as the roots γ(s)
satisfy (45) for all s ∈ (0,4r2 +α∆ t2) .

Theorem 45 Let s ≥ 0 be given. The roots of (50) satisfy

(45) if and only if s ≤ 4.

Proof. The roots of (50) are given by

γ±k =
2− s±

√

s(s− 4)+∆ t2

2+∆ t
. (51)

If s = 0, there are two roots given by γ± = 2±∆ t
2+∆ t

, and if

s = 4, γ± =
{

− 1,− 2−∆ t
2+∆ t

}

. If

s ∈ (2−
√

4−∆ t2,2+
√

4−∆ t2) there are two complex
roots γ+ and γ−. Written in polar coordinates, these are of
the form

γ+ = ρeiθ and γ− = ρe−iθ (52)

for ρ > 0 and θ ∈ (0,π). Furthermore, from (50) it follows

that the product of the roots is 2−∆ t
2+∆ t

, i.e.,

γ+γ− = ρ2 =
2−∆ t

2+∆ t
≤ 1.

Hence, the roots are of the form

γ± =

(

1− 2∆ t

2+∆ t

) 1
2

e±iθ ,

and therefore the bound (45) holds. On the other hand, if
s > 4, there exist two distinct real roots γ+ and γ−, with
γ+γ− = 1. Hence, one of them must have absolute value
greater than 1 in this case.

Corollary 46 (Stability conditions) The roots of (50)
will satisfy (45) for all s ∈ (0,4r2 + α∆ t2) with

r = ∆ t/∆x if and only if

∆ t ≤ ∆x
√

1+ α∆x2

4

. (53)

If the mesh parameters satisfy this bound, the numerical
solution behaves qualitatively as the exact solution.
However, if the bound is violated, we observe oscillations
in the numerical solution, but they are not present in the
exact solution. A similar analysis shows that the stability
condition of the problem (17)− (19) is given by

∆ t ≤ ∆x
√

1− α∆x2

4

(54)

which is slightly less restrictive than the corresponding
condition to (53).

4.2 Numerical Results

Two numerical tests, for one-dimensional case, will be
developed to confirm the exponential stability of the
system (1).

4.2.1 Vectorial form of discrete equations

The vector form of equations (28) - (32) is given by

Un+1 = AabUn + cUn−1+ dαV n + bUn
Γ (55)

n = 0,1,2, ...

V n+1 = AabV n + cV n−1 + dαUn + bVn
Γ (56)

where Aab = aI + bA, I and A = Trid(1,0,1) are the
identity and tridiagonal matrices of order J, respectively.
Un = (u1, ...,uJ)

T
J×1, U0 = (u0

1, ...,u
0
J)

T
J×1,

U−1 = (u−1
1 , ...,u−1

J )T
J×1 is the ghost vector (below the

initial condition line), Un
Γ = (u0,0, ...,0,uJ+1)

T
J×1,

a = 4(∆x2−∆ t2)

∆x2(2+∆ t)
, b = 2∆ t2

∆x2(2+∆ t)
, c = − 2−∆ t

2+∆ t
and

d =− 2∆ t2

2+∆ t
. We describe analogously for V .
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4.2.2 Energy of system

In order to obtain the time behavior of the energy of
system, we resolve two numerical tests with the the
parameter α = 0.125. It is important to note that to
achieve the stability of the system, we need a maximum
time (Tmax) and a stop criterion subject to a certain
tolerance (Tol). To obtain the Tmax, we use the stability
condition (53). The following describes the numerical
tests.

Test 1

The initial conditions

u0(x) = 1, u1 =−x, v0(x) = e−x, v1(x) = 0.

Parameters

J = 99, N = 7400, [0,Tmax] = [0,16], Tol = 10−4

Results

The results are shown in Figure 1. The dynamic energy
is stopped when n = 7.260 iterations, i.e., were used
15.695 time units.

Test 2

The initial conditions

u0(x) = sin(πx), u1 =−sin(πx), v0(x) = e−x,
v1(x) = 0.

Parameters

J = 99, N = 6900, [0,Tmax] = [0,15], Tol = 10−4

Results

The results are manifested in Figure 2. The dynamic
energy is stopped when n = 6.773 iterations, i.e., were
used 14.720 time units.

Note that, in both figures, the dynamic behavior of the
system energy is stabilized. Stability occurs
approximately after 3000 iterations. Finally, in both tests,
we conclude that the system (1), for one-dimensional
case, is dissipative with exponential stability.

5 Conclusion

The Nakao’s method proved to be an efficient method for
the demonstration of the exponential decay of the solution
of coupled system of waves with indirect control.
Numerical tests have shown the decay of the mechanical
energy of the system.

Acknowledgments: We are strongly grateful to Professor
Carlos A. Raposo da Cunha for his scientific support in
this paper.

Fig. 1: Mechanical Energy Dissipation System (Test 1).

Fig. 2: Mechanical Energy Dissipation System (Test 2).
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