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1 Introduction

In this paper, we investigate solutions in some spaces of
functions of bounded variation to the so-called
Volterra-Hammerstein integral equations. Functions of
bounded variation often appear as solutions of non-linear
integral equations. Integral equations play an important
role in mathematical analysis and its applications to
real-world problems. See [1], [2], [3], [4], [5], [6], [7].

Many problems arising from physics, engineering,
biology, economics, the relationship with vehicular
traffic, the theory of optimal control, modern computing,
lead to nonlinear mathematical models described by
integral equations, (See [1], [4], [7]). The beginnings of
the integral equations can be traced back when
Pierre-Simon Laplace, in 1782, used what is now known
as the Laplace transform to solve problems of linear
difference and differential equations. Later, in 1826, Niels
Henrik Abel solved the integral equation

u(t) =

∫ t

a
(t − s)−αφ(s)ds,

where u(t) is a continuous function such that u(a) = 0,
φ is an unknown function, and 0 < α < 1. In the same
year, Siméon Denis Poisson in a memory on the theory of

magnetism explored the integral equation

φ(t) = u(t)+

∫ t

0
k(t − s)φ(s)ds,

in which φ is an unknown function. An important type of
integral equation is that of Volterra, which was introduced
by the Italian mathematician Vito Volterra [8] and his
studies published at the end of the 19th century. Volterra
equations are classified into two groups. An equation of
first type is:

f (t) =

∫ t

a
K(t,s)x(s)ds.

A linear Volterra equation of the second type is:

x(t) = f (t)+
∫ t

a
K(t,s)x(s)ds,

under the following conditions:

1.Both t and s take values from a to certain t > 0; and
2.K(t,s) = 0, if at least one of the values of s is greater

than the corresponding one of point t,

where one of the limits of integration of the integral is
variable. Functions f (t) and K(t,s) are known functions,
and K(t,s) is called the kernel of the equation.
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Volterra integral equations appear in several
applications, such as demography, the study of
visco-elastic materials, evolutionary problems in biology,
epidemic propagation, neurophysiology, the control
theory, the study of the behavior of nuclear reactors,
mathematics of insurance through the equation of
renewal.

On the other hand, the Hammerstein integral equation
appears in the nonlinear physical phenomena, such as the
dynamics of electromagnetic fluids, and the reformulation
of boundary problems with a nonlinear boundary condition
of Hammerstein type, see [6], [9].

Once the integral equations have been studied in the
space of continuous or derived functions using Riemann
integration, it was natural to consider these equations in
other classes of function spaces and with other types of
integrals. Recently, the existence and uniqueness of
solutions of certain nonlinear integral equations in spaces
of functions of widespread limited variation have been
deeply investigated. For some examples we refer the
reader to [10], [11], [12], [13], [14], and the references
given therein.

For example, in [14] Bugajewska and O’Regan
studied the existence and uniqueness of local and global
solutions for nonlinear Hammerstein integral equation as
well as Volterra-Hammerstein equation in the space of
functions of bounded variation in the sense of Waterman,
i.e. the space of functions of bounded Λ -variation,
denoted by ΛBV. This was conducted by applying
classical methods of nonlinear analysis, namely the
Banach fixed point theorem and the Leray-Schauder
nonlinear alternative Theorem. Specifically they
conducted the Hammerstein integral equation, which is
defined for t ∈ I = [0,b] as

x(t) = g(t)+λ

∫

I
K(t,s) f (x(s))ds, λ ∈ I, (1.1)

and the Volterra–Hammerstein integral equation

x(t) = g(t)+

∫ t

0
K(t,s) f (x(s))ds, , (1.2)

where integration is considered the Lebesgue sense, and
the following hypotheses are assumed:

(H1)g : I → R is a function of Λ -bounded variation.
(H2) f : R→ R is a locally Lipschitz function.
(H3)K : I × I → R is a function such that

VΛ (K(·,s) : I)≤ M(s), for a.e.s ∈ I,

where M : I → R is a Lebesgue integrable functions
and K(t, ·) is Lebesgue integrable for every t ∈ I.

With some additional conditions, in [14] the following
result about the solutions of equation (1.2) was
proved:There exists an interval J ⊂ I such that the

equation (1.2) has a unique solution in ΛBV defined on J.

In [15] Matute handled the solutions of the Volterra
equation

x(t) = g(t)+
∫ t

a
K(t,s) f (x(s))ds, t ∈ I = [a,b], (1.3)

in the space of functions of bounded variation defined on
the interval I = [a,b]. Also, under the following hypotheses

(H̃1)g : I → R is a function of bounded variation.

H̃2) f : R → R is globally Lipschitz with the Lipschitz
constant L > 0. Furthemore, there is a real number

α ≥ 0 such that max
s∈[−r,r]

| f (s)| ≤ (r+α) for each r ≥ 0.

(H̃3)The function K : {(t,s) ∈ [a,b]× [a,b] : s ≤ t}→R, is
Lebesgue integrable on [a, t] for each t ∈ I = [a,b] and

V (K(·,s) : [s,b])≤ h(s), for a.e. s ∈ I,

where h : I → R+ is a bounded Lebesgue integrable
function,

Thus Matute proved that If H̃1, H̃2 and H̃3 hold, then there

exists a unique solution x ∈ BV, defined on I, for the

Volterra equation (1.3).

Our work is motivated by [14] and [15]. Here, we
establish some hypotheses to characterize solutions of the
Hammerstein equation (1.1), the Volterra-Hammerstein
integral equation (1.2), and the Volterra equation (1.3), in
the space of functions of bounded variation in the sense of
Shiba, (ΛpBV ), because this space is a broader class of
functions whose structure is quite well known from the
analytical point of view, as well as its characterization
through one of the linear and nonlinear composition
operators as studied in [16].

This paper is organized as follows: In section Two, we
present some basic results which are necessary for the
proofs of the main Theorems given later on. In section
Three, we use the Banach fixed point Theorem to study
the existence and uniqueness of solutions of the
Hammerstein equation and the Volterra-Hammerstein
integral equation. In section Four, we prove the existence
and uniqueness of solutions for the Volterra equation
whose proof is based on the Leray-Schauder alternative
Theorem. Section Five, illustrates the subject with some
applications. The final section is dedicated to conclusion.

2 Preliminaries

In this section we present some results essential for the
development of the remainder of this article.

To study the solutions of the nonlinear integral
equations (1.1), (1.2) and (1.3), we consider the following
hypotheses

(Ĥ1)g : I → R is a function of Λp bounded variation.

(Ĥ2) f : R→ R is a locally Lipschitz function.
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(Ĥ3)K : I × I → R is a function such that

VΛp
(K(·,s), I) ≤ M(s), for a.e. s ∈ I,

where M : I → R is a function Lp integrable and
K(t, ·) is Lebesgue integrable for each t ∈ I = [0,b],
and VΛp

(·, I) it’s like in the definition 21.

The following theorems are fundamental basis in the
proofs of the main theorems.

Theorem 21(Banach’s Contraction Principle)

Let f : X → X be a contraction in a complete metric space

X and let B ⊆ X be a closed subset such that f (B) ⊆ B.

Then f has a unique fixed point in B.

Theorem 22(Leray-Schauder alternative)

Let U be an open subset of a Banach’s space (X ,‖ · ‖) with

0 ∈ U, suppose that there is a continuous non-decreasing

function φ : [0,+∞)→ [0,+∞) such that φ(z)< z for z> 0,

the function H : U → X fulfills

‖H(x)−H(y)‖ ≤ φ ‖x− y‖ for x,y ∈U ,

where U is the closure of U in X. Also H(U) is bounded

and x 6= λ H(x) for x ∈ ∂U ( where ∂U denotes the

boundary of U) and λ ∈ (0,1]. Then H has a unique fixed

point in U.

Proof. See [17]. �

The following Lemma states a classical inequality widely
used in measure and probability Theorems.

Lemma 21 (Integral Jensen inequality)
Let I ⊂ R be an open interval and let f : I → R be a

continuous convex function. Then for each normalized

measure space (Ω ,∑,µ) and for all µ integral functions

φ : Ω → I,

f

(∫

Ω
φdµ

)
≤
∫

Ω
( f◦φ)dµ .

�

The next section covers a number of necessary preliminary
notions, remarks and background to set the context for our
main results.

Definition 21(see [18]) Given an interval I, and a

sequence of non-decreasing positive real numbers

Λ = {λn}∞
n=1 such that

m

∑
n=1

1

λn

diverges and 1 ≤ p < ∞,

we say that f ∈ ΛpBV (I) (i.e. f is a function of
Λp-bounded variation over I, in the sense of Shiba) if

VΛp
( f , I) = sup

{In}

{
N

∑
n=1

| f (In)|p
λn

} 1

p
< ∞,

where {In} is a sequence of non-overlapping intervals In =
[an,bn]⊂ [a,b] and f (In) = f (bn)− f (an).

Remark 21 ΛpBV (I) equipped with the norm ‖x‖Λp
:=

|x(a)|+VΛp
(x) is a Banach space.

Remark 22 It is easy to verify that if f is a function
locally Lipschitz and x ∈ ΛpBV (I), then f ◦ x ∈ ΛpBV (I).
Because

N

∑
n=1

| f (x(bn))− f (x(an))|p
λn

≤ |Lr|p
N

∑
n=1

|(x(bn)− x(an))|p
λn

.

Lemma 22 There exists a constant C such that

supt∈I |x(t)| ≤C‖x‖Λp
for any x ∈ ΛpBV (I).

Proof. The proof is analogous to the one given in [14]. �

Lemma 23 If f ∈ ΛpBV (I), then f has both left-hand

and right-hand limits at every point of I.

Proof. See in [18]. �

Lemma 24 Suppose that hypotheses Ĥ2, Ĥ3 hold and

let F(x)(t) :=
∫

I K(t,s) f (x(s))ds for all x ∈ ΛpBV (I),
I = [0,b]. Then

VΛp
(F(x)) ≤ sup

s∈I

| f (x(s))|
(∫

I
(M(s))p

ds

) 1
p

<+∞.

Proof. By remark 22, we have that f (x) ∈ ΛpBV (I), so
it is bounded and by Lemma 23 f has both left-hand and
right-hand limits at every point of I. The set of
discontinuities of a regulated function is at most
countable. Thus, f (x) is measuarable in the Lebesgue
sense. As K(t, ·) is Lebesgue integrable for every t ∈ I, we
have that K(t, ·) f (x(.)) is Lebesgue integrable for every
t ∈ I. Therefore the function F(x) is well-defined. Let
{In} be a sequence of non-overlapping intervals
In = [an,bn] ⊂ [0,b] = I with n = 1, ...,N and let r > 0.
Then

N

∑
n=1

|F(x)(In)|p
λn

=
N

∑
n=1

|F(x)(bn)−F(x)(an)|p
λn

=
N

∑
n=1

|∫I K(bn,s) f (x(s))ds− ∫I K(an,s) f (x(s))ds|p
λn

=
N

∑
n=1

|∫I [K(bn,s)−K(an,s)] f (x(s))ds|p
λn

.

Since p ≥ 1, the function xp is convex on R and, by the
earlier arguments, we also have that
[K(bn,s)−K(an,s)] f (x(s)) is Lebesgue integrable. Thus,
the hypotheses of Lemma 21 are satisfied, and
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consequently

N

∑
n=1

|F(x)(bn)−F(x)(an)|p
λn

≤
N

∑
n=1

∫
I |[K(bn,s)−K(an,s)] f (x(s))|p

ds

λn

≤
N

∑
n=1

sup
s∈I

| f (x(s))|p
∫

I

|K(bn,s)−K(an,s)|p
λn

ds

= sup
s∈I

| f (x(s))|p
∫

I

N

∑
n=1

|K(bn,s)−K(an,s)|p
λn

ds

≤ sup
s∈I

| f (x(s))|p
∫

I
V

p
Λp
(K(·,s))ds.

Therefore

(
N

∑
n=1

|F(x)(bn)−F(x)(an)|p
λn

) 1
p

≤ sup
s∈I

| f (x(s))|
(∫

I
V

p
Λp
(K(·,s))ds

) 1
p

,

taking supremum in this inequality and using hypothesis

Ĥ3 we conclude that

sup
s∈I

| f (x(s))|
(∫

I
(M(s))p

ds

) 1
p

<+∞.

�

Lemma 25 Suppose that hypotheses Ĥ2, Ĥ3 hold and
let F(x) be an integral function defined as in the previous
Lemma. Then for all x,y ∈ ΛpBV (I) and λ ∈ I,

VΛp
(λ (F(x)−F(y)))≤C |λ |Lr ‖x−y‖Λp

(∫

I
(M(s))p

ds

) 1

p ,

where C is as in Lemma 22 and Lr is the Lipschitz

constant associated with f when it is restricted to the

interval I.

Proof. Consider x,y ∈ ΛpBV (I) and let {In} be a
sequence of non-overlapping intervals
In = [an,bn]⊂ [0,b] = I with n = 1, ...,N. Then

N

∑
n=1

|λ F(x)(In)−λ F(y)(In)|p
λn

=
N

∑
n=1

|λ ∫I [K(bn,s)−K(an,s)] [ f (x(s))− f (y(s))]ds|p
λn

.

Applying Lemma 21 and using the fact that f locally
Lipschitz we have

N

∑
n=1

|λF(x)(In)−λF(y)(In)|p
λn

≤
N

∑
n=1

∫
I |λ |p |K(bn,s)−K(an,s)|p | f (x(s))− f (y(s))|p ds

λn

≤
(

Lr|λ |sup
s∈I

|x(s)−y(s)|
)p ∫

I

N

∑
n=1

|K(bn,s)−K(an,s)|p
λn

ds.

Applying Lemma 22, from hypothesis Ĥ3 we have

(
N

∑
n=1

|λ | |F(x)(In)−F(y)(In)|p
λn

) 1

p

≤ Lr|λ |C‖x−y‖Λp

(∫

I

N

∑
n=1

|K(bn,s)−K(an,s)|p
λn

ds

) 1

p

≤CLr|λ |‖x−y‖Λp

(∫

I
V

p
Λp

(K(.s))ds

) 1

p

≤CLr|λ |‖x−y‖Λp

(∫

I
(M(s))p

ds

) 1

p .

Thus, we conclude that

VΛp
(λ (F(x)−F(y)))≤CLr|λ |‖x−y‖Λp

(∫

I
(M(s))p

ds

) 1

p .

�

The following Lemma is a special case of the triangular
inequality; however, for the work is self-contained, we
prove that this inequality is satisfied in (ΛpBV ).

Lemma 26 Suppose that hypotheses Ĥ1, Ĥ2 and Ĥ3

hold and define G(x) : ΛpBV (I) → ΛpBV (I) by

G(x)(t) = g(t)+λ F(x)(t), with F(x) is as in Lemma 24

and λ ∈ I = [0,b]. Then

‖G(x)‖Λp
≤ ‖g‖Λp

+ |λ |‖F(x)‖Λp
.

Proof. In Lemma 24 it was shown that F(x) is
well-defined and that g is a bounded variation;
consequently we may conclude that G(x) is well-defined.
Let {In} be a sequence of non-overlapping intervals
In = [an,bn] ⊂ [0,b] = I with n = 1, ...,N. Since g is of

Λp-bounded variation by hypothesis Ĥ1, and by Lemma
24 F(x) is of Λp-bounded variation, the function G(x) is
of Λp-bounded variation. Hence

‖G(x)‖Λp
= |G(x)(0)|+VΛp

(G(x))

= |g(0)+λF(x)(0)|+VΛp
(g+λF(x))

≤ |g(0)|+ |λ | |F(x)(0)|+VΛp
(g+λF(x)) . (2.4)
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Let us compute VΛp
(g+λ F(x)). Observe that

(
N

∑
n=1

|(g(bn)+λF(x)(bn))− (g(an)+λF(x)(an))|p
λn

) 1
p

=

(
N

∑
n=1

|(g(bn)−g(an))+λ
∫

I (K(bn,s)−K(an,s)) f (x(s))ds|p
λn

) 1
p

,

so from Minkowski inequality and Lemma 21 we have

(
N

∑
n=1

|(g(bn)+λF(x)(bn))− (g(an)+λF(x)(an))|p
λn

) 1
p

≤
(

N

∑
n=1

|g(bn)−g(an)|p
λn

) 1

p
+

(
N

∑
n=1

|∫I λ (K(bn,s)−K(an,s)) f (x(s))ds|p
λn

) 1
p

≤
(

N

∑
n=1

|g(bn)−g(an)|p
λn

) 1

p
+

(
N

∑
n=1

∫
I |λ |p |K(bn,s)−K(an,s)|p | f (x(s))|pds

λn

) 1
p

=

(
N

∑
n=1

|g(bn)−g(an)|p
λn

) 1

p
+

|λ |
(

N

∑
n=1

∫
I |K(bn,s)−K(an,s)|p | f (x(s))|pds

λn

) 1
p

.

Hence, taking supremum on both sides of these
inequalities, we conclude that

VΛp
(g+λ F(x))≤VΛp

(g)+ |λ |VΛp
(F(x)) .

Finally, taking into account this estimate in inequality
(2.4), we obtain

‖G(x)‖Λp
≤ |g(0)|+ |λ | |F(x)(0)|+VΛp

(g)+ |λ |VΛp
(F(x))

=
[
|g(0)|+VΛp

(g)
]
+
[
|λ | |F(x)(0)|+ |λ |VΛp

(F(x))
]

= ‖g‖Λp
+ |λ |‖F(x)‖Λp

.

�

Lemma 27 Let T = {(t,s) : 0 ≤ t ≤ b,0 ≤ s ≤ t} and

suppose that K : T → R is a function of Λp-bounded

variation (p ≥ 1). Set

K̂(t,s) =

{
K(t,s), 0 ≤ s ≤ t

0, t < s ≤ b.

Then

VΛp

(
K̂(.,s), [0,b]

)
≤ 2

(
|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s), [s,b])

)
.

Proof. Let {In} be a sequence of non-overlapping
intervals In = [an,bn] ⊂ [0,b] = I with n = 1, ...,N, and
choose s ∈ [ai,bi] for some i, 1 ≤ i ≤ N. Calculating

VΛp

(
K̂(.,s), [0,b]

)
, we have

N

∑
n=1

|K̂(bn,s)− K̂(an,s)|p
λn

=
|K̂(b1,s)− K̂(a1,s)|p

λ1
+ · · ·+ |K̂(bi,s)− K̂(ai,s)|p

λi

+ · · ·+ |K̂(bN ,s)− K̂(aN ,s)|p
λN

=
|K(bi,s)|p

λi
+

|K(bi+1,s)−K(ai+1,s)|p
λi+1

+ · · ·+

|K(bN ,s)−K(aN ,s)|p
λN

≤ (|K(bi,s)−K(s,s)|+ |K(s,s)|)p

λi
+

|K(bi+1,s)−K(ai+1,s)|p
λi+1

+ · · ·+ |K(bN ,s)−K(aN ,s)|p
λN

≤ 2p|K(s,s)|p
λi

+
2p|K(bi,s)−K(s,s)|p

λi
+

|K(bi+1,s)−K(ai+1,s)|p
λi+1

+ · · ·+ |K(bN ,s)−K(aN ,s)|p
λN

≤ 2p|K(s,s)|p
λ1

+2pV
p

Λp
(K(·,s), [s,b]) .

Therefore

VΛp

(
K̂(.,s), [0,b]

)
≤
(

2p|K(s,s)|p
λ1

+2pV
p

Λp
(K(·,s), [s,b])

) 1
p
.

Because
1

p
< 1, it follows that (a+b)

1
p ≤ a

1
p +b

1
p . Hence,

VΛp

(
K̂(.,s), [0,b]

)
≤ 2

(
|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s), [s,b])

)
.

�

3 Existence and uniqueness of solutions for

the Hammerstein integral equation and the

Volterra-Hammerstein integral equation

In this section, we will prove two main theorems of this
work that guarantee the existence and uniqueness of the
solutions of the equations (1.1) and (1.2), respectively, in
the space of function of Shiba bunded variation. In
addition to the hypotheses raised in section2, we consider
the additional hypothesis

(Ĥ4)Let T = {(t,s) : 0 ≤ t ≤ b,0 ≤ s ≤ t} and K : T → R

such that

|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s) : [s,b])≤ m(s), for a.e. s ∈ I,
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where m : I → R+ is a function Lp integrable and
K(t, ·) is Lebesgue integrable on [0, t] for every
t ∈ [0,b].

Theorem 31 Suppose that hypotheses Ĥ1, Ĥ2 and Ĥ3

hold, then there exists a number τ > 0 such that for every

λ with |λ | < τ , the equation (1.1) has a unique

ΛpBV-solution, defined on I = [0,b].

Proof. Let {In} be a sequence of non-overlapping
intervals In = [an,bn]⊂ I = [0,b] with n = 1, ...,N.

Define G(x) : ΛpBV (I)→ ΛpBV (I) by

G(x)(t) = g(t)+λ

∫

I
K(t,s) f (x(s))ds.

Let r > 0 such that ‖g‖Λp
< r and choose a real number

τ > 0 such that

‖g‖Λp
+ sup

s∈I

τ| f (x(s))|



∫

I
|K(0,s)|ds+

(∫

I
(M(s))p

) 1

p


< r

(3.5)

and

CτLr



∫

I
|K(0,s)|ds+

(∫

I
(M(s))p

) 1

p


< 1, (3.6)

where C is guaranteed by Lemma 22 and Lr is the
Lipschitz constant associated with f when restricted to
the interval I. In order to prove this Theorem we will use
Banach’s Theorem 21. Denote by Br, the closed ball of
center zero and radius r in the space ΛpBV (I); that is,

Br := {x ∈ ΛpBV (I)/‖x‖Λp
< r}.

Let us start by proving the inclusion G(Br)⊂ Br.
Indeed, by Lemma 26, for any x ∈ ΛpBV(I) we have

‖G(x)‖Λp
≤ ‖g‖Λp

+ |λ |‖F(x)‖Λp
. (3.7)

On the other hand,

‖F(x)‖Λp
= |F(x)(0)|+VΛp

(F(x))

=

∣∣∣∣
∫

I
K(0,s) f (x(s))ds

∣∣∣∣+VΛp
(F(x))

≤ sup
s∈I

| f (x(s))|
∫

I
|K(0,s)|ds+VΛp

(F(x)) , (3.8)

so by Lemma 24,

‖F(x)‖Λp
≤ sup

s∈I

| f (x(s))|
[∫

I
|K(0,s)|ds+

(∫

I
(M(s))p ds

) 1
p

]
.

Thus, from inequalities (3.7) and (3.5) we get

‖G(x)‖Λp

≤ ‖g‖Λp
+ |λ |sup

s∈I

| f (x(s))|
[∫

I
|K(0,s)|ds+

(∫

I
(M(s))p

ds

) 1
p

]

≤ ‖g‖Λp
+ sup

s∈I

τ | f (x(s))|
[∫

I
|K(0,s)|ds+

(∫

I
(M(s))p

ds

) 1
p

]

< r.

Hence, G(Br)⊂ Br.
Now we proceed to show that G is a contraction.

Indeed, for any x,y ∈ Br we have

‖G(x)−G(y)‖Λp

= |G(x)(0)−G(y)(0)|+VΛp
(G(x)−G(y))

= |λ | |F(x)(0)−F(y)(0)|+VΛp
(λ (F(x)−F(y))) .

But

|F(x)(0)−F(y)(0)| =
∣∣∣∣
∫

I
K(0,s)[ f (x(s))− f (y(s))]ds

∣∣∣∣

≤
∫

I
|K(0,s)| |[ f (x(s))− f (y(s))]|ds,

since f is locally Lipschitz, so using Lemma 22 we get

|F(x)(0)−F(y)(0)| ≤ Lr sup
s∈I

|x(s)− y(s)|
∫

I
|K(0,s)|ds

≤ LrC‖x− y‖Λp

∫

I
|K(0,s)|ds. (3.9)

Now, by Lemma 25,

VΛp
(λ (F(x)−F(y)))≤CLr|λ |‖x−y‖Λp

(∫

I
(M(s))p

ds

) 1
p

;

thus, from inequality (3.9) it follows that

‖G(x)−G(y)‖Λp
≤

CLrτ



∫

I
|K(0,s)|ds+

(∫

I
(M(s))p ds

) 1
p


‖x−y‖Λp

.

We conclude, by inequality (3.6), that G(x) is a
contraction. Consequently, by Theorem 21, G(x) has a
unique fixed point in Br, i.e. there exists x ∈ Br such that

g(t)+λ

∫

I
K(t,s) f (x(s))ds = x(t).

Therefore, x is a unique solution of equation (1.1). �

Theorem 32 Suppose that hypotheses Ĥ1, Ĥ2 and Ĥ4

hold, then equation (1.2) has a unique ΛpBV-solution,

defined on I = [0,b].

Proof. Working as in the proof of Theorem 31, let r > 0
and Lr is the Lipschitz constant associated with f when
restricted to the interval I, that

‖g‖Λp
+2sup

s∈I

| f (x(s))|
[(∫ b

0
(m(s))p

) 1
p

]
< r (3.10)

and 2CLr

[(∫ b

0
(m(s))p

) 1
p

]
< 1, (3.11)

where C is guaranteed by Lemma 22.
Let {In} be a sequence of non-overlapping intervals In =
[an,bn]⊂ I = [0,b] with n = 1, ...,N. Define the function

G̃(x)(t) = g(t)+ F̃(x)(t),
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where

F̃(x)(t) :=
∫ t

0
K(t,s) f (x(s))ds for t ∈ [0,b],

x ∈ Br = {x ∈ ΛpBV (I)/‖x‖Λp
< r}

and set K̂(t,s) =

{
K(t,s), 0 ≤ s ≤ t

0, t < s ≤ b.

Let us prove that G̃(Br)⊂ Br. Working as in the proof
of Lemma 26 we have that

∥∥∥G̃(x)
∥∥∥

Λp

≤ ‖g‖Λp
+
∥∥∥F̃(x)

∥∥∥
Λp

, (3.12)

but∥∥∥F̃(x)
∥∥∥

Λp

=
∣∣∣F̃(x)(0)

∣∣∣+VΛp
(F̃(x))

=

∫ 0

0
K(t,s) f (x(s))ds+VΛp

(F̃(x))

= VΛp
(F̃(x)).

In order to estimate VΛp
(F̃(x)), we proceed as in the proof

of Lemma 24 to obtain

N

∑
n=1

∣∣∣F̃(x)(bn)− F̃(x)(an)
∣∣∣

p

λn

=
N

∑
n=1

∣∣∣
∫ bn

0 K(bn,s) f (x(s))ds− ∫ an
0 K(an,s) f (x(s))ds

∣∣∣
p

λn

=
N

∑
n=1

∣∣∣
∫ b

0 K̂(bn,s) f (x(s))ds−
∫ b

0 K̂(an,s) f (x(s))ds

∣∣∣
p

λn

=
N

∑
n=1

∣∣∣
∫ b

0

[
K̂(bn,s)− K̂(an,s)

]
f (x(s))ds

∣∣∣
p

λn

≤
N

∑
n=1

sup
s∈I

| f (x(s))|p
∫ b

0

∣∣∣K̂(bn,s)− K̂(an,s)
∣∣∣

p

λn

ds

= sup
s∈I

| f (x(s))|p
∫ b

0

N

∑
n=1

∣∣∣K̂(bn,s)− K̂(an,s)
∣∣∣

p

λn

ds.

Thus




N

∑
n=1

∣∣∣F̃(x)(bn)− F̃(x)(an)
∣∣∣
p

λn




1

p

≤ sup
s∈I

| f (x(s))|
(∫ b

0
V

p
Λp
(K̂(.,s), [0,b])ds

) 1

p

and by Lemma 27, we have

VΛp
(F̃(x))≤

≤ sup
s∈I

| f (x(s))|
(∫ b

0
2p

[
|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s), [s,b])

]p

ds

) 1

p
.

Now, by hypothesis Ĥ4 we have that

|K(s,s)|
(λ1)

1
p

+VΛ (K(·,s) : [s,b])≤ m(s),

where m is an Lp integrable function. Hence,

VΛp
(F̃(x))≤ sup

s∈I

2| f (x(s))|
(∫ b

0
(m(s))p

ds

) 1
p

.

Thus, using this last estimate in (3.12), we obtain

∥∥∥G̃(x)
∥∥∥

Λp

≤ ‖g‖Λp
+ sup

s∈I

2| f (x(s))|
(∫ b

0
(m(s))p ds

) 1
p

< r.

Now, we will show that G̃(x) is a contraction. For any x,y∈
Br, we have

∥∥∥G̃(x)− G̃(y)
∥∥∥

Λp

=VΛp

(
F̃(x)− F̃(y)

)
.

But

N

∑
n=1

∣∣∣F̃(x)(In)− F̃(y)(In)
∣∣∣
p

λn

=
N

∑
n=1

∣∣∣
∫ b

0

[
K̂(bn,s)− K̂(an,s)

]
[ f (x(s))− f (y(s))]ds

∣∣∣
p

λn

≤
N

∑
n=1

sup
s∈I

| f (x(s))− f (y(s))|p
∫ b

0

∣∣∣K̂(bn,s)− K̂(an,s)
∣∣∣
p

λn
ds

≤
(

Lr sup
s∈I

|x(s)−y(s)|
)p ∫ b

0
V

p
Λp
(K̂(.,s), [0,b])ds.

Hence, applying a similar technique as above, we have

VΛp
(F̃(x)− F̃(x)≤ 2LrC‖x− y‖Λp

(∫ b

0
(m(s))p

ds

) 1
p

.

Moreover,

∥∥∥G̃(x)− G̃(y)
∥∥∥

Λp

≤ 2LrC

(∫ b

0
(m(s))p

ds

) 1
p

‖x− y‖Λp
.

Therefore, by inequality (3.11), G̃(x) is a contraction and
by Theorem 21, we have that there exists a unique x̃ ∈ Br

such that

g(t)+

∫ t

0
K(t,s) f (x̃(s))ds = x̃(t).

Hence, x̃ is the unique solution of equation (1.2). �
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4 Existence and uniqueness of solutions for

the Volterra equation

In this section we shall prove existence and uniqueness of
solutions for the equation (1.3) in the space of functions
of Shiba bounded variation. To prove these results two
Theorems are established: one guarantees existence and
the other guarantees uniqueness of solutions. In addition
to the hypotheses raised in section2, we consider the
additional hypothesis

(Ĥ5)Let K : {(t,s) ∈ [a,b]× [a,b] : s ≤ t}→R the function
such that

|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s) : [s,b])≤ h(s), for a.e. s∈ [a,b],

where h : I →R+ is a function Lp integrable and K(t, ·)
is Lebesgue integrable on [a, t] for each t ∈ [a,b].

Theorem 41 Suppose that hypotheses Ĥ1, Ĥ2 and Ĥ5

hold, then there exists a solution x̂ ∈ ΛpBV for the

equation (1.3).

Proof. The proof of this Theorem is based on verifying
that the hypotheses of Theorem22, the Leray-Shauder
alternative, are satisfied. As in the proof of Theorem 32,
let r > 0 and let Lr be the Lipschitz constant such that

‖g‖Λp
+ 2 sup

s∈[a,b]
| f (x(s))|



(∫ b

a
(h(s))p

) 1

p


< r and

(4.13)

2CLr



(∫ b

a
(h(s))p

) 1

p


< 1. (4.14)

Let {In} be a sequence of non-overlapping intervals
In = [an,bn] ⊂ [a,b] = I with n = 1, ...,N. Let us define
the functions

H(x)(t) = g(t)+ F̂(x)(t), where

F̂(x)(t) =

∫ t

a
K(t,s) f (x(s))ds with t ∈ [a,b],

x ∈ Br = {x ∈ ΛpBV (I)/‖x‖Λp
< r} and

K̂(t,s) =

{
K(t,s), a ≤ s ≤ t

0, t < s ≤ b;
(4.15)

By the same reasoning used in the proof of Theorem 32,
we have that

‖H(x)‖Λp

≤ ‖g‖Λp
+ sup

s∈[a,b]
2| f (x(s))|

(∫ b

a
(h(s))p

ds

) 1
p

< r. (4.16)

‖H(x)−H(y)‖Λp
≤ 2LrC

(∫ b

a
(h(s))p

ds

) 1
p

‖x−y‖Λp
. (4.17)

Now, we define the function φ : [0,+∞)→ [0,+∞) by

φ(z) =

[
2LrC

(∫ b

a
(h(s))p

ds

) 1
p

]
z,

clearly φ(z) < z by inequality (4.14). Let x ∈ Br be such
that x = λ H(x) for some λ ∈ (0,1]. Then

‖x‖Λp
= λ‖H(x)‖Λp

≤ ‖H(x)‖Λp
< r, (4.18)

by inequality (4.16). In particular, x /∈ ∂Br. On the other

hand, H(x) ∈ ΛpBV since g, F̂(x) ∈ ΛpBV , so H(x) is
bounded. By Theorem 22, the Leray-Shauder Alternative,
H(x) has a single fixed point, that is, there exists
x̂ ∈ ΛpBV such that H(x̂)(t) = x̂(t). Thus, x̂ is solution of
the Volterra equation (1.3). �

Theorem 42 Suppose the hypotheses Ĥ1, Ĥ2 and Ĥ5

hold, then there exists a unique solution x̂ ∈ ΛpBV for the

equation (1.3).

Proof. Working as in the proofs of the previous
Theorems. Let {In} be a sequence of non-overlapping
intervals In = [an,bn] ⊂ [a,b] = I with n = 1, ...,N and let
us take s ∈ [ai,bi] for some i, 1 ≤ i ≤ N. Suppose without
loss of generality that

Lr


2(b−a)

1
p sup

s∈[a,b]
|K(s,s)|+4(λ1)

1
p

(∫ b

a
(h(s))pds

) 1

p


< 1,

(4.19)

where Lr is the Lipschitz constant of f and
sups∈[a,b] |K(s,s)| < +∞. By Theorem 41, there exists a
solution of the Volterra equation (1.3). To prove
uniqueness, we proceed by reduction to the absurd.
Suppose that there are two different solutions of the
equation (1.3), x̂, ŷ. Then

|ŷ(t)− x̂(t)|p =

∣∣∣∣
∫ t

a
K(t,s)[ f (ŷ(t))− f (x̂(t))]ds

∣∣∣∣
p

≤
∫ t

a
|K(t,s)|p | f (ŷ(t))− f (x̂(t))|p ds

≤
∫ t

a
|K(t,s)|p (Lr)

p |ŷ(t)− x̂(t)|p ds

and so

|ŷ(t)− x̂(t)| ≤ Lr

(∫ t

a
|K(t,s)|p |ŷ(t)− x̂(t)|p ds

) 1
p

.

Hence

sup
s∈[a,b]

|ŷ(s)− x̂(s)| ≤ Lr sup
s∈[a,b]

|ŷ(s)− x̂(s)| sup
t∈[a,b]

(∫ t

a
|K(t,s)|p ds

) 1
p
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or

1 ≤ Lr sup
t∈[a,b]

(∫ t

a
|K(t,s)|p ds

) 1
p

. (4.20)

On the other hand, for τ ∈ [s,b]

∣∣∣K̂(τ,s)− K̂(s,s)
∣∣∣

p

λ1

≤
N

∑
n=1

∣∣∣K̂(bn,s)− K̂(an,s)
∣∣∣

p

λn

≤V
p

Λp

(
K̂(.,s), [a,b]

)
.

Raising to the
1

p
power, applying basic absolute value

inequality, Lemma 27 and the hypothesis Ĥ5, we have

|K(τ,s)|
(λ1)

1
p

≤ |K(s,s)|
(λ1)

1
p

+ 2

[
|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s), [s,b])

]

≤ |K(s,s)|
(λ1)

1
p

+ 2h(s).

Therefore,

|K(τ,s)|p ≤ λ12p

[ |K(s,s)|p
λ1

+(2h(s))p

]
.

Consequently

∫ t

a
|K(t,s)|p ds

≤
∫ t

a
sup

τ∈[s,b]
|K(τ,s)|p ds

≤
∫ t

a
λ12p

[
sups∈[a,b] |K(s,s)|p

λ1

+(2h(s))p

]
ds

≤
∫ b

a
λ12p

[
sups∈[a,b] |K(s,s)|p

λ1

+(2h(s))p

]
ds

= 2p(b− a) sup
s∈[a,b]

|K(s,s)|p +λ14p

∫ b

a
(h(s))pds,

from which we deduce that

Lr sup
t∈[a,b]

(∫ t

a
|K(t,s)|p ds

) 1
p

≤ Lr


2(b−a)

1
p sup

s∈[a,b]
|K(s,s)|+4(λ1)

1
p

(∫ b

a
(h(s))pds

) 1
p


 .

From this and inequalities (4.19) and (4.20), we get a
contradiction. Hence, the solution of equation (1.3) is
unique. �

5 Applications

This section shows an application, where the non-linear
integral equation of Hammerstein-Volterra is solved by
numerical methods and it guarantees that the solution is
considered unique in the space of functions Shiba
bounded variation. In addition, the examples 52 and 53
are given to illustrate the conclusions of Theorems 31
and 32, respectively.

Example 51 (Aplication) Because dynamic models of
chemical reactors or stationary study in a chemical
reactor can be described by a Hammerstein-Volterra
mixed integral equation, or by the fact that fluid dynamics
can also be modeled by these, many researchers study the
solutions of these types of nonlinear integral equations
using numerical methods to find the approximate
solution, for example the use of the hybrid function with
some matrix properties, the Sinc placement based on the
exponential double transformation or the Adomian
decomposition method. All these methods convert these
integral equations into an algebraic equation see [19],
[20], and [21]. However, it must be noted that in most of
these works, they start from the fact that there is a
solution. In [21] consider the Hammerstein-Volterra
integral equation

x(t) = et − (t + 1)sin t +
∫ t

−1
e−2s sin tx2(s)ds,

with − 1 ≤ t ≤ 1, (5.21)

which has x(t) = et as an exact solution. Conclude that

for large values of M, the approximate solution is

indistinguishable from the exact solution and that the

method considered is quite powerful. However, to

complement these approximate methods we will

demonstrate that the considered solution is unique in the

space of function of Shiba-bounded variation.

Let’s verify that the hypotheses of the Theorem 32 are
satisfied
1. Let us prove that g(t) = et − (t + 1)sin t is a function

of Λp bounded variation. Consider a partition {tN} of I,

t0 = 0 < t1 < ... < tN−1 < 1 = tN , then 0 < tk − tk−1 ≤ 1;

since λn is a nondecreasing sequence, we have

N

∑
n=1

|etn − (tn + 1)sin(tn)− etn−1 +(tn−1 + 1)sin(tn−1)|p
λn

≤
N

∑
n=1

|etn − (tn + 1)sin(tn)− etn−1 +(tn−1 + 1)sin(tn−1)|p
λ1

,

Applying triangular inequality and

|a+ b|p ≤ 2p (|a|p + |b|p) ,
we have that

N

∑
n=1

|etn − (tn + 1)sin(tn)− etn−1 +(tn−1 + 1)sin(tn−1)|p
λn

≤
N

∑
n=1

H(tn, tn−1)

λ1

,
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where

H(tn, tn−1) = 4p
∣∣etn −etn−1

∣∣p +4p |tn sin(tn)− tn−1 sin(tn−1)|p

+2p |sin(tn)− sin(tn−1)|p ,

by the Mean Value Theorem, for t ∈ [−1,1]
∣∣etn − etn−1

∣∣≤ e |tn − tn−1| ,
|tn sin(tn)− tn−1 sin(tn−1)| ≤ 2 |tn − tn−1| ,
|sin(tn)− sin(tn−1)| ≤ |tn − tn−1|

and by Lemma 2.5 in [16],

xp ≤ pbp−1x for x ∈ [0,b] with 1 ≤ p <+∞,

it follows that

N

∑
n=1

|etn − (tn + 1)sin(tn)− etn−1 +(tn−1 + 1)sin(tn−1)|p
λ1

≤
N

∑
n=1

(
e22p + 22p+1+ 2p

)
p

λ1

|tn − tn−1|

≤ 2p

(
e22p + 22p+1+ 2p

)

λ1

= M <+∞,

from here it follows, g ∈ ΛpBV.

2. It is clear that f (x) = x2 is locally Lipschitz.

3. Let us define

K̂(t,s) =

{
e−2s sin t, −1 ≤ s ≤ t

0, t < s ≤ 1.
(5.22)

Hence
∫ 1

−1
K̂(t,s)ds =

∫ t

−1
e−2s sin tds

=
1

2
sin t(e2 − e−2t).

It follows that K̂(t, .) is Lebesgue integrable, so K(t, ·) is
Lebesgue integrable. On the other hand, by Lemma27

VΛp

(
K̂(.,s), [0,1]

)
≤ 2

(
|K(s,s)|
(λ1)

1
p

+VΛp
(K(·,s), [s,1])

)

= 2

(
|e−2s sins|
(λ1)

1
p

+VΛp

(
e−2s sint, [s,1]

))

= 2

∣∣∣e−2s
∣∣∣
(
|sins|
(λ1)

1
p

+Vλp
[sint, [s,1]]

)

≤ 2

∣∣∣e−2s
∣∣∣
(

1

(λ1)
1
p

+Vλp
[sint, [s,1]]

)

= M(s).

It is evident that M(s) is Lp integrable since
1

(λ1)
1
p

+Vλp
[sin t, I] < +∞. Therefore all conditions of

Theorem 32 are satisfied. Thus, the equation (5.21) has a

unique ΛpBV-solution, defined on [−1,1]. �

Example 52 Consider the equation

x(t) = sin t +λ

∫

I
K(t,s)(x(s))2ds, λ ∈ I, t ∈ I = [0,1],

(5.23)
where K : [0,1]× [0,1]→R is given by K(t,s) = costK1(s)
with

K1(s) =





1
2p
√

s
, s ∈ (0,1];

0, s = 0.

We started to verify that the hypothesis of Theorem 31 is

satisfied:

1. Let us prove that g(t) = sin t is a function of Λp bounded

variation. Consider a partition {tN} of I, t0 = 0 < t1 <
... < tN−1 < 1 = tN , then 0 < tk − tk−1 ≤ 1; since λn is a

nondecreasing sequence, we have

N

∑
n=1

|sin(tn)− sin(tn−1)|p
λn

≤
N

∑
n=1

|sin(tn)− sin(tn−1)|p
λ1

Applying triangular inequality, the inequalities

|a+b|p ≤ 2p (|a|p + |b|p) , xp ≤ pbp−1x for x∈ [0,b]

and by the Mean Value Theorem on the interval [0,1], we

have

N

∑
n=1

|sin(tn)− sin(tn−1)|p
λ1

≤ pbp−1

λ1

N

∑
n=1

|tn − tn−1|

≤ pbp−1

λ1

(1− 0) = M <+∞,

from here it follows, g ∈ ΛpBV.

2. By example 51 you have f (x) = x2 is locally Lipschitz.

3.
∫ 1

0 K1(s)ds =
∫ 1

0

1
2p
√

s
ds is convergent, therefore K1(s)

is Lebesgue integrable, even more K1(s) is Lp integrable.

Now
∫

I
K(t,s)ds =

∫

I
costK1(s)ds

= cost

∫

I
K1(s)ds.

As K1(s) is Lebesgue integrable, K(t, ·) is Lebesgue

integrable. On the other hand

VΛp
[K(·,s), I] = VΛp

[costK1(s), [0,1]]

= |K1(s)|VΛp
[cost, [0,1]]

= M(s).

Evidently M(s) is Lp integrable, since K1(s) is Lp

integrable and Vλp
[cost, I] < +∞ (the bounded variation

proof is analogous to that of the function sin t given

above). Therefore all conditions of Theorem31 are

satisfied. Hence, there exists a number τ > 0 such that for

every λ with |λ | < τ , the equation (5.23) has a unique

ΛpBV-solution, defined on I = [0,1]. �
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Example 53 Consider the equation

x(t) = cost+

∫ t

o
K(t,s)sin(x(s))ds, t ∈ I = [0,1], (5.24)

where the kernel K : T → R, with T = {(t,s) : 0 ≤ t ≤
1,0 ≤ s ≤ t}, is given as in the previous example.

1. g(t) = cost is a function of Λp bounded variation from

the previous example.

2. Evidently f (x) = sinx is locally Lipschitz.

3. Just like the example 51 let us define

K̂(t,s) =

{
K(t,s), 0 ≤ s ≤ t

0, t < s ≤ 1.
(5.25)

For t ∈ [0,1],
∫ 1

0
K̂(t,s)ds =

∫ t

0
K(t,s)ds

=

∫ t

0
cos(t)K1(s)ds

= cos(t)

∫ t

0
K1(s)ds.

As K1(s) is Lebesgue integrable, it follows that K̂(t, .) is
Lebesgue integrable, so K(t, ·) is Lebesgue integrable.
Working analogously to example 51 it follows that

VΛp

(
K̂(.,s), [0,1]

)
≤ 2 |K1(s)|

(
|cos(s)|
(λ1)

1
p

+Vλp
[cos t, [s,1]]

)

≤ 2 |K1(s)|
(

1

(λ1)
1
p

+Vλp
[cos t, [s,1]]

)

= M(s).

It is evident that M(s) is Lp integrable, for K1(s) is Lp

integrable and
1

(λ1)
1
p

+Vλp
[cost, I] < +∞. Therefore all

conditions of Theorem 32 are satisfied. Hence, the

equation (5.23) has a unique ΛpBV-solution defined on

[0,1]. �

6 Conclusion

In this paper, we demonstrate the existence and
uniqueness of solutions of the nonlinear integral
equations of Hammerstein, Hammerstein-Volterra and
Volterra in the space of functions of Shiba-bounded
variation. As the main tool for the proof of the main
theorems of the Hammerstein and Hammerstein-Volterra
nonlinear equations, the Banach fixed point Theorem is
used. However, for the Volterra nonlinear equation, the
Leray-Schauder Theorem is used. We also give some
examples of some nonlinear integral equations, where the
existence and uniqueness of the solutions are guaranteed
by verifying the hypotheses of the theorems, and an
application is shown. We hope that the ideas and

techniques used in this article can inspire readers
interested in studying these different nonlinear integral
equations as well as some new spaces of generalized
bounded variation. Moreover, these results are a
contribution to the different areas which apply this type of
integral equations.
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