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Abstract: We introduce the censored bimodal skew-normal-flexible distribution which can be very useful in dealing with censored

data together with bimodality and high (or low) levels of skewness and kurtosis. A simple expression for its moments is derived. The

frequentist approach is considered to draw inference, and the traditional maximum likelihood method is employed to estimate the

unknown parameters. We also derive the observed information matrix. An application of the new model to the plasma HIV-1 RNA

measurement is presented for illustrative purposes.
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1 Introduction

In epidemiologic studies with biomarkers as main
outcomes, it is common to have limits of detection which
may hinder defining the specific values. The biomarkers
are useful for predictive applications in diagnostics,
prognostics, or predicted response to therapy. The highly
active antiretroviral therapy (HAART) is a treatment that
defers the development of AIDS in HIV-positive patients
and the main mechanism for achieving these results is
lowering HIV-1 RNA to undetectable levels. However,
undetectable levels of HIV-1 RNA in plasma do not mean
that viral replication has been stopped and ultrasensitive
tests generate a smaller proportion of censored data.
These assays have the potential to delineate the leftmost
peak of the HIV-1 RNA distribution in treated
populations. The characterization of this leftmost peak is
important to understand not only the effectiveness of
HAART but also the biology of optimally treated HIV-1
infection.

Besides the censorship, these data have bimodal
behavior. For example, [1] and [2] found that the viral
load has a bimodal behavior in a study conducted on
HIV-positive patients. [3] corroborated the bimodality of
HIV-1 RNA viral load of individuals on HAART. The

rightmost peak of the distribution reflects individuals with
suboptimal virologic response to HAART, whereas the
leftmost peak reflects individuals with the maximal
reduction that can be achieved with medications of the
therapy. In addition, bimodality of biomarkers has been
shown in other contexts. For instance, [4] found the
bimodality of blood glucose in populations with a very
low prevalence of diabetes and obesity.

Let Y be a random variable which has a part of their
probabilities at discrete points and the rest spread in some
intervals. The cumulative distribution function (CDF) of
Y , say F(y), can be expressed as a mixture distribution in
the form F(y) = p1F1(y) + p2F2(y), for y ∈ R, where
F1(y) is a stepwise CDF, F2(y) is a continuous CDF, p1 is
the cumulative probability of all the discrete points, and
p2 = 1 − p1 is the cumulative probability of the
continuous portion. When data are censored to the left,
the random variable Y is a mixture of a continuous latent
process Y ∗ and a selection mechanism (censoring or
truncation) modeled in binary form. This idea was
popularized by [5], and the resulting model is known as
Tobit model, which is defined in terms of the latent
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variable

yi =

{
y∗i , y∗i > c,

c, otherwise,

where c is the point of censorship (or limit of detection),
and Y ∗ has a certain distribution as, for example, the
normal distribution studied by [5], the Student-t
distribution investigated by [6], or the power-normal
distribution addressed by [7].

In certain cases, in addition to censorship and bimodal
behavior, the data also have high (or low) degrees of
skewness and kurtosis. Therefore, data analysis is
essential to make use of skewed distributions, wherein at
least one of the components of the mixture or even the
complete distribution has asymmetric form. An
interesting alternative is appealed to the skew-normal
distribution defined by [8], for example. For uncensored
data, extensions for asymmetric cases have been studied
by [9], [10] and [11]. In particular, [11] introduced an
asymmetric distribution based on the skew-normal
distribution that admits bimodality. In this paper, we
propose a new distribution called censored bimodal

skew-normal-flexible model that is quite useful in
addressing censored data together with bimodality and
high (or low) levels of skewness and kurtosis more than
the usual normal distribution. Specifically, our approach
relies on generalizing the skew-normal-flexible
distribution [11] to deal with this kind of data
(i.e. censored data with bimodality and high (or low)
levels of skewness and kurtosis). We shall also propose
the unimodal power-normal distribution [12] in such a
context for the sake of comparison. Recently, distribution
theory has received considerable attention. Thus, new
parametric distributions have been introduced in the
statistic literature as, for example, [13], [14] and [15].

The present paper is organized as follows: Section
Two involves some preliminaries. In Section Three, we
introduce the censored unimodal power-normal model,
and maximum likelihood (ML) estimation of the model
parameters presented. In Section Four, we introduce the
censored bimodal skew-normal-flexible model as an
extension of the skew-normal-flexible model addressed
by [11]. Moments and maximum likelihood estimation
for the model parameters are discussed. We also derive
closed-form expressions for the observed information
matrix. Appropriateness of the new censored model is
illustrated using real data in Section Five. Section Six is
devoted to conclusion.

2 Preliminaries

Certain parametric families of distributions are of special
interest in modeling asymmetric data. A noteworthy case
is the skew-normal distribution [8], because this model
represents a generalization of the normal distribution with
an additional parameter to regulate skewness. The

probability density function (PDF) of a random variable Z

skew-normal distributed and parameter α ∈ R is given by

f (z;α) = 2φ(z)Φ(αz), z ∈R,

where φ(·) and Φ(·) denote the standard normal PDF and
CDF, respectively. The skewness is controlled by the
parameter α ∈ R; α = 0 yields the symmetric normal
distribution. The skew-normal (SN) distribution was first
introduced by [16] as a prior distribution for estimating a
normal location parameter. [8] investigated its
fundamental properties and proposed some
generalizations and extensions. We shall use the notation
Z ∼ SN(α) to refer to this distribution. The
three-parameter location-scale extension of Z, say Y , is
given by Y = ξ + ηZ, where ξ ∈ R is a location
parameter, and η > 0 is a scale parameter. In this case, we
have Y ∼ SN(ξ ,η ,α).

In a hydrological context, [17] introduced the
fractional order statistics distribution with PDF given by

ϕF(z;β ) = β f (z)F(z)β−1 for z ∈ R, where F(·) is an
absolutely continuous CDF, f (·) is the corresponding
PDF, and β > 0 is a shape parameter that controls the
amount of asymmetry in the distribution. We refer to this
model as the power distribution. Recent results by [18]
revealed that power distributions can be a viable
alternative for modeling asymmetric data. Following the
idea of [17], [12] defined the power-normal (PN)
distribution whose PDF is given by

f (z;β ) = β φ(z)Φ(z)β−1, z ∈ R,

where β > 0, with β = 1 yielding the normal model. We
shall use the notation Z ∼ PN(β ) to refer to this
distribution. The location-scale extension is defined as the
distribution of the random variable Y = ξ + ηZ, where
ξ ∈ R is a location parameter, and η > 0 is a scale
parameter. We use the notation Y ∼ PN(ξ ,η ,β ). SN and
PN distributions are both unimodal.

3 Censored unimodal power-normal

distribution

3.1 The model

Consider a random variable Y ∗ ∼ PN(ξ ,η ,β ), and let
{y∗1,y

∗
2, . . . ,y

∗
n} be a random sample of size n and point of

censorship equal to c. Values of y∗ greater than the
constant c are recorded to themselves, whereas values of
y∗ less than or equal to the constant c are assigned to c.
The observed random variable Y is described as

yi =

{
y∗i , if y∗i > c,

c, if y∗i ≤ c,

for i = 1,2, . . . ,n. Consequently,

Pr(yi = c) = Pr(y∗i ≤ c) = Φ

(
c− ξ

η

)β

,
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and for y∗i > c, the distribution of Y is the same as that of
Y ∗. The resulting sample is left-censoring, so we have the
censored PN (CPN) distribution. We use the notation
Y ∼ CPN(ξ ,η ,β ). If β = 1, the censored normal (CN)
distribution arises. The inclusion of the parameter β
allows for modeling the asymmetry present in the data.
Therefore, the CPN distribution is more flexible than the
censored normal distribution. On the other hand, the CPN
model corresponds to a censored unimodal model, which
represents a disadvantage in relation to the proposed
censored model based on the skew-normal-flexible
model. It should be noticed that the generalization to
right-censoring is trivial.

3.2 Parameter estimation

Let C be the set of censored observations, and U be the
set of uncensored observations. The log-likelihood
function for θθθ = (ξ ,η ,β )⊤ is

ℓ(θθθ) = n1[log(β )− log(η)]+ n2β log[Φ(zc)]

+ ∑
i∈U

log[φ(zi)]+ (β − 1)∑
i∈U

log [Φ(zi)] ,

where n1 and n2 denote the number of uncensored and
censored observations, respectively, and zc = (c − ξ )/η
and zi = (yi − ξ )/η . The ML estimates of the CPN model
parameters are obtained by maximizing the log-likelihood
function ℓ(θθθ) with respect to θθθ . The maximization can be
performed, for example, in the R [19] software using the
optim(...) function.

The score vector UUU(θθθ ) = (Uξ ,Uη ,Uβ )
⊤, obtained by

differentiating the log-likelihood function with respect to
the unknown parameters, has components

Uξ =−n1β wc

η
+

1

η ∑
i∈U

[zi − (β − 1)wi] ,

Uη =−n2β zcwc

η
+

1

η ∑
i∈U

[
−1+ z2

i − (β − 1)ziwi

]
,

Uβ =
n1

β
+ n2 log [Φ(zc)]+ ∑

i∈U

log [Φ(zi)] ,

where wc = φ(zc)/Φ(zc) and wi = φ(zi)/Φ(zi). The ML
estimates can also be obtained by solving simultaneously
the nonlinear system of equations Uξ = 0, Uη = 0 and
Uβ = 0. However, this nonlinear system of equations does
not admit explicit solution. Hence, the ML estimates need
to be obtained through a numerical maximization of the
log-likelihood function using nonlinear optimization
algorithms. In particular, we have used the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) nonlinear
optimization algorithm in optim(...) function to
compute the ML estimates. To start the algorithm, we

take β0 = 1, ξ0 = ξ̂0 and η0 = η̂0, where ξ̂0 and η̂0 are the
ML estimates of the Tobit model under the normal
distribution.

The observed information matrix is

JJJ(θθθ) =




jξ ξ jξ η jξ β

jξ η jηη jηβ

jξ β jηβ jβ β


 ,

whose elements are

jβ β =
n1

β 2
, jξ β =

n2wc

η
+

1

η ∑
i∈U

wi,

jηβ =
n2zcwc

η
+

1

η ∑
i∈U

ziwi,

jξ ξ =
n2β

η2
[zcwc +w2

c ]+
1

η2 ∑
i∈U

{1+(β − 1)[ziwi +w2
i ]},

jξ η =
β

η2 ∑
i∈C

[−wc + z2
cwc + zcw2

c ]

+
1

η2 ∑
i∈U

{2zi +(β − 1)[−wi + z2
i wi + ziw

2
i ]},

jηη =
β

η2 ∑
i∈C

[−2zcwc + z2
cw2

c + z3
cwc]

+
1

η2 ∑
i∈U

{−1+ 3z2
i +(β − 1)[−2ziwi + z2

i w2
i + z3

i wi]}.

The observed information matrix is used for computing
asymptotic standard errors for the ML estimates, as well as
asymptotic confidence intervals for the model parameters.
The censored bimodal model based on the skew-normal-
flexible model will be introduced in the next section.

4 Censored bimodal skew-normal-flexible

model

4.1 The model

Under uncensored settings, [11] introduced the
skew-normal-flexible (SNF) distribution. Its PDF is given
by

f (z;α,δ ) = κδ φ(|z|+ δ )Φ(αz), z ∈ R, (1)

where δ ∈ R, and κδ = [1−Φ(δ )]−1 is the normalization
constant. We shall use the notation Z ∼ SNF(α,δ ) to
refer to this distribution. If δ = 0, the SNF model reduces
to the SN model. When α = δ = 0 we obtain the normal
distribution. In addition, δ < 0 implies in an asymmetric
bimodal PDF, whereas α = 0 and δ < 0 yields a bimodal
symmetric PDF. The reader is referred to [11] for a
detailed description of the SNF distribution.

Let us assume now that Y ∗ ∼ SNF(α,δ ). Let
{y∗1,y

∗
2, . . . ,y

∗
n} be a random sample of size n and point of
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censorship equal to c. As previously defined, the observed
random variable Y is described as

yi =

{
y∗i , y∗i > c,

c, y∗i ≤ c,

for i = 1,2, . . . ,n. The resulting sample is a SNF with left
censoring. Hence, we say that Y is a censored SNF
(CSNF) random variable. We use the notation
Y ∼ CSNF(α,δ ). We have that the CSNF PDF is bimodal
for δ < 0, and unimodal for δ > 0. The case δ = 0 and
α = 0 corresponds to the CN distribution, while δ = 0
and α 6= 0 corresponds to the censored SN (CSN)
distribution. Thus, the proposed censored model
generalizes some known models. In addition, it is more
flexible than these models because it describes the
bimodal behavior in the data which cannot be described
by the CN and CSN models. The PDF of the
location-scale extension of the SNF model takes the form
(y ∈ R)

f (y;ξ ,η ,α,δ ) =
κδ

η
φ

(∣∣∣∣
y− ξ

η

∣∣∣∣+ δ

)
Φ

(
α

y− ξ

η

)
,

where ξ ∈ R is the location parameter, and η > 0 is the
scale parameter. In this case, we have
Y ∗ ∼ SNF(ξ ,η ,α,δ ). Putting

yi =

{
y∗i , y∗i > c,

c, y∗i ≤ c,

we obtain the location-scale extension of the CSNF
distribution. In this case, we use the notation
Y ∼ CSNF(ξ ,η ,α,δ ). Figure 1 illustrates the CSNF
distribution for δ < 0 and δ > 0.

c

(a) δ < 0

c

(b) δ > 0

Fig. 1: CSNF model with left censoring.

4.2 Moments

The moments of the random variable Z ∼ CSNF(α,δ )
censored at the point c are functions of the quantities

µr(x) =

∫ x

−∞
zrφ(z)dz,

µr(x,α,δ ) =

∫ x

−∞
zrφ(z)Φ(α(z+ δ ))dz.

Note that µr(x) and µr(x,α,0) are the incomplete
moments of the standard normal and SN distribution,
respectively. In particular, for r = 0 and δ = 0, we have
that µ0(x,α,0) = Φ(x)− T (x,α), where T (h,k) is the
function known as Owen function [20]. The r-th moment
of Z ∼ CSNF(α,δ ) can be reduced to

E(Zr) = crψ(c)+κδ (−1)r
r

∑
k=0

(
k

r

)
δ r−k

[
µk(−(c+ δ ))

− µk(−(c+ δ ),α,δ )

]
,

where ψ(c) = κδ

∫ c
−∞ φ(|z|+ δ )Φ(αz)dz. The mean is

given by

E(Z) = κδ

[
δ (Φ(c+ δ )(Φ(λ δ )+ 1)− 1)

+φ(c+ δ )Φ(αδ )
]
+ cψ(c)

+ δκδ

[
T

(
c+ δ ,

cα

c+ δ

)
−T

(
c+ δ ,

λ δ

c+ δ

)]

+κδ λ φ(λ δ )Φ

(
αλ δ − α(c+ δ )

λ

)

+ δκδ

[
T

(
λ δ ,

c(1+α2)+ δ

αδ

)
−T

(
λ δ ,

c+ δ

λ δ

)]
,

where λ = α/
√

1+α2. The variance is
VAR(Z) = E(Z2)−E(Z)2, where

E(Z2) = c2ψ(c)+κδ

[
(1+ δ 2)(1−Φ (c+ δ ))

+ δ (δΦ(cα)− 2φ(c+ δ )+Φ(c+ δ )Φ(λ δ ))
]

−λ δ (2+αδ )κδ φ(λ δ )
[
φ(

√
1+α2(δλ 2 − δ − c))

+αλ δΦ(
√

1+α2(δλ 2 − δ − c))
]

+ δ (1+ δ )κδ

[
T

(
c+ δ ,

cα

c+ δ

)

−T

(
c+ δ ,

λ δ

c+ δ

)]

+ δ (1+ δ )κδ

[
T

(
λ δ ,

c(1+α2)+ δ

αδ

)

−T

(
λ δ ,

c+ δ

λ δ

)]
.

For the location-scale extension
Y = ξ +ηZ ∼ CSNF(ξ ,η ,α,δ ), it then follows that

E(Y r) =
r

∑
k=0

(
k

r

)
ξ r−kηk

E(Zr).

Next section covers parameter estimation of the CSNF
model parameters. Similar to the CPN model, we will
consider the ML method, because the method of moments
is quite complicated and creates a complex system of
equations.
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4.3 Parameter estimation

To estimate the CSNF model parameters, we consider the
ML method. We can assume c = 0 to estimate the CSNF
model parameters without loss of generality, i.e.

yi =

{
y∗i , y∗i > 0,

0, y∗i ≤ 0.

Consequently, the contribution of censored and
uncensored observations to the log-likelihood function is
as follows: if yi = 0, Pr(yi ≤ 0) = ψ(0) = κδ ρ(0), where

ρ(0) = Φ (λ δ )

(
1−Φ

(
ξ +ηδ

η

))

+T

(
λ δ ,

ξ (1+α2)+ηδ

αηδ

)

−
[

T

(
ξ +ηδ

η
,

λ ξ

ξ +ηδ

)
+T

(
ξ +ηδ

η
,

λ ηδ

ξ +ηδ

)

+T

(
λ δ ,

ξ +ηδ

λ ηδ

)]
,

and if yi > 0, the distribution of Yi is equal to that of Y ∗
i .

Then, for a random sample {y1,y2, . . . ,yn} of size n, the

log-likelihood function for θθθ = (ξ ,η ,α,δ )⊤ is

ℓ(θθθ ) = n1 [log(κδ )− log(η)]+ n2 log [ψ(0)]

+ ∑
i∈U

{log[φ(|zi|+ δ )]+ log[Φ(αzi)]} ,

where zi = (yi − ξ )/η , and n1 and n2 denote the number
of uncensored and censored observations, respectively.
The ML estimates of the CSNF model parameters are
obtained by maximizing the log-likelihood function ℓ(θθθ )
with respect to θθθ , and this maximization can be
performed in the R program [19] using the
optim(...) function. Similar to the CPN model, we
have used the BFGS nonlinear optimization algorithm in
optim(...) function to compute the ML estimates. To

start the algorithm, we take δ0 = 0, ξ0 = ξ̂0, η0 = η̂0 and

α0 = α̂0, where ξ̂0, η̂0 and α̂0 are the ML estimates of the
Tobit model under the SN distribution.

The elements of the score vector
UUU(θθθ ) = (Uξ ,Uη ,Uα ,Uδ )

⊤ are

Uξ = n2Λξ +
1

η ∑
i∈U

zi +
δ

η ∑
i∈U

sign(yi − ξ )− α

η ∑
i∈U

wi,

Uη = n2Λη − n1

η
+

1

η ∑
i∈U

z2
i +

δ

η ∑
i∈U

|zi|−
α

η ∑
i∈U

wizi,

Uα = n2Λα + ∑
i∈U

wizi,

Uδ = n2Λδ − n1δ +
nφ(δ )

1−Φ(δ )
− ∑

i∈U

|zi|,

where wi = φ(αzi)/Φ(αzi), n = n1 + n2 and Λξ , Λη , Λα

and Λδ correspond to the partial derivatives of log[ψ(0)]
with respect to ξ , η , α and δ , respectively. These
quantities are provided in the Appendix. We can also
obtain the ML estimates by simultaneously solving the
nonlinear system of equations Uξ = 0, Uη = 0, Uα = 0
and Uδ = 0, which has no closed-form solution. As a
result, it is necessary to consider nonlinear optimization
algorithms to obtain the ML estimates numerically.
Finally, for c 6= 0, we make yi = y∗i − c. Hence, the ML
estimates obtained by considering c = 0 can be used for
this more general setting.

Next, we make some assumptions on the behavior of
ℓ(θθθ) as the sample size n approaches infinity, such as the
regularity of the first two derivatives of ℓ(θθθ) with respect
to θθθ and the existence and uniqueness of the ML estimate

of θθθ ; see, for example, [21]. Let θ̂θθ = (ξ̂ , η̂ , α̂, δ̂ )⊤ be the

ML estimator of θθθ = (ξ ,η ,α,δ )⊤. When n is large and
under standard regularity conditions, the ML estimators
of the CSNF model parameters are asymptotically
normal, asymptotically unbiased and have asymptotic
variance-covariance matrix given by the inverse of the

expected information matrix: θ̂θθ
a∼ N4(θθθ ,KKK(θθθ )−1), where

“
a∼” means approximately distributed,

KKK(θθθ ) = −E(HHH(θθθ)) is the 4 × 4 expected information

matrix, and HHH(θθθ ) = ∂ 2ℓ(θθθ)/∂θθθ∂θθθ⊤ is the Hessian
matrix. There is no closed-form expression for the matrix
KKK(θθθ ). However, the asymptotic behavior remains valid if

KKK(θθθ ) is approximated by JJJn(θ̂θθ ) = −HHH(θ̂θθ), which is the

4 × 4 observed information matrix evaluated at θ̂θθ . The
matrix JJJn(θθθ) has the form

JJJn(θθθ ) =




jξ ξ jξ η jξ α jξ δ

jξ η jηη jηα jηδ

jξ α jηα jαα jαδ

jξ δ jηδ jαδ jδδ


 ,

and the elements are provided in the Appendix. The
above-mentioned asymptotic normal distribution can be
used to construct approximate confidence intervals for the
CSNF model parameters, as well as to compute
asymptotic standard errors for the ML estimates.

5 Real data application

In this section, we present an application of the proposed
CSNF distribution to real data for illustrative purposes.
The R code used in the real data application can be
obtained from the authors upon request. We also consider
the CSN and CPN models for comparison. We shall
consider the real dataset presented by [3], which
represents the plasma HIV-1 RNA measured in 306
samples, collected from 273 men in highly active
antiretroviral therapy, with both Roche [22] (whose limit
of detection is 20 copies per millilitre), and Roche [23]
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Table 1: ML estimates and standard errors (in parenthesis).

CSN(ξ ,η,α)

ξ̂ = 4.355(0.379)
η̂ = 11.121(1.371)
α̂ =−9.637(3.274)

CPN(ξ ,η,β )

ξ̂ = 0.001(0.025)
η̂ = 1.901(0.149)

β̂ = 0.492(0.052)
CSNF(ξ ,η,α,δ )

ξ̂ = 1.519(0.090)
η̂ = 0.963(0.127)

α̂ =−0.667(0.097)

δ̂ =−2.208(0.220)

Table 2: AIC values.

Model AIC

CSN(ξ ,η,α) 685.37

CPN(ξ ,η,β ) 611.04

CSNF(ξ ,η,α,δ ) 584.75

(whose limit of detection is 50 copies per millilitre)
assays; see [3] for details. The data used in this paper are
only measurements made with the Roche COBAS R©

TaqMan assay. The histogram in Figure 2 shows a
bimodal behavior of the HIV-1 RNA measurements.

Table 1 lists the ML estimates of the CSN, CPN and
CSNF parameters. ML estimate of δ is negative

(δ̂ = −2.208) suggesting that the CSNF model can
describe the bimodal behavior of the data evidenced by
the histogram in Figure 2. Now, we shall compute the
Akaike information criterion (AIC) to verify which model
fits these real data better. AIC is the most common
parametric statistic for model selection. The values of
AIC for the CSN, CPN and CSNF models fitted to the
data are presented in Table 2. It is evident that the CSNF
model has the smallest value of AIC in comparison to the
other ones, so it might be chosen as the best model. More
information is provided by a visual comparison of the
three fitted models (see Figure 2). Note that the CSN and
CPN models fail to explain the bimodality of the data. On
the other hand, the CSNF model is capable of describing
this bimodal behavior adequately.

Next, we perform a parametric test to probe the
bimodality hypothesis, that is, we want to test

H0 : δ = 0 against H1 : δ < 0.

In other words, we are comparing the CSN model (i.e. δ =
0 in the CSNF model) with the CSNF model. Using the
likelihood ratio statistic, we have

ω =
ℓCSN(θ̂θθ)

ℓCSNF(θ̂θθ)
,
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Fig. 2: Histogram and fitted models: CSNF (solid line), CPN

(dotted line) and CSN (dashed line).

leading to

−2log(ω) =−2(−339.6866+ 288.3771)= 102.619,

which is greater than the value of the chi-square critical
point to a 5% significance level (χ2

1;0.95 = 3.8414). So, it
confirms that the CSN model fails to describe the
bimodality of data at hand and, in addition, the CSNF
model outperforms the CSN model on the basis of the
likelihood ratio test.

In general, some authors consider the two-component
mixture normal (MN) distribution for modeling bimodal
dada. The MN PDF can be expressed as

f (x) = p f1(x; µ1,σ1)+ (1− p) f2(x; µ2,σ2), x ∈R,

where f j(·) is the PDF of the normal distribution with
parameters (µ j,σ j) for j = 1,2, and 0 < p < 1 the
probability of mixture. For censored data, we then have
the censored MN (CMN) model, denoted by
CMN(µ1,σ1,µ2,σ2, p). In particular, the current data
were analyzed in [3] by considering the CMN model. The
ML estimates of the CMN model parameters are
µ̂1 = 0.577, σ̂1 = 0.903, µ̂2 = 4.15, σ̂2 = 0.706 and
p̂ = 0.897. The AIC of the CMN model fitted to the data
is 585.27, which is slightly greater than that of the CSNF
model (see Table 2). Therefore, the proposed
four-parameter CSNF model fits the data better than the
five-parameter CMN model. Figure 3 displays the
estimated CSNF and CMN PDFs. Note that the models
are very similar, but the CSNF model has fewer
parameters to be estimated and so should be preferable.
Figure 4 presents the QQ-plot regarding the uncensored
data, which indicate the appropriateness of the proposed
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CSNF distribution for modeling the HIV-1 RNA data.
Finally, the proportion of censored data corresponds to
70.58% of the population, and the estimated proportion of
censoring based on the CSNF model is 70.56%, which
definitely demonstrates the good performance of the
CSNF distribution in modeling the HIV-1 RNA data.
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6 Conclusion

In this paper, we investigated a new unimodal censored
model called the censored power-normal (CNP)

distribution, as well as a new bimodal censored model
called the censored skew-normal-flexible (CSNF)
distribution. In particular, the CSNF model is quite
flexible and it can deal with censored data together with
bimodality and high (or low) levels of skewness and
kurtosis. A simple expression for the moments of the
CSNF model was derived. The estimation of the CNP and
CSNF parameters was performed using the method of
maximum likelihood. We also provided closed-form
expressions for the observed information matrix of the
CPN and CSNF models. In addition, we illustrated the
methodology developed in this paper by means of an
application to real data. We verify through the real data
application that the CSNF model surpassed the
well-known censored skew-normal model, and was very
similar to the censored two-component mixture normal
(CMN) model, which might be the most used model to
deal with censored data together with bimodality. The
advantage of the proposed CSNF model in relation to the
CMN model is that the CSNF model has fewer
parameters to be estimated than the CMN model. Hence,
the proposed CSNF model is simpler (i.e. more
parsimonious) than the CMN model in practical
situations. However, the CMN model parameters have a
direct interpretation, while the CSNF model parameters
lack it. Finally, formulas related with the CSNF model are
manageable (such as log-likelihood function, score
function, and observed information matrix). Also, using
modern computer resources and its numerical
capabilities, this censored model may prove to be a useful
addition to the arsenal of applied statisticians.
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Appendix

Let ρ(0) =
∫ − ξ+ηδ

η
−∞ φ(z)Φ(αz+αδ )dz. We have that

Λξ =−w01

η
, Λη =

ξ w01

η2
,

Λα = α−2λ
[
α−1λ δw03 −w04

]
, Λδ = λ w03 −w01,

where λ = α/
√

1+α2, and

w01 =
1

ρ(0)
φ

(
ξ +ηδ

η

)
Φ

(−αξ

η

)
,

w02 =
1

ρ(0)
φ

(
ξ +ηδ

η

)
φ

(−αξ

η

)
,

w03 =
1

ρ(0)
φ(λ δ )Φ

(
(ξ +ηδ )+ ξ α2

η
√

1+α2

)
,

w04 =
1

ρ(0)
φ(λ δ )φ

(
(ξ +ηδ )+ ξ α2

η
√

1+α2

)
.

The elements of the observed information matrix JJJn(θθθ )
are

jξ ξ = ∑
i∈C

Λξ ξ +
1

η2 ∑
i∈U

[
1+α3wizi +α2w2

i

]
,

jξ δ = ∑
i∈C

Λξ δ −
1

η ∑
i∈U

sign(yi − ξ ),

jξ η = ∑
i∈C

Λξ η +
2

η2 ∑
i∈U

[
2zi − δ sign(yi − ξ )

−αwi +α3z2
i wi −α2ziw

2
i

]
,

jξ α = ∑
i∈C

Λξ α +
1

η ∑
i∈U

[
wi −α2z2

i wi −αziw
2
i

]
,

jαδ = ∑
i∈C

Λαδ ,

jηη = ∑
i∈C

Ληη +
1

η2 ∑
i∈U

[
− 1+ 3z2

i + 2δ |zi|

− 2αziwi +α3z3
i wi +α2z2

i w2
i

]
,

jηα = ∑
i∈C

Ληα +
1

η2 ∑
i∈U

[
ziwi −α2z3

i wi −αz2
i w2

i

]
,

jηδ = ∑
i∈C

Ληδ −
1

η ∑
i∈U

|zi| ,

jαα = ∑
i∈C

Λαα + ∑
i∈U

[
αz3

i wi + z2
i w2

i

]
,

jδδ = ∑
i∈C

Λδδ + n

(
δ − φ(δ )

1−Φ(δ )

)
φ(δ )

1−Φ(δ )
+ n1,

where

Λξ ξ =
1

η2

[
w2

01 −
ξ +ηδ

η
w01 −αw02

]
,

Λξ η =− 1

η3

[
ξ w2

01 − (ξ +η(1+ δ ))w01 −αw02

]
,

Λξ α =− 1

η2

[
ξ w02 +α−2ηλ 2w01(α

−1λ δw03 −w04)
]
,

Λξ δ =−w01

η2
[(ξ +ηδ )+η(λ w03 −w01)] ,

Ληη =
ξ

η4

[
ξ w2

01 +

(
2ξ η − ξ +ηδ

η

)
w01 −αξ w02

]
,

Ληα =
ξ

η3

[
ξ w02 +α−2ηλ 2w01(α

−1λ δw03 −w04)
]
,

Ληδ =
w01

η3
[(ξ +ηδ )+η(λ w03 −w01)] ,

Λδδ = λ
[
λ 2δw03 −w04 +λ w2

03 − 2w01w03

]

+w01

[
w01 −

ξ +ηδ

η

]
,

Λαδ = α−3λ 3w03(λ
2δ 2 − 1)

+α−1λ 2w03(α
−1λ δw03 −w04)−

ξ

η
w02

− λ 2

η

(
ξ −ηδ +α2ξ

1+α2

)
w04

−α−2λ 2w01(α
−1λ δw03 −w04),

Λαα = α−4λ 4w04

[
w04 −α−1λ δ (λ δ +w03)

− 2α − λ

η

(
(1+α2)ξ −ηδ

)]
,

+α−3λ 3δ

[
−α−2λ 2w04

(
λ

η
((1+α2)ξ −ηδ )

+w03

)
+α−3λ 3δw03(λ δ +w03)+ 3αw03

]
.
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O. Martinez-Maza and A. Muõz. Improved estimation of

the distribution of suppressed plasma HIV-1 RNA in men

receiving effective antiretroviral therapy, Journal of Acquired

Immune Deficiency Syndromes, 59, 389–392, (2012).

[4] T.O. Lim, R. Bakri, Z. Morad and M.A. Hamid. Bimodality

in blood glucose distribution: is it universal?, Diabetes Care,

25, 2212–2217, (2002).

[5] J. Tobin. Estimation of relationships for limited dependent

variables, Econometrica, 26, 24–36, (1958).

[6] R.B. Arellano-Valle, L.M. Castro, G. González-Farı́as and
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