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Abstract: This article proves that speed of light in all uniformly moving inertial reference frames is absolute as postulated 

by Einstein. This is first done by considering light propagating with a speed c in all directions in an inertial frame of 

reference. If that frame is moving uniformly with a speed v relative to a second stationary inertial frame, we assume that 

light in the second frame is propagating in all directions with a different speed c= c. Consequently, modified 

transformation Equations are formed. The established Poincaré ellipsoidal light waves are then used to find the Equation 

that governs the relation of  at any speed v. The analytical solution and numerical calculations to this equation yield a 

value  =1. This proves that speed of light propagates through empty space with speed c independent of the speed of the 

light source or the observer. 
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1 Introduction  

For more than a century, the postulates of Special Relativity 

(SR) theory introduced by Albert Einstein [1] have been the 

fundamentals of all present physical phenomena and 

accepted theories that describe all interactions occurring in 

nature. Albert Einstein's second postulate declares that the 

speed of light c (about 3108
 ms-1) in free space is the same 

in all inertial frames of reference. With today’s continuous 

development towards achieving higher experimental 

precision (see [2]), there has been a stronger motivation to 

test this theory, especially since any deviation from 

Einstein’s predictions would have overwhelming 

consequences for our understanding of nature. Furthermore, 

interest in testing the Lorentz Invariance (LI), which is a 

transformation that directly results from the second 

postulate, has been motivated by the need to unify quantum 

and general relativity theories. These unification attempts 

have only been possible through the violation of LI [3]. 

Although special and general relativity is the foundation of 

modern physics, scientists know that the present rules did 

not hold at the birth of the universe. Recently, in the study 

of critical geometry of a thermal big bang, scenarios for 

varying the speed of light (VSL) have showed that this may 

solve the cosmological problems tackled by inflation [4]. A 

review of VSL is also introduced [5] to discuss the physical 

meaning of a varying c, dismissing the fable that the 

constancy of c is a matter of logical consistency. In 

addition, evidence is reported that redshift depends on 

varying the dimensionless fine structure constant 
2 1 1a e c− −=  indicating that e, ℏ, c, or a combination must 

vary [6]. However, some authors are keen to point out that 

it is meaningless to interpret the result of [6] for a varying 

c. For example, [7] indicates that the constant c  is not only 

the speed of light in a vacuum, but it is the maximum 

velocity of any object in Nature, with photons being only 

one type of such objects, implying that c  is Nature’s 

fundamental unit of velocity. Moreover, [8] disfavors 

models of Planck scale physics in which the quantum 

nature of spacetime causes a linear variation of the speed of 

light with photon energy. If the VSL proposal is correct [5], 

that negates the predictions of inflation theory developed by 

Stephen Hawking [9], which have been tested well by many 

researchers such as in [10]. 

Finally, in the study of time dilation in relativistic two-

particle interactions [11], the numerical simulations 

demonstrate that spacetime Lorentz Transformations (LT) 

do not hold for particle trajectories. Moreover, strong 

interaction potentials allow for particle velocities higher 

than the speed of light.  

Many tests with different approaches have been performed 

to test the postulate of SR theory. For the second postulate 
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and all its consequences on the SR Equations and results, 

one region of the achieved results can be classified for 

0 0.85  , such as in [12-16]. The other region is 

classified for 0.99 1  , such as in references [17-18]. 

One of the tests of time dilation is related to observing 

muons at sea level. The proper lifetime of muons in a lab 

was reported to be 
62.196980́10 st − =  [19]. Muons are 

created when cosmic rays hit Earth’s atmosphere at high 

altitudes of about 16 km and then reach the Earth’s surface. 

The lifetime of muons moving at the speed v gets dilated in 

our Earth’s frame of reference, and they reach us when 

0.9992c=v . In addition, tests on time dilation predicted by 

SR were done using a network of optical clocks connected 

by optical fiber links to build a high accuracy atomic clock 

[20].The aforementioned time dilation tests agree 

completely with SR. MacArthur et al. [21] verified with 

good accuracy the SR Doppler formula for an atomic 

hydrogen H0 beam moving at 0.84 =  and so light in SR 

with a speed c. This gives credibility to the postulate of the 

absoluteness of the speed of light suggested by Einstein. 

One of the experimental measurements of the SR energy 

relationship has been tested precisely for 0 1   [22], 

but it remains to be verified for particles moving with a 

speed very close to the value c. 

 

2 A Theoretical Approach 
 

The preceding introduction indicates that the second 

postulate of the special theory of relativity has been well 

tested and verified experimentally. An attempt to find a 

proof of this postulate is accomplished by assuming quasi-

form invariant spherical light waves with different values 

for the speed of light. When these waves transform into 

Poincaré elliptical light waves, they lead to light 

propagating through empty space with the same constant 

speed c independent of the speed of the source or observer. 

 

In this context, the starting point is the fact that the speed of 

light c that is emitted by an observer o  at rest in the origin 

of an inertial frame S  is constant in empty space. Then 

assuming that S  is moving with a constant velocity v  

relative to an observer o at rest in inertial reference frame S. 

To simplify the steps, the coordinate axes in each frame, S 

and S  , are chosen to be parallel (i.e., x x , y y , and 

z z ), and remain mutually perpendicular. In addition, the 

velocity of the relative motion v  is chosen to the right and 

along the o x   and ox axes (i.e., y y=  and z z= ), see the 

axes drawn in Figure 1. Also, the two frames are 

superimposed at 0t t = = , i.e., the origins of both the 

Cartesian coordinate systems are at the same location, 

( ) ( ) ( ),  ,  ,  ,  0,  0, 0x y z x y z   = = . An event in S   can be 

completely specified by its four spacetime coordinates 

( , , , )x y z t     and in S by ( , , , )x y z t . Suppose that at time 

0t t = =  a spherical wave is emitted from the observer o . 

The Equation of this spherical wave with respect to o at 

time t  will be: 

 
2 2 2 2 2 0x y z c t   + + − = . (1) 

At time 0t  , the origin o  acquires a horizontal position 

o ox t = v  with respect to the origin o of frame S. Einstein 

affirmed the form-invariance of the spherical light-wave given 

by Equation 1 in all other inertial frames of reference such as 

S. Since we are dealing with a coordinate transformation that 

has kinematic effects in deriving relativistic dynamical 

quantities, a quasi-form-invariant spherical light-wave can now 

be assumed with only a different value for the speed of light. 

Hence, all variables are kept form-invariant except c, and we 

assume that the speed of light is not absolute and will change 

to the value c c = , where  is a multiplicative parameter 

which has not neen known yet. Therefore, the Equation of the 

propagation of the spherical light wave (SLW) with respect to 

o at time t will be given by: 

 2 2 2 2 2 0x y z c t+ + − = . (2) 

Keeping in mind the selected choice of the Cartesian 

coordinates of S   and S , the relation between ( , , , )x y z t     and 

( , , , )x y z t  could be written as: 

 ( , , , ), ( , , , ), , .t t x y z t x x x y z t y y z z      = = = =  (3) 

First, it is clear that the equations governing x  and t  must be 

linear due to the homogeneity of space and time. Thus: 

 
,

.

t x y z At

x x y z Bt  

  

  

  = + + +

  = + + +
 (4) 

Isotropy of space in all directions requires that 0  = = . 

Also, at point o , we have 0x = , 0y y = = , 0z z = = , and 

x t= v . Therefore; B = − v  and Equation 4 become: 

 
,

( ).

t x At

x x t





 = +

 = − v
 (5) 

Substituting Equation 5 into Equation 1 gives: 

 

2 2 2 2 2 2 2 2 2 2 2

2 2

( ) 2 ( ) [ ]

0

A c t xt Ac c x

y z

      − − − + + − +

+ =

v v
 (6) 

Comparing Equation 6 with Equation 2 and performing some 

simple manipulations, the relation between the spacetime 

coordinates will lead to the following transformation 

Equations: 

 ( / )ct c t x c  = − v , (7) 

 ( )x x t = − v , (8) 

where,  
2 21/ 1 / c = − v ,( 1   ). (9) 

The corresponding inverse transformations of Equation 7 

and Equation 8 are as follows: 
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 ( / )ct c t x c   = + v , (10) 

 ( )x x t  = + v . (11) 

Equations 7 to 11 are different from those in SR (where in 

SR, we use 2 1/2( )1  −= − ), because of their dependence 

on c c =  and  . If  equals 1 as postulated in SR,  =  

and all the previous Equations will be identical to the well-

known Lorentz transformation in SR. A direct consequence 

of the formulated transformations with 1   might be 

questioned and misunderstood at this point because it will 

not lead to form-invariant versions of Maxwell’s Equations. 

Such concerns must be set aside temporarily until we find 

the Equation that governs the parameter . 

 

3 Poincaré Ellipsoidal Light Waves 
 

To simplify the steps, we consider light propagation in a 

two-dimensional plane, namely x and y. Then, Equation 1 

and Equation 2 become: 

 
2 2 2 2 0x y c t  + − =       (In S  ), (12) 

 2 2 2 2 0x y c t+ − =          (In S ). (13) 

Based on Poincaré’s relativity [23], the aim is to construct 

the location of each point on the circular wave produced by 

the source o  at time t  in S   when viewed by the 

observer o at time t in S at height y y=  along the y-axis. 

Expressing x  in terms of x and t  can be obtained using 

Equation 11 as follows: 

 1x x t
− = − v . (14) 

Replacing x in Equation 12 and setting y y= , we reach 

the following elliptical Equation: 

 
2 2

2 2

( )
1

x h y

a b

−
+ = , (15) 

where the ellipse has a semi-major axis a ct b  = = , a 

semi-minor axis b ct= , and is centered at ( ,0)h t = v  

from the origin o of S. This ellipse has a focal distance 
1/222( ) /f a b h = − =  and eccentricity /e f a= . Since the 

origin o  has a coordinate 0x =  in frame S  , then 

Equation 10 will give the time of o  in S in terms of t  in 

S   by: 

 ot t  = . (16) 

A schematic diagram of the elliptical wave given by 

Equation 15 and all related parameters is displayed in 

Figure 1. 

 

Fig. 1: Schematic diagram showing the circular light wave at time 

t  with respect to o  and the Poincaré elliptical light wave related 

to any general point on the circular wave. 
 

According to Poincaré’s remark of non-orthogonal induced 

deformations [23], light will travel in the S frame a distance r 

from o to point P P PP( , , )x y y t=  on the ellipse with a speed 

c c = , as shown in Figure 1. The time Pt  at this point can be 

obtained from Equation 10 and is represented as: 

 P ( / )ct ct x    = + ,   (17) 

where the corresponding horizontal coordinate on the circular 

wave in S   has a coordinate cosx ct   = . Thus: 

 P ( cos / )t t     = + .       (18)   

Therefore, r can be calculated as follows: 

 
2

P P ( cos )r c t ct ct      = = = + . (19) 

Once we apply the general elliptical Equation 15 to point P, we 

find that the coordinate Px  takes the following form: 

 P costx a  = +v . (20) 

Applying 
2 2 2

P Pr x y= +  to the right-angle triangle in Figure 1 

and performing some algebra, we obtain the following cubic 

equation: 

 
3 2 0X A X B X C+ + =+ , (21) 

where X =  and the coefficients A, B, and C are related to 

the variables   and    as follows: 

 2 2

2 2

2 cos ,

( sin 2 cos 1),

sin .

A

B

C

 

   

 

=

 = − + +

=

 (22) 

The solution to the cubic Equation 21 was first published by 

Cardano in 1545 [24] and is given by: 

    
1/3 1/3

2 2 3 2 2 3( ) ( )X P Q Q R P Q Q R P= + + + − + − + − ,(23) 

where 

OO

P P PP( , , )x y y t=

  x x ,

y y 

S S 
/c =v

r

Circular light
wave at time t

P

Point P on the elliptical light wave
at time ( cos / )t t     = +

b ct=
t

h t = v

Px

a ct = a c t =

r 

ct 

P( , , )x y t   
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3/ 3, ( 3 ) / 6, / 3P A Q P AB C R B= − = + − = .     (24) 

The coefficients A, B, and C can take on a variety of values 

depending on   and   . Equation 23 might end up with a 

square root of a negative number. Hence, we would be 

calculating the cubic root of a complex number. This occurs 

as part of the intermediate calculation steps, even though 

these complex numbers do not appear in the problem or in 

its final answer. To avoid these cases when 
2 2 3( ) 0Q R P+ −   (which is always the case in calculating 

 ), we write: 

 
2 2 3| ( ) |i Q R P i S+ − = ,  

and rewrite the first curly bracket term in Equation 23 as: 

 exp( )Z Q iS W i= + = , (25) 

with 
2 2W Q S= +  and 1tan ( / )S Q −= . 

After multiplying Z by exp(2 ) 1i k = , where k is an 

integer, the cubic root of Z will be: 

1/3 1/3 exp[ ( /3 2 /3)]Z W i k = + , 

                  1,0,1k = − (giving three roots for Z) (26) 

Since the third term of Equation 23 is the complex 

conjugate of the second term, Z1/3, then the imaginary parts 

will be cancel out when adding the two terms together, and 

the solution of Equation 23 becomes: 

              
1/32 cos( /3 2 /3)X P W k = + + ,    

        1,0,1k = − (giving three roots for X).         (27) 

Calculations related to this work generate real values for X 

only if 0k = . Thus, the other two complex roots are 

rejected. Hence the second term of Equation 27 can be 

written for 0k =  as: 

 1/32 cos( /3)V W = . (28) 

Now the function   can be calculated from the relation: 

 P V= + . (29) 

In all the calculations of the analytic solution of this work, 

we allow    to vary in steps of 1 , and allow   to reach 

the value 0.999991 =  in steps of 
510−

. When considering 

any time such as when ' 1st =  and record the large resulting 

data points for  , P, V, and  , the upper part of Figure 2 

shows the variation of the angle  , which has an important 

role in calculating V for the entire range of   and   . This 

angle starts from about 85  when both   and    are zero 

and increases to 180+   and then falls to 180−   when 1 →  

and 180 =  . The lower part of Figure 2 shows the surface 

variation of both functions P and V, which are responsible 

for calculating  in Equation 29. The sum of the two 

surfaces is always 1 regardless the values of P and V. The 

same result is true for any value of t   (like Figure 2 but not 

displayed in this paper). Therefore, these calculations 

concluded that: 

 1P V = + =     (for any value of t  ). (30) 

Accordingly, this proves that the speed of light propagates 

through empty space with speed c independent of the speed of 

the source or the observer. In other words, it is now a proven 

fact as well as a postulate as suggested by Einstein [1]. Also, it 

shows that Maxwell’s Equations are form-invariant as 

expected. 

 
Fig. 2: Graphs for 1st =  and viewing angle (55o, 45o). Part (a) 

shows the surface change of the angle φ for all possible values of 

  and  . Part (b) indicates the surface variation of both P and 

V, where P+V=1. The function P is always less than 1 but can be 

less than zero. When P is negative, V is greater than 1 to 

compensate. When P is positive and less than 1, V is also positive 

and less than 1 with a value such that P+V=1. 

 
 

4 Relativistic and Poincaré Relations 
 

Since we proved that 1 =  and so c c = , then Equations 1 

to 11 must be modified to cope with all the acceptable 

known SR relations based on the postulated speed of light, 

but now with a solid proof. The Equations that are directly 

related to the basic SR relations are: 
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[SLW]:        
2 2 2 2 2x y z c t   + + =  & 2 2 2 2 2x y z c t+ + = , (31) 

[LT]:        ( / )ct ct x c = − v  & ( )x x t = − v ,   (32) 

[ILT] :         ( / )ct ct x c  = + v  & ( )x x t  = + v ,   (33) 

where 
2 21/ 1 / c = − v ,   ( 1  ). (34) 

Additionally, the Poincaré elliptical Cartesian Equation 

must be updated to take the following form: 

 
2 2

2 2

( )
1

x f y

a b

−
+ = , (35) 

where the semi-major axis a, semi-minor axis b, focal 

distance f, eccentricity e, time ot   of o  in S , time t at any 

point P( , , )x y y t=  on the ellipse, ox  , and the distance r 

from o to point P, are presented as follows: 

 a ct b = = , 

  b ct r = = ,  

 1/222( )f a b t = − = v , 

 /e f a = = , 

 ot t = , 

 (1 cos )t t   = + , 

 o ox t t  = =v v , 

 (1 cos )r ct   = + . (36) 

Thus, Equation 35 represents an ellipse with an origin of the 

y-axis centered at the focal point ( ,0)f t = v . Moreover, 

this focal point is the location of the origin of the inertial 

frame S and o ooo x t t f = = = = v v . A schematic 

representation of the elliptical wave given by Equation 35 

and its related parameters are given by Equation 36 and 

displayed in Figure 3. 

The polar form of the Cartesian ellipse given by Equation 35 

can be written in terms of   or    as follows: 

 (1 cos )
(1 cos )

r
r r  

  


 = = +

−
. (37) 

Finally, the angle   can be related to the angle    using the 

following relation: 

 
1 cos

cos , 0
1 cos

 
  

 

−  +
=   

+ 
. (38) 

For 2    , we subtract the resulted value of Equation 

38 from 2. This relation does not have a time dependence 

feature, but the parameter   plays a significant role. 

Figure 4 represents a two dimensional study of the evolution 

of the elliptical wave as a function of  , when the time t   

is equal to 1s in frame S  . If   is much less than 0.6, the 

form of the elliptical waves is very close to spherical waves. 
 

 

Fig. 3: A schematic diagram showing the circular light wave at 

time t' with respect to o  and the Poincaré elliptical light wave 

related to any general point on the circular wave. The 

independence of the speed of light c on either the speed of the 

source or the speed of the observer leads to an observer o always 

being at the left focal point, while the observe o  is at the center 

of the ellipse. 
 

As   approaches unity, then  , ot  , and oo  acquire huge 

values. Consequently, the origin o (which coincides with the 

left focal point) approaches the left vertex of the ellipse, see 

the case when 0.9 = . 

 
Fig.4: (a)-(d) Scaled geometrical shapes of the circular and 

elliptical light waves (representing the spherical and Poincaré 

ellipsoidal waves) at four different values of   to illustrate the 

evolution of the circular and elliptical waves when considering 

a certain instant of time (at ' 1st = ) for the propagation of 

circular waves in S  . 

OO
1F

2F

  x x ,

y y 
S S 

/c =v

r

Circular light
wave at time t

t

f t = v f t = v

a c t = a c t =

f
ae = =

2V1V

r 

ct

P

Point P on the elliptical light
wave at time (1 cos )t t    = +

b ct=
P ( , , )x y t   

Eccentricity

P P PP( , , )x y y t=
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For the selected values 0.8 =  and ' 1st = , Figure 5 shows 

the spherical waves (circular in the figure) observed by o  

at time t   and by o at time t t = . The figure also 

manifests a point P at time P (1 cos )t t    = +  on the 

elliptical wave that corresponds to the same height on the y'-

axis of the point P  at time t  . Only one-point Q lies on 

both circles as well as the elliptical wave. This point has a 

vertical distance ct   with respect to o  and a distance ct   

with respect to o. 

t
t t =

oo

8, ( 10 m)x x 

-4

8
,

(
1
0

m
)

y
y


-4 0

0

4

4

8

8

12

0.8, 1s, 1 .67s
O

t t = = =




y y
S

,x x

P

/c =v



PQ

Circle of radius ct
Circle of radius ct ct= 

P (1 cos )t t    = +

S

 
Fig. 5: Scaled geometrical circular waves generated by o  

and observed by o (representing the two spherical waves 

given by Equation 31) and the elliptical wave generated by 

points on the circular wave emitted by o , Equation 35. 
 
 

5 Discussion and Conclusion 
 

We have exploited the conflicting insights between Einstein 

and Poincaré’s theories to find a proof for the constancy of 

the speed of light in inertial reference frames. In both 

theories, the speed of light in different inertial reference 

frames was postulated to be the same with spherical 

propagation. Both led to the invariance of Maxwell–Lorentz 

Equations. On the other hand, the postulate of Einstein led 

to Lorentz’s transformations, while Poincaré obtained these 

transformations only when leaving the Maxwell–Lorentz 

Equations as an invariant. In addition, Poincaré interpreted 

the Lorentz transformation as a geometric consideration 

representing an ellipsoidal wave which is a main gauge of 

Poincaré’s kinematics of relativity. 

In our approach, we started by assuming quasi-form-

invariant spherical light-waves with a different value for the 

speed of light. Then, using the Poincaré ellipsoidal 

geometrical consideration, we proved analytically and by 

adopting numerical approach that light propagates through 

empty space with the same constant speed c independent of 

the speed of the source or the observer. 

The preceding analytical and numerical proof is 

conceptually unique and not part of extended research 

frameworks such as: (1) very special relativity (VSR), in 

which space-time symmetries are certain proper subgroups 

of the Poincaré group [25], (2) the deformed special 

relativity (DSR), which imposes a maximal energy to SR by 

deforming Poincaré symmetry [26], and (3) the method that 

considers the right hand side in Equations 10 and 11 as 

parameters and use infinitesimal group transformation to 

seek what is called the excellent speed [27]. 

In conclusion, this article shows that the constancy of the 

speed of light in all inertial frames might be considered as a 

postulate as well as a proven fact. Also, this proof might 

reactivate all studies that call for a varying speed of light in 

SR. 
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