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Abstract: This article is devoted to retrieving soliton solutions of a nonlinear Sasa-Satsuma equation governing the propagation of

short light pulses in the monomode optical fibers using the effect of conformable fractional transformation. The Integrability is carried

out by incorporating two versatile integration gadgets namely the first integral method and the generalized projective Riccati equation

method. The resulting solutions include bright, dark, singular, periodic as well as rational solitons along with their existence criteria.

Furthermore, the fractional behavior of the solutions is investigated comprehensively using graphs.

Keywords: Nonlinear Sasa-Satsuma equation, Conformable time fractional derivative, First integral method, Generalized projective

Riccati equation method, Optical solitons

1 Introduction

The propagation of nonlinear waves in optical waveguide
has recently grabbed the researchers’ interest [1–4]. In
dielectric fibers, the dynamic balance between optical
Kerr effect and dispersion leads to the generation of
optical soliton. The dispersion of the fiber material is used
to control the bit rate of transmission. The only factor
responsible for the drop of pulse quality is the fiber lose,
for details see [5–10].
In optical fibers, solitons have gained much concentration
because of their robust nature and powerful applications
in all long-distance and optical communications [11–15].
The propagation of optical solitons in a monomode fiber
has been explored as the nonlinear Schrödinger equation
(NLSE) [16]. However, the propagation of ultrashort

pulses in high-bit-rate transmission systems has been
described by some higher order linear and nonlinear
effects [11], in which the following nonlinear
Sasa-Satsuma equation in monomode fibers is of great
interest [17–21]:

qx = i
(

aqtt + b | q |2 q
)

+ cqttt + d
(

| q |2 q
)

t

+ e
(

| q |2
)

t
q, (1)

where q is the complex valued function and the
coefficients of a,b,c,d and e are group velocity
dispersion, Kerr effect, third-order dispersion,
self-steepening and stimulated Raman scattering,
respectively.
Nowadays, fractional calculus is one of the most
flourishing areas of mathematical analysis along with
fractional operators, such as Caputo, Grunwald-Letnikov
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and Riemann-Liouville [22]-[24]. These operators have
also been used in hydraulics of dams, waves in liquids
and gases, temperature field problem in oil strata, signal
processing and diffusion problems [25]-[27].
Conformable time fractional derivative occupied the
worthy place in fractional calculus. It was first introduced
by khalil et al. [28] in 2014 and developed by Abdeljawad
et al. [29] in 2015.
Nonlinear partial differential equations (NPDEs) have
been found in the fields of engineering and physics. Exact
solutions of NPDEs play an important role in
understanding the universe, and there are many direct
approaches to exact solutions (see, e.g., [30–32]). The
transformed rational function method [31] unifies many
existing approaches for constructing traveling wave
solutions, which include the tanh function method
[33–35], the Jacobi elliptic function method [36–39], the
homogeneous balance method [40], the F-expansion
method [41], the sub-ODE method [42], the exp function
method [43], the unified method [44–46], the (G′/G)
expansion method [47], and the generalized unified
method [48–50].
The first integral method (FIM) [51], which was first
proposed in 2002, is a powerful tool for computing exact
traveling wave solutions [52, 53]. For autonomous planar
system, FIM gives polynomial first integrals.
Numerous solitary wave solutions of NPDEs [54] can be
expressed as a polynomial in two elementary functions
that satisfy a projective Riccati system [55]. Recently,
Yan [56] has developed Conte’s method and presented a
generalization of the projective Riccati system, which is
known as a generalized projective Riccati equation
method (GPREM).
The present paper aims to construct soliton solutions for
the following conformable time fractional Sasa-Satsuma
equation in monomode optical fibers using FIM and
GPREM:

qx = i
(

aD
2γ
t (q)+ b | q |2 q

)

+ cD
3γ
t (q)+ d D

γ
t

(

| q |2 q
)

+ eD
γ
t

(

| q |2
)

q, (2)

where Dt is the conformable time fractional operator.
The rest of the paper is organized as follows: In Section
Two, we describe the conformable fractional derivative. In
Section Three, we apply a traveling wave transformation
to our proposed model and extract soliton solutions of Eq.
(2) via FIM and GPREM. In Section Four, the physical
appearance of the results is addressed.

2 Conformable fractional derivative

Definition 2.1 Given a function V : [0,∞) → R, then the
conformable fractional derivative of V of order γ is defined
as [28]

D
γ
t V (t) = lim

σ→0

V
(

t +σ t1−γ
)

−V(t)

σ
, ∀t > 0,γ ∈ (0,1].(3)

Theorem 2.1 [28] Let γ ∈ (0, 1], and U,V be
γ-differentiable at a point t > 0. Then

1.D
γ
t (α U + β V ) = α D

γ
t (U)+ β D

γ
t (V ), ∀ α,β ∈ R.

2.D
γ
t (t

ν) = ν tν−γ , ∀ ν ∈ R.

3.D
γ
t (U V ) = U D

γ
t (V )+ VD

γ
t (U).

4.D
γ
t

(

U
V

)

=
V D

γ
t (U)−U D

γ
t (V )

V 2 .

3 Traveling wave solutions

We take the traveling wave transformation

q(x, t) = U(ξ ) exp(iφ), (4)

where

ξ = x− λ
tγ

γ
, φ = k x+ ω

tγ

γ
+ θ .

Applying the above-mentioned transformation to Eq. (2)
and separating its real and imaginary parts, we get

− cλ 3U ′′′− (3d λ + 2eλ )U2U ′+ (2aλ ω + 3cλ ω2

− 1)U ′ = 0, (5)

and

( aλ 2 + 3cλ 2)U ′′+ (b+ d ω)U3 − (aω2 + cω3

+ k )U = 0. (6)

Integrating Eq. (5) w. r. t. ξ ,

− cλ 3U ′′− (3d λ + 2eλ )U3 + (2aλ ω + 3cλ ω2

− 1)U = 0. (7)

From Eq. (6) and Eq. (7), we have

−cλ

aλ 2 + 3cλ 2
=

2aλ ω + 3cλ ω2 − 1

−(aω2 + cω3 + k)
, (8)

It follows from Eq. (8) that

k =
2cλ aw2 − c2λ w3 + 2a2λ w+ 6aλ wc+ 9c2λ w2

cλ

− a+ 3c

cλ
. (9)

Substituting Eq. (9) into Eq. (6), we have

( aλ 2 + 3cλ 2)U ′′−
(

aω2 + cω3

+
2cλ aw2 − c2λ w3 + 2a2λ w+ 6aλ wc+ 9c2λ w2

cλ

− a+ 3c

cλ

)

U + (b+ d ω)U3 = 0. (10)

3.1 Applying FIM

In order to solve Eq. (10) with the help of first integral
method, we rewrite Eq. (10) in the following form

AU ′′− BU + CU3 = 0 , (11)
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where

A = aλ 2 + 3cλ 2,

B =
2cλ aw2 − c2λ w3 + 2a2λ w+ 6aλ wc+ 9c2λ w2

cλ

− a+ 3c

cλ
+ aω2 + cω3 ,

C = b+ d ω . (12)

Let

ψ(ξ ) = U(ξ ), ϕ(ξ ) = U ′(ξ ). (13)

From Eq. (11) and Eq. (13), we have

ψ ′(ξ ) = ϕ(ξ ), ϕ ′(ξ ) =
B

A
ψ − C

A
ψ3. (14)

According to the FIM, we suppose that ψ(ξ ) and ϕ(ξ )
are nontrivial solutions of Eq. (14) and
Q(ψ ,ϕ) = ∑m

i=0 ai(ψ)ϕ i(ξ ) is an irreducible polynomial
in the complex domain C[ψ ,ϕ ], such that

Q(ψ ,ϕ) =
m

∑
i=0

ai(ψ)ϕ i(ξ ) = 0 , (15)

where ai(ψ)(i = 1,2, ...,m) are polynomials in ψ and
am(ψ) 6= 0. According to the Division Theorem, there
exists a polynomial [g(ψ) + h(ψ)ϕ(ξ )] in C[ψ ,ϕ ] such
that

d Q

d ξ
=

∂ Q

∂ ψ

d ψ

d ξ
+

∂ Q

∂ ψ

d ψ

d ξ
=
[

g(ψ)+ h(ψ)ϕ(ξ )
]

×
m

∑
i=0

ai(ψ)ϕ i(ξ ). (16)

Here, we will take the case for m = 2. For this purpose
we will substitute Eq. (14) into Eq. (16), which provides a
polynomial in ϕ i (i = 0,1,2,3) whose coefficients yield a
set of algebraic equations

ϕ 3 :
d a2 (ψ)

d ψ
= h(ψ)a2 (ψ) , (17)

ϕ 2 :
d a1 (ψ)

d ψ
= g(ψ)a2 (ψ)+ h(ψ)a1 (ψ) , (18)

ϕ 1 :
d a0 (ψ)

d ψ
+ 2a2 (ψ)

(

Bψ

A
− Cψ3

A

)

= g(ψ)a1 (ψ)+ h(ψ)a0 (ψ) , (19)

ϕ 0 : g(ψ)a0 (ψ) = a1 (ψ)

(

Bψ

A
− C (ψ)3

A

)

. (20)

Since ai(ψ)(i = 0,1,2) are polynomials, from Eq. (17)
we deduce that a2(ψ) is a constant and h(ψ) = 0. For
simplicity we take a2(ψ) = 1. Balancing the degrees of
g(ψ),a1(ψ) and a0(ψ), we conclude that deg(g(ψ)) = 1.
Suppose that

g(ψ) = A1 ψ + A0. (21)

From Eq. (18) and Eq. (21), we get

a1(ψ) =
1

2
A1 ψ2 + A0 ψ + B0, (22)

and substituting Eq. (21) and Eq. (22) into Eq. (19) and
integrating it w. r. t. ξ , ψ(ξ ) lead to

a0(ψ) =

(

1

2

C

A
+

1

8
A1

2

)

ψ4 +
1

2
A0A1ψ3

+

(

−B

A
+

1

2
A0

2 +
1

2
A1B0

)

ψ2 +A0B0ψ + l, (23)

where l is a constant of integration. Substituting Eqs.
(21)-(23) into Eq. (20) yields a polynomial in terms of
ψ i(ξ ). Equating the coefficients of the polynomial to zero
provides a set of algebraic equations

ψ 5 : A1
3A+ 8CA1 = 0, (24)

ψ 4 : 12CA0 + 5A1
2AA0 = 0, (25)

ψ 3 : 8A0
2A1A+ 4AA1

2B0 − 12BA1+ 8B0C = 0, (26)

ψ 2 : − 16BA0+ 12AA1B0A0 + 4AA0
3 = 0, (27)

ψ 1 : 8A0
2B0A+ 8 lAA1 − 8B0B = 0, (28)

ψ 0 : lA0 = 0. (29)

Solving the system (24)-(29), we have

A1 = 2

√

−2C

A
, A0 = 0, B0 = −

B

√

− 2C
A

C
,

l = − B 2

2AC
, (30)

where C
A
< 0, which leads to the condition

(b+ d ω) < λ 2 (a + 3c) . (31)

Using Eq. (30) in Eqs. (22) and (23), we have

a0(ψ) = − C

2A
ψ 4 +

B

A
ψ 2 − B 2

2AC
, (32)

a1(ψ) =

√

−2C

A
ψ 2 − B

C

√

−2C

A
. (33)

From Eq. (15), Eq. (32) and Eq. (33), we have

U ′(ξ ) = −1

2

√

−2C

A
U2(ξ )+

B

2C

√

−2C

A
. (34)

Solving Eq. (34), we have the following optical dark
soliton solution of Eq. (2):

q1(x, t) =

√

B

C
tanh

[√
2BC

C

√

−C

A

(

x− λ
tγ

γ
+ R0

)

]

× (35)

where R0 is a constant of integration.

3.2 Applying GPREM

In order to solve Eq. (10) with the help of GPREM, a
solution of Eq. (10) is taken as [57]

U(ξ ) = a0 +
N

∑
j=0

µ j−1(ξ )(a j µ(ξ )+ b j ν(ξ )). (36)
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In Eq. (10), the homogeneous balance principle gives N =
1. It follows from Eq. (36) that

U(ξ ) = a0 + a1 µ(ξ )+ b1ν(ξ ), (37)

where µ(ξ ) and ν(ξ ) satisfy the projective Riccati system
(PRS)
{

µ ′(ξ ) = ε µ(ξ )ν(ξ ),

ν ′(ξ ) = ε ν 2(ξ )− m µ(ξ )+ R,
(38)

and a first integral of PRS is given by

ν 2(ξ ) = −ε

(

R− 2m µ(ξ )+
m2 − 1

R
µ 2(ξ )

)

. (39)

Substituting Eqs. (37), (38) and (39) in Eq. (10) provides
a polynomial in (µ i(ξ ), ν j(ξ )) whose coefficients, being
equal to zero, yield a set of algebraic equations

µ 3 : − 6λ 3ε3c2a1

(

m2 − 1
)

R
+ cλ ba1

3 + cλ dωa1
3

− 2λ 3ε3caa1

(

m2 − 1
)

R
− 3cλ ba1b1

2ε
(

m2 − 1
)

R

− 3cλ dω a1b1
2ε
(

m2 − 1
)

R
= 0, (40)

µ 2 : 12 λ 3ε3c2a1m−λ 3ε caa1m+ 4λ 3ε3caa1m

+ 6cλ ba1b1
2ε m− 3cλ ba0b1

2ε
(

m2 − 1
)

R

+ 3cλ
(

ba0a1
2 + dω a0a1

2 + 2dω a1b1
2ε m

)

− 3cλ dω a0b1
2ε
(

m2 − 1
)

R
− 3λ 3ε c2a1m = 0, (41)

µ : 3 λ 3ε c2a1R− 3cλ aω2a1 − 2a2λ ω a1 + aa1

− 6λ 3ε3c2a1R− 3cλ ba1b1
2ε R− 2λ 3ε3caa1R

+ 3ca1 +λ 3ε caa1R+ 6cλ ba0b1
2ε m+ 3cλ ba0

2a1

− 3cλ dω a1b1
2ε R+ 3cλ dωa0

2a1 − 6aλ ω ca1

+ 6cλ dω a0b1
2ε m− 9c2λ ω2a1 = 0, (42)

µ 2ν : 3 cλ ba1
2b1 −

6λ 3ε3c2b1

(

m2 − 1
)

R
+ 3cλ dωa1

2b1

− cλ dωb1
3ε
(

m2 − 1
)

R
− 2λ 3ε3cab1

(

m2 − 1
)

R

− cλ bb1
3ε
(

m2 − 1
)

R
= 0, (43)

µν : 4 λ 3ε3cab1m+ 6cλ ba0a1b1 + 2cλ dωb1
3ε m

+ 2cλ bb1
3ε m− 9λ 3ε c2b1m− 3λ 3ε cab1m

+ 12λ 3ε3c2b1m+ 6cλ dω a0a1b1 = 0, (44)

ν : − cλ bb1
3ε R+ 3cλ dωa0

2b1 + ab1− 6λ 3ε3c2b1R

− 3cλ aω2b1 − 2a2λ ω b1 + 6λ 3ε c2b1R

− 2λ 3ε3cab1R− 9c2λ ω2b1 + 3cb1− cλ dωb1
3ε R

− 6aλ ω cb1 + 3cλ ba0
2b1 + 2λ 3ε cab1R = 0, (45)

Const. : 2 λ ω2a0 + cλ ba0
3 − 3cλ aω2a0 + 3ca0

− 6aλ ω ca0 − 3cλ ba0b1
2ε R+ aa0

− 3cλ dω a0b1
2ε R+ cλ dωa0

3 = 0. (46)

Solving the system (40)-(46) with the aid of Maple
software, we obtain the subsequent cases.
Case 1.

R =
1

2

2aλ ω + 3cλ ω2 − 1

λ 3ε c
, λ = λ , m = 0 , a0 = 0 ,

a1 = 0 , b1 =

√

−6c+ 2a

b+ dω
ε λ , ε = ±1. (47)

Case 2.

R = 2
2aλ ω + 3cλ ω2 − 1

λ 3ε c
, λ = λ , m = 1 , a0 = 0 ,

a1 = 0, b1 =

√

−4ε2a+ 9c+ 3a− 12ε2c

2dω + 2b
λ , ε =±1. (48)

Case 3.

R = −2aλ ω + 3cλ ω2 − 1

c(−1+ 2ε2)λ 3ε
, m = 0, b1 = 0,

a1 =

√

ε4λ 4(4λ ε2ca+ 12λ ε2c2 − 2cλ a− 6c2λ )

2aλ (ω b+ω2d)− b− dω+ 3cλ ω2(b+ω d)
,

a0 = 0, ε =±1. (49)

Using Eqs. (47)-(49), we obtain the subsequent families of
soliton solutions of Eq. (2).
Family 1. Optical dark and singular soliton solutions

q2(x, t) = (50)
√

− (6c+ 2a)(2aλ ω + 3cλ ω2 − 1)

2cλ

× tanh

(
√

−2aλ ω + 3cλ ω2 − 1

2λ 3 c
ξ

)

× eiφ , (51)

q3(x, t) = (52)
√

− (6c+ 2a)(2aλ ω + 3cλ ω2 − 1)

2cλ

× coth

(
√

−2aλ ω + 3cλ ω2 − 1

2λ 3 c
ξ

)

× eiφ , (53)
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where ξ = x− λ tγ

γ and φ = k x+ ω tγ

γ + θ .

Family 2. Optical periodic wave solutions

q4(x, t) = (54)
√

− (6c+ 2a)(2aλ ω + 3cλ ω2 − 1)

2cλ

× tan

(
√

2aλ ω + 3cλ ω2 − 1

2λ 3 c
ξ

)

× eiφ , (55)

q5(x, t) = (56)

−
√

− (6c+ 2a)(2aλ ω + 3cλ ω2 − 1)

2cλ

× cot

(
√

2aλ ω + 3cλ ω2 − 1

2λ 3 c
ξ

)

× eiφ , (57)

where ξ = x− λ tγ

γ and φ = k x+ ω tγ

γ + θ .

Family 3. Optical soliton solutions

q6(x, t) = (58)
√

− (4aλ ω + 6cλ ω2 − 1)(4a− 9c− 3a+12c)

λ c(2d ω + 2b)

×
tanh

(

√

4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

sech

(

√

4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

+ 1

× eiφ , (59)

q7(x, t) = (60)
√

− (4aλ ω + 6cλ ω2 − 1)(4a− 9c− 3a+12c)

λ c(2d ω + 2b)

×
coth

(

√

4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

csch

(

√

4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

+ 1

× eiφ , (61)

where ξ = x− λ tγ

γ and φ = k x+ ω tγ

γ + θ .

Family 4. Optical periodic wave solutions

q8(x, t) = (62)
√

(4aλ ω + 6cλ ω2 − 1)(4a− 9c− 3a+12c)

λ c(2d ω + 2b)

×
tan

(

√

− 4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

sec

(

√

− 4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

+ 1

× eiφ , (63)

q9(x, t) = (64)

−
√

(4aλ ω + 6cλ ω2 − 1)(4a− 9c− 3a+12c)

λ c(2d ω + 2b)

×
cot

(

√

− 4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

csc

(

√

− 4aλ ω+6cλ ω2−1
λ 3 c

ξ

)

+ 1

× eiφ , (65)

where ξ = x− λ tγ

γ and φ = k x+ ω tγ

γ + θ .

Family 5. Optical bright and formal soliton solutions

q10(x, t) = (66)
√

λ 2(4a+ 12c− 2a−6c)(2aλ ω + 3cλ ω2 − 1)

(2aλ ω(b+ω d)− b− dω+ 3cλ ω2(b+ω d))

× sech

(
√

2aλ ω + 3cλ ω2 − 1

cλ 3
ξ

)

× eiφ , (67)

q11(x, t) = (68)
√

λ 2(4a+ 12c− 2a−6c)(2aλ ω + 3cλ ω2 − 1)

(2aλ ω(b+ω d)− b− dω+ 3cλ ω2(b+ω d))

× csch

(
√

2aλ ω + 3cλ ω2 − 1

cλ 3
ξ

)

× eiφ , (69)

where ξ = x− λ tγ

γ and φ = k x+ ω tγ

γ + θ .

Family 6. Optical periodic wave solutions

q12(x, t) = (70)
√

λ 2(−4a− 12c+ 2a+6c)(2aλ ω + 3cλ ω2 − 1)

(2aλ ω(b+ω d)− b− dω+ 3cλ ω2(b+ω d))

× sec

(
√

−2aλ ω + 3cλ ω2 − 1

cλ 3
ξ

)

× eiφ , (71)

q13(x, t) = (72)
√

λ 2(−4a− 12c+ 2a+6cλ )(2aλ ω + 3cλ ω2 − 1)

(2aλ ω(b+ω d)− b− dω+ 3cλ ω2(b+ω d))

× csc

(
√

−2aλ ω + 3cλ ω2 − 1

cλ 3
ξ

)

× eiφ , (73)

where ξ = x− λ tγ

γ and φ = k x+ ω tγ

γ + θ .

4 Results and Discussion

In this section, the physical aspects of the obtained
solutions will be discussed by means of graphical 3D and
2D representations. Fig.1(a) shows the intensity of the
dark soliton solution in Eq. (35) obtained by FIM with
parameters a = 0.9,b = −0.9,c = −0.1,λ = 4,ω =
1.5,γ = 0.8,R0 = 10,d = 0.1,θ = 1 and Fig.1(b)
represents the conformable fractional effects of the
solution Eq. (35) at x = 0 with the same choice of
parameters as in Fig.1(a). In Fig.1(b) various curves are
reported against the fractional parametric values
0.8,0.9,1.0. The intensity relation of dark soliton
obtained by GPREM in Eq. (50) is depicted in Fig.2(a)
with parameters a = 0.5,b = −1,c = −0.1,λ = 4,ω =
3,γ = 1,ε = −1,d = 0.1,θ = 1 and the analysis of
fractional parameter is carried out with the help of
Fig.2(b) for the same choice of parameters as in Fig.2(a).
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(a) |q1|, a = 0.9,b =−0.9,c =−0.1,λ = 4,ω = 1.5,γ = 0.8,
R0 = 10,d = 0.1,θ = 1.

(b) |q1|, a = 0.9,b =−0.9,c =−0.1,λ = 4,ω = 1.5,R0 = 10,
d = 0.1,θ = 1,x = 0.

Fig. 1: 3D and 2D graphical representation of dark soliton

solution obtained by FIM.

The intensity profiles of periodic, traveling wave and
bright solutions obtained by GPREM given in Eqs. (54),
(58), (62), (66) and (70) are shown Fig.3(a), Fig.4(a),
Fig.5(a), Fig.6(a) and Fig.7(a) respectively and the effects
of conformable fractional parameter on these solutions
with x = 0 is highlighted through Fig.3(b), Fig.4(b),
Fig.5(b), Fig.6(b) and Fig.7(b).
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d = 0.1,θ = 1,x = 0.

Fig. 2: 3D and 2D graphical representation of dark soliton

solution obtained by GPREM.
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(a) |q4|,a = 0.5,b =−1,c =−0.1,λ = 2,ω = 3.5,γ = 1,
ε = 1,d = 0.1,θ = 1.

(b) |q4|,a = 0.5,b =−1,c =−0.1,λ = 2,ω = 3.5,ε = 1,
d = 0.1,θ = 1,x = 0.

Fig. 3: 3D and 2D graphical representation of periodic soliton

solution obtained by GPREM.
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Fig. 4: 3D and 2D graphical representation of traveling wave

solution obtained by GPREM.
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(b) |q8|,a = 0.5,b =−1,c =−0.1,λ = 3,ω = 0.5,ε = 1,
d = 0.1,θ = 1,x = 0.

Fig. 5: 3D and 2D graphical representation of traveling wave

solution obtained by GPREM.
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(b) |q10|,a = 0.5,b = 1,c =−0.1,λ = 8,ω = 3.5,ε =−1,d =
0.1,θ = 1,x = 0.

Fig. 6: 3D and 2D graphical representation of bright soliton

solution obtained by GPREM.
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(a) |q12|,a = 0.7,b = 1,c = 1,λ = 9,ω = 1.5,γ = 1,
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(b) |q12|,a = 0.7,b = 1,c = 1,λ = 9,ω = 1.5,ε =−1,
d = 0.5,θ = 1,x = 0.

Fig. 7: 3D and 2D graphical representation of periodic soliton

solution obtained by GPREM.

Remark. By thoroughly looking at the literature, our
findings are all novel and not previously published.

5 Conclusion

A conformable fractional nonlinear Sasa-Satsuma
equation governing the propagation of short light pulses
in the monomode optical fibers was investigated using
FIM and GPREM. FIM was utilized to extract dark
soliton solutions and GPREM provides dark, singular,
and periodic soliton solutions. Those physical features of
the resulting solutions were studied by their graphical
portraits. The conformable time fractional effect on the
dispersion was also analyzed. It is expected that the
results of this paper would be useful in the empirical
application of fiber optics.
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