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Abstract: We consider a decomposition to m-subdomains of the obstacle problem, which is modeled by a variational inequality of first
species, using the auxiliary sequences, and we have proving a alternating relation between the solutions on each subdomains. We also
proving a geommetrical convergence between the nth iteration and the solution of the initial problem, and we obtained a result on the
error estimate contains a logarithmic factor with an extra power of |log(h)|.
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1 Introduction

The Schwarz alternating method of decomposing the domain, has lately been found to be an effective means for solving
elliptic partial differential equations on a multi processing computing system. Pierre-Louis Lions, was the starting point
of an intense research activity to develop this tool of calculation, see [1,2,3]. In this paper, we are interested in the
Schwarz alternating method which is used to solve a class of elliptic variational inequality in the context of overlapping
non-matching grids, precisely in the error analysis in the maximum norm of obstacle type problems. The maximum error
analysis of overlapping non-matching grids for the obstacle problem which (2 is the union of two sub-domains has been
studied in [4], the same error analysis of a non-matching grids for linear and nonlinear elliptic partial differential equations
and elliptic quasi-variational inequalities has studied in [5,6,7,8,9].

In our work we consider a domain 2 which is the union of m overlapping sub-domains where each sub-domain has
its own triangulation. To prove the main result, we introduce the m continuous and discrete Schwarz sequences, and prove
a main result concerning the error estimate of solution in L”-norm, taking into account the combination of geometrical
convergence and uniform convergence of finite element approximation.

This paper consists of two parts. In the first, we formulate the problem of continuous and discrete elliptic variational
inequality, we show the monotonicity and stability of discrete solution, then we define the Schwarz algorithm for m sub-
domains with overlapping matching grids. In the second part, we establish m auxiliary Schwarz sequences, and we prove
the main result of this work.

2 The generalized Schwarz alternating method

2.1 Elliptic obstacle problem

Let Q be a convex domain in R? with suffciently smooth boundary 9.Q.
We consider the bilinear form

a(u,v)z/g(Vu.Vv)dx, (1)
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the linear form

- /Q F(6)v(x)dx, @)
the right hande-side
fel>(), €
the obstacle
Y eWr(Q) suchthat >0 on 0Q, 4)
and the nonempty convex set
K,={veH' (Q):v=g on IQv<¥Y on Q}, Q)

where g is a regular function defined on dQ.
We consider the obstacle problem: find u € K, such that

a(u,v—u) > (f,v—u), YveK, 6)

Let V}, be the space of finite elements consisting of continuous piecewise linear functions. The discrete counterpart of (6)
consists of finding u;, € K, such that

a(u,“v— Mh) 2 (fvv_ Mh)» Vv e th, (7)

where
Kgy={vev,:v=mg on dQv<n¥ on Q}, 8)

T, is an interpolation operator on d€2, and ry, is the usual finite element restriction operator on 2. The lemma below
establishes a monotonicity property of the solution of (6) with respect to the obstacle and the boundary condition.

The lemma below establishes a monotonicity property of the solution of (6) with respect to the obstacle and the boundary
condition.

Lemma 1 Let (¥, g); (¥, 3) be apalr of data, and u = (¥, g);ii = 6(\P, §) the corresponding solutions to (6). If ¥ > ¥
and g > g, then 6(‘I’,g) >o(P,8).
0

Proof. let v =min(0,u — &). In the region where v is negative (v < 0),we have

u<i<y<y )

which means that the obstacle is not active for u. So, for that v, we have

a(u,v) = (f.v) (10)
i+v<y (1)

SO
a(i,v) = (f,v) (12)

Subtracting (10) and (12) from each other, we obtain
a(ii—u,v) >0 (13)

© 2020 NSP
Natural Sciences Publishing Cor.



Num. Com. Meth. Sci. Eng. 2, No. 2, 61-71 (2020) / www.naturalspublishing.com/Journals.asp

%N S\ 63

but,
alvyv) =a(u—i,v)=—a(li—u,v) <0
SO
v=0
and consequently
u>i

which completes the proof.
The proof for the discrete case is similar.

Proposition 1 Under the notations and conditions of the preceding lemma, we have
l[u—itl| =) < |¥ = Plli=@) + I8 — &lli=00):

Proof. Setting

O < |y —Vll=) + g —E&ll=0)

we have

VSP+Y -G <P+ |y -9 <P+ [y — =

<Y+ = Vl=) t g —&ll=00)
hence
y<y+¢
On the other hand, we have
g§<gtg—§<g+tlg—8& <é+tlg—é&li=00)

<g+llg—2&ll=00) t v —Vlli=(q)

SO
g<g+¢

Now, making use of Lemma2.1, we obtain

o(y,g) <o(y+¢,g+¢)=0(W,g) +0¢

or
o(y,g)—o(¥,8)<¢
Similarly, interchanging the roles of the couples (v, g) and ({, &), we obtain

The proof for the discrete case is similar.

Remark 1 if v = ¥, then (17) becomes

lu—ill =) < lg = &ll=00),

(14)

15)

(16)

A7)

(18)

19)

(20)

1)

(22)

(23)

(24)

(25)

(26)

Theorem 1 [10] Under conditions (3) and (4), there exists a constant C independent of h such that

llu— up| =) < ch*log|h|?,

27
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2.2 The continuous Schwarz sequences

Consider the model obstacle problem: find u € Ky(g = 0) such that

a(u,v) > f(v—u) VveKy, (28)

We decompose €2 into m overlapping subdomains such that

m
Q=JQ, QnQ;#0, i=Tm, j=1m, i#]j (29)

i=1
and u satisfies the local regularity condition
u/Qi eWP(Q); 2<p<eoo, (30)

We denote by d€2; the boundary of £;, and I; = 202NN j,i 7 j. The intersection of I; and I:j; i # j is assumed to be
empty. Choosing uy = ¥, we define the alternating Schwarz sequences (u}”l) on £2; such that uf‘“ € K solves

ai(u™ v —um Y > (v —ufth) in @

(3D

where i = 1,m, j=1,m, i # jand

2.3 Geometrical convergence
Theorem 2 The sequences (™), (us™™),...(w"); n > 0 produced by the Schwarz alternating method converge
geometrically to the solution u, of the obstacle problem (28). More precisely, there exist m constants ki, ky ...,
kn€(0,1),Vi=1,m—1, j=2,m, i< jsuchthat foralln >0

1 0
H“i_”?+ ||L°°(.Q,-) Sk,"’k;lH”—” ||L°°(F,-,-)

(32)
[Juj — “?H ||L°“(Qj) < k?“"?”“ - “OHLM(Fﬁ)
we consider a function w; € L™(£2;) continu in ; \ (I} N9RQ)
such that
Aw; =0 dans $;,1=1,m
0 sur QNI
wp =
1 sur I
and
ke = sup{ws(x)\x € 0, NQ,t # s} € (0,1),Vt,s=1,m (33)
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Proof. from the principle of the maximum

rz+1||L°° rz+1||Lw

||lu; — u <||u,—u

and

i = 1] (2

o) < uj— |l =) < lwiny —witdj || =)

< [lwinj —wirdjl| 1= (@;) < |lwinj —wir}||=(r;

< Wil luj — nHL“ ) < will =) IIWJMJ witdj|| =)
< ||Wi||Lw(r_,-,->||Wjui*Wju?HLw(r,,-) < [lwill =y W jui = windf || =)

< will =y Iwjui = wjtdf =35y < Nwill 2= W | =3y 1 — 06 | =13

using (33), hence

et = 1] () < Kikllts — 1}l 1,

by induction, we obtain

o= im0y < KK s = =,

0
< kikj llu =l =

where u! = u® sur I7;, u = 0 sur 02;N9Q
similarly, we have

j = w3 =y < Mot = =y
Sllui—uf+ ||L°°( <||W/M1—W/ W=,
< lwjui = wjtdf | =y < Nlwjui = wjud ™! ||L°°<r,~,»)

< Awille=m; ||uz—u"“|\Lw

) < Mwillz=mp) lwin — witdj || =)
< ||Wj||L°°(Fij)||Wiuj_Wi j||L°°(Qj) < will = lwinej = winll =i

< Awill = W) ll = ) 1 — || =y < Kikjllui = || 2=y
by induction, we obtain

1 1 1
oty = gy < KR = oy < KR w0 — e =y
<k"k'?uui—u}up ) < KR = u}
<R 1) < Ry~ )

<K g — =0y < KRG lu— 1y

2.4 The discretization

let 7" be a standard regular and quasi-uniform finite element triangulation in £;, 4; being the meshsizes. We assume that
every two triangulation are mutually independent on £; N £2;, in the sense that a triangle belonging to one triangulation

does not necessarily belong to the other, i = 1,m, j=1,m, i # j
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Let Vy,, = Vi, (£2;) be the space of continuous piecewise linear functions on, 7 which vanish on dQ N ;. For w € C(%;)
we define

:{VGVhij :v=0 on 8Qiﬂ8!2;v:7rhij(w) on I;}, (34)

where 7, denotes a suitable interpolation operator on I;;

ntljj
)

The discrete Schwarz sequence /™! € Vi, such that

+
(!
ai(ubtt oy — Y > (frv—ultthy Wy €V, it

)

(35)
Ut <y, v<my
3 L”-error analysis
3.1 Definition of m auxilairy sequences
(urHrl,'j)
For @' = ul = r,y; i =T1,m, we define the sequences (J)”Jrl € Vhij’ such that
n+1 n+l n+l (“?Hij)
ai(@p" v — )= (fuv—oy™) WeV,.
(36)
ot <y, v<n.y
To simplify the notation, we take
|-lij = ll-l=x3;)
I-li = - lze(y  hij=h 7n; =7 (37)
Lemma2fori=1m—1, j=2,m i<]j
1ot -
o™ — gy i < Z lee? = eofplli+ Y Nl — @y
p=0
(38)
n+1 n+1

1 _ 1
5 = < ZHH —oplli+ leluf*w{;’illi
p:

Proof.By induction
for n = 0, using the discrete version of Remark 2.3, we get
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ot — i < [t} — o l]i + | @, — i
< luf — @i+ |} — i
< uf — gy li+ 1 — u%y i

| 0_ 0
< i — ooyl + 1] — Syl

lluj = whyll < [luej — @jy [l + l0fy, —
< luf— @y |+ 1 7neef — py | j
< uf— @y |+ uj — ujy i
< ot — @yl + Nl — il

< ot — ey 1+ Nl = eogplli+ 1y — a1

SO

1 0
i =il < Y Ml — eofplli + Y [ — I
p=1 p=0

1 1
1 1
| —ujyllj < Z ||u§7— wfh”j"’ Z lue? = oyl
p=0 p=1

for n = 1, using the discrete version of Remark 2.3, we get

4 = willi < Nl — @i + ||, — wiil
< [|uef — oo [l + | 7nte}; — ey
< luf — @ lli+ uf — ujy iz
< [|usf — o0 [l 4 [ — ey I

< i = @i+ Ny — @l + et — eolli + (1§ — w3l

||”3 —u?th < ||”%— @?h“j"‘ ||@;2h —u?th
< u§ — @, ||+ [puf — Ty
<ot — @3yllij + |uf — 1 i
< [lu — @yl + af — i

2 2 2 9 1 1 1 1 00
< luj — @l + i — @i lli + llu; — @iyl + Ny — @plli +uj — iyl

SO

2 1
22
[l —wiz]li < ZIHM,"’—G’,'IZHML Zollbt?—wfhllj
p= p=
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2 2
||”§—”?h||j < Z ||“j7 _wthj‘*‘ Z [ — cofy |
p=0 p=1

We suppose that

n n
ot =il < Xl = @fyllj+ Xl = o
p=0 p=1

Then, using the discrete version of Remark 2.3 again, we get

=y < g+ — @+ (@ =
<t — @i+ [t — mdy i
< — o i+ [} — i
< — e i+ Nt —
n
<t =i+ Z ] — b1l + Y lluf — op
p=1
then
n+l n+1‘<nJrl P_ Pl - P_ Pl
||t uy," i < ZH”I wih||l+ZHuj a)jh”]
p=1 p=0
= < e — @l 4 el =l
<l — @+ e — md i
< ||’47+] nH ||]+ |’ft”Jrl n+]|ﬂ
< ||u;§+1 n+l||/+||un+1 n+1||l
n
<l =+ Z uf — i+ Y |u? — @]l
p=0
then

. | n+l1 n+l1
I = < Y= il + B f — el

Lemma3Vi=1,m—1, j=2,m, i < j.Then there exists a constantc independent of h and n such that

g™ = < 2(n -+ DR loghf*

(39)

||u;+] ”+1||j (2n+3)Ch?|logh|?
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Proof. By induction
for n = 0, using Theorm 2.4

11 1 i 11
i = wiplli < Mluj — @ lli + [ @, — wip ||
1 o1 0_ 0
< lu; — ay i + [ —uj,ll;
< ch*log|h|* + ch*log|h|*

< 2ch®log|h|?

H“; - ”}h”/ < ||”} - w}h”/ + ”w}h - ”}h”/
< [lut} — @1+ lltg — ey
< ch*log|h|* +2ch? log|h|?
< 3ch®log|h|?

now we suppose that

Jud} =yl < (2n+ 1)CH|loghl?

”u:wl n+1H <||un+1 n+l|| +|‘w(z+1 lnh+l||l

< e = @l — iyl
< ch*log|h|? + (2n+ 1)ch? log|h|?
<2(n+1)ch®log|h|?

eyt =t < = @+ e =

J
< HMTLI n+1HJ_|_||un+l n+lHl

< ch*log|h|* +2(n+1)ch? log|h|?
< (2n+3)ch*log|h)?

3.2 L™ error estimate

Theorem 3 Let h = max(h;,hj), i=1m—1; j=2,m, i< j. Then, there exists a constant C independent of both h
and n such that

lluns — w2y < CH*|loghl®s M =7,j (40)
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Proof. Let us give the proof for M = i. The case M = j is similar.
for N =i, let k = max(ki,k;)
using Theorem 2.5, lemma 3.2, we obtain

ot = 0] < Yoty = 4 ol =y
<K =i+ Nl =y
5 0 n+1 n
<K u—ulij+ Y |uf — oflli+ Y | — ol
p=1 p=0
<IM"u—uC|;j +2(n+ 1)Ch?|logh|?

we suppose that

k2n < h2

we obtain

lJu; — ™ ||; < Ch?|log h?

4 Conclusion

In this work, we have established a approach of the alternating Schwarz algorithm for m overlaping subdomains with
nonmatching grids, for the class of elliptic variational inequality. This type of estimation which we have obtained relies
on the geometrical convergence and the error estimate between the continuous and discrete Schwarz iterates. We will see
that this result plays an important role in the study of the numerecal analysis for the class of elliptic variational inequality
in the context overlapping nonmatching grids, using the parallel Schwarz method.
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