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This work is based on NVIDIA GTX 280 using CUDA (Computing Unified Device 
Architecture).  We classify Dataset to be transferred into CUDA memory hierarchy 
into SW (shared and must write) and SR (shared but only read),  and existing memory 
spaces (including shared memory, constant memory, texture memory and global 
memory) supported on CUDA-enabled GPU memory hierarchy are adopted to probe 
into best memory space for specified dataset. Conclusions from experimental results 
are that shared memory is proposed for SW; constant memory is advisable for SR and 
texture memory for SR with structured-grid dataset, especially for 2D, 3D regular 
grid. 
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1.  Introduction 

GPU architecture provides high peak performance but maximal performance available is bound in 
data layout on memory hierarchy. So, best memory optimization on GPU is that programmer must 
orchestrate data locality and GPU memory architecture, which would increase GPU programmer’s 
workloads to decide which memory space is best for specified dataset. This paper is pruning data layout 
using CUDA benchmarks to guide programming efficient GPU programs with ease. 

Graphics Processing Units (GPUs) Computing era is coming due to massive highly 
parallel computing resources1. However, how to make best use of GPUs’ powerful 
computing capacity is still a challenge. In reality, modern GPU is a memory-bound 
architecture. Therefore, understanding memory hierarchy on GPU and then deploy particular 
dataset into specified memory space is very important for maximizing performance. There 
are many works focusing on memory optimization to improve performance. 

Ryoo and Hong both emphasized importance of data layout and memory optimization 
from performance evaluation [2-3]. Differently, Ryoo focused on generalizing optimization 
principles and strategies [2], while Hong highlighted MLP (Memory-Level parallelism) to 
maximizing memory bandwidth [3]. 

Siegel proposed loop unrolling and memory access patterns for Gravit Simulator on GPU 

[4]. His contributions focused on shared memory and coalesced access using AoS (Array of 
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Structure) rather than SoA (Structure of Array) for Gravit Simulator. Our data layout pruning 
is benchmarking CUDA application suites to acquire architectural experiences on memory 
hierarchy supported on CUDA-enabled GPU for general computing-intensive applications. 

Sung developed a data layout transformation methodology that can speed up structured-
grid codes on GPUs [5]. But, above solution cannot address holistic data layout 
transformations, especially for irregular data structures. While our solution focus on holistic 
data layout including regular data and irregular data to explore data locality. 

Previous works either emphasize the importance of memory optimization or present 
optimization techniques to avoid non-coalesced access and access conflicts. The question this 
work address is that which memory space is the best residence for particular dataset. The 
followings are the main contributions of this paper. 

1. A modification and implementation of CUDA benchmark application suites using 
different memory space model including shared memory, constant memory, texture memory 
and global memory, respectively. 

2. Classify dataset processed on GPU into SW (shared and must write) and SR (shared 
but only read). 

3. Suggestions concluded from experiments on CUDA benchmark suites include that: (1) 
shared memory is the best residence proposed for SW; (2) constant memory is advisable for 
SR and texture memory for SR with structured-grid dataset. 

The rest of this paper is organized as follows: CUDA-enabled GPU architecture, 

programming model and memory hierarchy on CUDA are introduced in Section 2. Section 3 

proposes methodology to pruning data layout and presents benchmarks. Section 4 discusses 

experimental results for data layout pruning on CUDA benchmark suites. Conclusions and 

suggestions for future work are concluded in Section 5. 

2. Architecture 
Each CUDA-enabled GPU is a large set of processor cores with the ability to directly 

address a global memory. This makes it easier for developers to implement data-parallel 

kernels using a more general and flexible programming model than previous GPUs. 

Recently, there have been several new programming languages that aim to program GPU 

such as Brook+, CUDA and OpenCL [3].  
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2.1. GPU Architecture and Execution Model 
 

Figure 1 depicts architecture of NVIDIA GTX 280, which consists of 10 TPCs 
(Threading Processor Cluster), each containing 3 SMs (Streaming Multiprocessors). Each 
SM has 8 TPs (Threading Processor), and has 16KB shared memory [6].  

During execution, thousands of parallel threads are running in SPMD (Single Program 
Multiple Data) model, in which threads are organized in thread blocks; threads within a 
block are organized into warps of 32 threads. Each warp executes in SIMD fashion, issuing 
in 4 cycles on eight TPs in one SM. 

 

2.2. CUDA Programming Model 
 

CUDA programming model is ANSI C extended by several keywords and constructs. 

The developer supplies a single source program encompassing both host (CPU) and device 

(GPU) code. The source program would be separated and compiled, in which device code 

compiled to CUDA device instruction set and it becomes a parallelized new program that is 

termed “kernel”. The kernel is downloaded into GPU device that acts as a coprocessor to the 

host (CPU). It is executed in thousands of “threads”; and threads are organized in thread 

block; thread blocks that execute the same kernel can be batched together to form a grid of 

blocks, as figure 2.  

Threads within a thread block can co-work with each other through shared memory and 

can synchronize their execution using keyword “syncthreads” to coordinate their memory 

access. But, threads in different thread blocks are unable to access same shared memory and 

they run independently. 
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Fig 2 CUDA thread grid[6] 
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Table 1 Property of CUDA Memory Spaces 
 

 
 
Understanding CUDA memory hierarchy is a prerequisite for data layout pruning on 

CUDA-enabled GPU before benchmarking CUDA benchmark suites under the guidance of 
comprehensive methodology. 

CUDA threads may access data from multiple memory spaces during their execution 
such as register, shared memory, constant memory, texture memory and global memory or 
video memory, but different memory space has different property and special purpose, as 
shown in table 1. So that data layout pruning among memory hierarchy to hunt for best 
memory space for specified dataset is to accelerate applications on GPU with ease. 

 
3.1. Benchmarking Suites 
 

The following benchmarking applications are selected from Parboil benchmarking suite 

[7]. 
 Coulombic Potential 

Coulombic Potential (CP) is computing electric potential in a volume containing point 
charges based on direct Coulomb summation, in which a rectangular lattice is defined around 
the atoms with specified boundary padding, and fixed lattice spacing is used in all three 
dimensions. 

For each lattice point i  located at position ir , the coulomb potential iV is given in 

equation (1). 

( )4
j

i
j ij ij

q
V

r r0

=
πε ε∑  (1) 

With the sum taken over the atoms, where atom j  is located at jr and has partial charge jq , 
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and the pair-wise distance is | |ij j ir r r= − . The function ( )rε  is a distance-dependent 

dielectric coefficient, and in the present work will always be defined as either ( )rε = κ  

or ( )r rε = κ , with κ constant. For a system of N atoms and a lattice consisting of M points, 

the time complexity of the direct summation is ( )MNΟ . Actually, the potential map is easily 
decomposed into planes or slices, which can translate conveniently to a CUDA grid and can 
be independently computed in parallel [8]. 

 

 Magnetic Resonance Image FHD 
 
Magnetic Resonance Imaging FHD (MRI-FHD) is an advanced reconstruction algorithm, 
which operates directly on non-uniformly sampled data and uses the least-squares optimality 
criterion. The algorithm uses an iterative linear solver to solve equation (2). 

ρ =H HF F F d  (2) 

( ) ( ) ( )22

1
| | m n

M
i k x

n m
m

Q x k e π

=

= φ∑  (3) 

Where ρ is the desired image, HF F is a matrix that depends only on the scan trajectory, and 
HF d is a vector that depends both on the scan trajectory and the acquired data. 

Element ( ),j k  of HF F  is defined as ( )j kQ x x− , where ( )Q x  is given by equation (3) [9], 

which is the convolution kernel that facilitates multiplication operations involving HF F , 

and ( )xφ is the Fourier transform of the voxel basis function. There is M k-space sampling 

locations, with mk denoting the location of the thm sample. Likewise, there are N voxel 

coordinates, with nx denoting the coordinates of the thn voxel. Because Q depends only on 
the scan trajectory (not the scan data) and the size of the image, it can be computed before 
the scan occurs and can be reused during any reconstruction that shares the same scan 
trajectory and image size. Second, the algorithm computes the vector HF d , which is defined 
as equation (4) [10].  

( ) ( ) ( )2
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 Rys Polynomial Equation Solver 
 
Rys Polynomial Equation Solver (RPES) is to calculate 2-electron repulsion integrals which 
represent the Coulomb interaction between electrons in molecules. 
The electron repulsion integrals be evaluated exactly by an N-point numerical Quadrature 
formula defined as equation (5)[1-12] 
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 (5)

 

 WhereWα  is a weight factor; I factors may be used for many different integrals. And 
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efficient recursion formulas are given for calculation I by a two-step process involving the 
“transfer” equations as follows. 

 ( ) ( )
( ) ( )
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 Two Point Angular Correlation Function 
 
The Two Point Angular Correlation Function (TPACF) is a mathematical equation, which is 

used as a way to measure the probability of finding an astronomical body at a given angular 

distance from another astronomical body. 

( )
( ) ( ) ( )
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DR RR
DD

N Nw
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θ θ
θ

θ
θ

− +
=

∑ ∑

∑
 (8) 

The TPACF is calculated according to the equation (8). The three most computationally 

intensive parts of the equation are the computations of the correlation functions: DD, DR, 

and RR. DD is the auto-correlation of the actual dataset. DR is the cross-correlation of the 

actual data set to a given random set. RR is the auto-correlation of the random sets. Note that 

there will be only one DD to calculate, but there will be multiple DRs and RRs to calculate. 

There will be as many DRs and RRs as there are random sets used. Each of the correlation 

functions consists of a series of dot products between coordinate pairs [13]. Each of these 

calculations is an independent floating point operation that can be done in parallel. So that 

TPACF is suitable for accelerating on CUDA-enabled GPU. 

 

3.2. Methodology 
 
To prune data layout, inputs for above benchmarking applications are purposefully deployed 

into different memory spaces detailed in table 1, respectively. The data layout pruning 

process is shown in figure 3. 
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Inputs Data layout 
selection 

Application pruning 
versions

Global memory Shared memory

Constant memory Texture memory

 
Fig 3 Data layout pruning strategy 

As shown in figure 3, memory spaces including global memory, shared memory, constant 

memory and texture memory supported in CUDA-enabled GPU are configured to probe into 

best memory space for specified dataset. 

 

4. Experiments and Analysis 
In this section, we will benchmark above applications to prune data layout on NVIDIA 

GTX280 with Intel Core2 Quad 2.33 GHz CPU and 4GB main memory using Visual Studio 

2005 + CUDA toolkit and SDK 3.1 with NVIDIA Driver version number 257.21 for 

Microsoft Windows XP.  

 

4.1. Experiments 
In order to keep testing suites running at the same configuration, data layout pruning only re-

deploys inputs into different memory spaces without any modifications or optimizations on 

benchmark suites. Separate experiments have shown that deploying inputs (input data) into 

different memory space has major impact on application performance. 

 

Figure 4, Figure 5, Figure 6, and Figure 7 show pruning results on benchmarking 

applications using different memory spaces model including global memory, constant 

memory and texture memory. In order to avoid introducing other optimization techniques, 

inputs for CP are not deployed into shared memory because inputs should be partitioned 

before placing into shared memory; inputs for RPES are not deployed into texture memory 

because inputs need update. 
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4.2. Analysis 
 
To summarize, above separate experiments all have shown that deploying inputs (input data) 

into different memory space has major impact on application performance, especially for the 

kernel time (gpu_time). 

Figure 8 shows the speedup of CUDA benchmark suites using different memory model, in 

which performance under global memory is normalized as baseline. When speedup is zero it 

denotes that such memory model is unavailable to testing suite. So, there are no shared 

memory model for CP and no texture memory model for MRI-FHD. 

 

 

 

 

 

 

 

 

It is obvious that deploying inputs into different memory space has major impact on 

application kernels; an appropriate memory model can attain up to 5.5X speedup. From 

 
Fig 4 Benchmarking CP using different 

memory spaces 

 
Fig 5 Benchmarking MRI-FHD using 

different memory spaces 
 

 
Fig 6 Benchmarking RPES using 

different memory spaces 
 

 
 Fig 7 Benchmarking TPACF using 

different memory spaces 
 

 
Fig 8 Data layout pruning 
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Figure 8, we can also find that not all special memory space including shared memory, 

constant memory and texture memory can outperform the global memory. Especially, CP 

using texture memory is worse than using global memory because of high texture cache 

miss. However, texture memory can outperform global memory on other testing suites; 

RPES using shared memory is also worse than using global memory because of bank 

conflict. However, shared memory can outperform global memory on other testing suites. 

Obviously, constant memory space always outperforms global memory but it is read-only. 

 Accordingly, re-deploying inputs into special memory space seamlessly can attain 

remarkable improvements but they all have limits detailed in table 1. In CUDA kernel, data 

are all shared by threads. For example, built-in data type variables are duplicated in register 

affinity to each thread; memory spaces for structured variables such as array space are shared 

by all thread. Therefore, dataset structures for GPU applications are classified into SW and 

SR to make best use of CUDA memory hierarchy. Furthermore, dataset for above 

applications are analyzed and suggestions concluded that shared memory is proposed for 

SW; constant memory is advisable for SR and texture memory for SR with structured-grid 

dataset, especially for 2D, 3D regular data structures. 

5. Conclusions and Future work 
In this work, selective CUDA benchmark suites are tested using different memory spaces on 

CUDA-enabled GPU NVIDIA GTX 280 for probing into best memory space for special 

dataset structure. In order to make best use of CUDA memory hierarchy, dataset structures 

for GPU applications are classified into SW and SR. Furthermore, suggestions and 

conclusions from experiments is that shared memory is proposed for SW; constant memory 

is advisable for SR and texture memory for SR with structured-grid dataset, especially for 

2D, 3D regular grid. We are currently performing research on automated data layout pruning 

on extension of CUDA (xCUDA), which would transform an OpenMP-like explicit parallel 

source program into a standard CUDA program with memory optimizations including 

data layout pruning. 
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