
Applied Mathematics & Information Sciences 5 (2) (2011), 129S-138S
– An International Journal
© 2011 NSP

Data Layout Pruning on GPU

Xinbiao Gan, Zhiying Wang, Li Shen and Qi Zhu

School of Computer, National University of Defense Technology, Changsha 410073, China
xinbiaogan@163.com

This work is based on NVIDIA GTX 280 using CUDA (Computing Unified Device
Architecture). We classify Dataset to be transferred into CUDA memory hierarchy
into SW (shared and must write) and SR (shared but only read), and existing memory
spaces (including shared memory, constant memory, texture memory and global
memory) supported on CUDA-enabled GPU memory hierarchy are adopted to probe
into best memory space for specified dataset. Conclusions from experimental results
are that shared memory is proposed for SW; constant memory is advisable for SR and
texture memory for SR with structured-grid dataset, especially for 2D, 3D regular
grid.

Keywords: memory optimization, data layout pruning, GPU.

1. Introduction

GPU architecture provides high peak performance but maximal performance available is bound in
data layout on memory hierarchy. So, best memory optimization on GPU is that programmer must
orchestrate data locality and GPU memory architecture, which would increase GPU programmer’s
workloads to decide which memory space is best for specified dataset. This paper is pruning data layout
using CUDA benchmarks to guide programming efficient GPU programs with ease.

Graphics Processing Units (GPUs) Computing era is coming due to massive highly
parallel computing resources1. However, how to make best use of GPUs’ powerful
computing capacity is still a challenge. In reality, modern GPU is a memory-bound
architecture. Therefore, understanding memory hierarchy on GPU and then deploy particular
dataset into specified memory space is very important for maximizing performance. There
are many works focusing on memory optimization to improve performance.

Ryoo and Hong both emphasized importance of data layout and memory optimization
from performance evaluation [2-3]. Differently, Ryoo focused on generalizing optimization
principles and strategies [2], while Hong highlighted MLP (Memory-Level parallelism) to
maximizing memory bandwidth [3].

Siegel proposed loop unrolling and memory access patterns for Gravit Simulator on GPU

[4]. His contributions focused on shared memory and coalesced access using AoS (Array of

mailto:xinbiaogan@163.com�
http://portal.acm.org/author_page.cfm?id=81436594151&coll=GUIDE&dl=GUIDE&trk=0&CFID=98297174&CFTOKEN=72229730�
http://portal.acm.org/author_page.cfm?id=81436594151&coll=GUIDE&dl=GUIDE&trk=0&CFID=98297174&CFTOKEN=72229730�
http://portal.acm.org/author_page.cfm?id=81430626962&coll=GUIDE&dl=GUIDE&trk=0&CFID=98294696&CFTOKEN=33315701�

Xinbiao Gan 130
Structure) rather than SoA (Structure of Array) for Gravit Simulator. Our data layout pruning
is benchmarking CUDA application suites to acquire architectural experiences on memory
hierarchy supported on CUDA-enabled GPU for general computing-intensive applications.

Sung developed a data layout transformation methodology that can speed up structured-
grid codes on GPUs [5]. But, above solution cannot address holistic data layout
transformations, especially for irregular data structures. While our solution focus on holistic
data layout including regular data and irregular data to explore data locality.

Previous works either emphasize the importance of memory optimization or present
optimization techniques to avoid non-coalesced access and access conflicts. The question this
work address is that which memory space is the best residence for particular dataset. The
followings are the main contributions of this paper.

1. A modification and implementation of CUDA benchmark application suites using
different memory space model including shared memory, constant memory, texture memory
and global memory, respectively.

2. Classify dataset processed on GPU into SW (shared and must write) and SR (shared
but only read).

3. Suggestions concluded from experiments on CUDA benchmark suites include that: (1)
shared memory is the best residence proposed for SW; (2) constant memory is advisable for
SR and texture memory for SR with structured-grid dataset.

The rest of this paper is organized as follows: CUDA-enabled GPU architecture,

programming model and memory hierarchy on CUDA are introduced in Section 2. Section 3

proposes methodology to pruning data layout and presents benchmarks. Section 4 discusses

experimental results for data layout pruning on CUDA benchmark suites. Conclusions and

suggestions for future work are concluded in Section 5.

2. Architecture
Each CUDA-enabled GPU is a large set of processor cores with the ability to directly

address a global memory. This makes it easier for developers to implement data-parallel

kernels using a more general and flexible programming model than previous GPUs.

Recently, there have been several new programming languages that aim to program GPU

such as Brook+, CUDA and OpenCL [3].

Data Layout Pruning on …………… 131

2.1. GPU Architecture and Execution Model

Figure 1 depicts architecture of NVIDIA GTX 280, which consists of 10 TPCs
(Threading Processor Cluster), each containing 3 SMs (Streaming Multiprocessors). Each
SM has 8 TPs (Threading Processor), and has 16KB shared memory [6].

During execution, thousands of parallel threads are running in SPMD (Single Program
Multiple Data) model, in which threads are organized in thread blocks; threads within a
block are organized into warps of 32 threads. Each warp executes in SIMD fashion, issuing
in 4 cycles on eight TPs in one SM.

2.2. CUDA Programming Model

CUDA programming model is ANSI C extended by several keywords and constructs.

The developer supplies a single source program encompassing both host (CPU) and device

(GPU) code. The source program would be separated and compiled, in which device code

compiled to CUDA device instruction set and it becomes a parallelized new program that is

termed “kernel”. The kernel is downloaded into GPU device that acts as a coprocessor to the

host (CPU). It is executed in thousands of “threads”; and threads are organized in thread

block; thread blocks that execute the same kernel can be batched together to form a grid of

blocks, as figure 2.

Threads within a thread block can co-work with each other through shared memory and

can synchronize their execution using keyword “syncthreads” to coordinate their memory

access. But, threads in different thread blocks are unable to access same shared memory and

they run independently.

……………

warp

……………

warp

……………

warp

……………

warp

block block

Video memory

SM 1

Shared Memory

TP 1 TP 8TP 2

Registers Registers Registers

Constant cache

Texture cache

SM 2

SM 3…

TPC 1

Fig 1 CUDA-enabled GPU

architecture

Fig 2 CUDA thread grid[6]

Xinbiao Gan 132

Table 1 Property of CUDA Memory Spaces

Understanding CUDA memory hierarchy is a prerequisite for data layout pruning on

CUDA-enabled GPU before benchmarking CUDA benchmark suites under the guidance of
comprehensive methodology.

CUDA threads may access data from multiple memory spaces during their execution
such as register, shared memory, constant memory, texture memory and global memory or
video memory, but different memory space has different property and special purpose, as
shown in table 1. So that data layout pruning among memory hierarchy to hunt for best
memory space for specified dataset is to accelerate applications on GPU with ease.

3.1. Benchmarking Suites

The following benchmarking applications are selected from Parboil benchmarking suite

[7].
 Coulombic Potential

Coulombic Potential (CP) is computing electric potential in a volume containing point
charges based on direct Coulomb summation, in which a rectangular lattice is defined around
the atoms with specified boundary padding, and fixed lattice spacing is used in all three
dimensions.

For each lattice point i located at position ir , the coulomb potential iV is given in

equation (1).

()4
j

i
j ij ij

q
V

r r0

=
πε ε∑ (1)

With the sum taken over the atoms, where atom j is located at jr and has partial charge jq ,

Data Layout Pruning on …………… 133

and the pair-wise distance is | |ij j ir r r= − . The function ()rε is a distance-dependent

dielectric coefficient, and in the present work will always be defined as either ()rε = κ

or ()r rε = κ , with κ constant. For a system of N atoms and a lattice consisting of M points,

the time complexity of the direct summation is ()MNΟ . Actually, the potential map is easily
decomposed into planes or slices, which can translate conveniently to a CUDA grid and can
be independently computed in parallel [8].

 Magnetic Resonance Image FHD

Magnetic Resonance Imaging FHD (MRI-FHD) is an advanced reconstruction algorithm,
which operates directly on non-uniformly sampled data and uses the least-squares optimality
criterion. The algorithm uses an iterative linear solver to solve equation (2).

ρ =H HF F F d (2)

() () ()22

1
| | m n

M
i k x

n m
m

Q x k e π

=

= φ∑ (3)

Where ρ is the desired image, HF F is a matrix that depends only on the scan trajectory, and
HF d is a vector that depends both on the scan trajectory and the acquired data.

Element (),j k of HF F is defined as ()j kQ x x− , where ()Q x is given by equation (3) [9],

which is the convolution kernel that facilitates multiplication operations involving HF F ,

and ()xφ is the Fourier transform of the voxel basis function. There is M k-space sampling

locations, with mk denoting the location of the thm sample. Likewise, there are N voxel

coordinates, with nx denoting the coordinates of the thn voxel. Because Q depends only on
the scan trajectory (not the scan data) and the size of the image, it can be computed before
the scan occurs and can be reused during any reconstruction that shares the same scan
trajectory and image size. Second, the algorithm computes the vector HF d , which is defined
as equation (4) [10].

() () ()2

1

m n
M

i k x
m mn

m
k k e π∗

=

  = φ  ∑HF d d (4)

 Rys Polynomial Equation Solver

Rys Polynomial Equation Solver (RPES) is to calculate 2-electron repulsion integrals which
represent the Coulomb interaction between electrons in molecules.
The electron repulsion integrals be evaluated exactly by an N-point numerical Quadrature
formula defined as equation (5)[1-12]

 () ()

() () ()

1
2

1

2i j k l

N

x y zu u u W

π
ρ

α α α α
α=

η η η η =

 × Ι Ι Ι∑



 (5)

 WhereWα is a weight factor; I factors may be used for many different integrals. And

Xinbiao Gan 134
efficient recursion formulas are given for calculation I by a two-step process involving the
“transfer” equations as follows.

 () ()
() ()

, , ,0 1, 1, ,0

, 1, ,0

x i j x i j

i j x i j

I n n m I n n m

x x I n n m

= + −

 + − −
(6)

() ()
() ()

, , , , , 1, 1

, , , 1

x i j k l x i j k l

i j x i j k l

I n n n n I n n n n

x x I n n n n

= + −

 + − −
 (7)

 Two Point Angular Correlation Function

The Two Point Angular Correlation Function (TPACF) is a mathematical equation, which is

used as a way to measure the probability of finding an astronomical body at a given angular

distance from another astronomical body.

()
() () ()

()
2

DR RR
DD

N Nw
RR
N

θ θ
θ

θ
θ

− +
=

∑ ∑

∑
 (8)

The TPACF is calculated according to the equation (8). The three most computationally

intensive parts of the equation are the computations of the correlation functions: DD, DR,

and RR. DD is the auto-correlation of the actual dataset. DR is the cross-correlation of the

actual data set to a given random set. RR is the auto-correlation of the random sets. Note that

there will be only one DD to calculate, but there will be multiple DRs and RRs to calculate.

There will be as many DRs and RRs as there are random sets used. Each of the correlation

functions consists of a series of dot products between coordinate pairs [13]. Each of these

calculations is an independent floating point operation that can be done in parallel. So that

TPACF is suitable for accelerating on CUDA-enabled GPU.

3.2. Methodology

To prune data layout, inputs for above benchmarking applications are purposefully deployed

into different memory spaces detailed in table 1, respectively. The data layout pruning

process is shown in figure 3.

Data Layout Pruning on …………… 135

Inputs Data layout
selection

Application pruning
versions

Global memory Shared memory

Constant memory Texture memory

Fig 3 Data layout pruning strategy

As shown in figure 3, memory spaces including global memory, shared memory, constant

memory and texture memory supported in CUDA-enabled GPU are configured to probe into

best memory space for specified dataset.

4. Experiments and Analysis
In this section, we will benchmark above applications to prune data layout on NVIDIA

GTX280 with Intel Core2 Quad 2.33 GHz CPU and 4GB main memory using Visual Studio

2005 + CUDA toolkit and SDK 3.1 with NVIDIA Driver version number 257.21 for

Microsoft Windows XP.

4.1. Experiments
In order to keep testing suites running at the same configuration, data layout pruning only re-

deploys inputs into different memory spaces without any modifications or optimizations on

benchmark suites. Separate experiments have shown that deploying inputs (input data) into

different memory space has major impact on application performance.

Figure 4, Figure 5, Figure 6, and Figure 7 show pruning results on benchmarking

applications using different memory spaces model including global memory, constant

memory and texture memory. In order to avoid introducing other optimization techniques,

inputs for CP are not deployed into shared memory because inputs should be partitioned

before placing into shared memory; inputs for RPES are not deployed into texture memory

because inputs need update.

Xinbiao Gan 136

4.2. Analysis

To summarize, above separate experiments all have shown that deploying inputs (input data)

into different memory space has major impact on application performance, especially for the

kernel time (gpu_time).

Figure 8 shows the speedup of CUDA benchmark suites using different memory model, in

which performance under global memory is normalized as baseline. When speedup is zero it

denotes that such memory model is unavailable to testing suite. So, there are no shared

memory model for CP and no texture memory model for MRI-FHD.

It is obvious that deploying inputs into different memory space has major impact on

application kernels; an appropriate memory model can attain up to 5.5X speedup. From

Fig 4 Benchmarking CP using different

memory spaces

Fig 5 Benchmarking MRI-FHD using

different memory spaces

Fig 6 Benchmarking RPES using

different memory spaces

 Fig 7 Benchmarking TPACF using

different memory spaces

Fig 8 Data layout pruning

Data Layout Pruning on …………… 137

Figure 8, we can also find that not all special memory space including shared memory,

constant memory and texture memory can outperform the global memory. Especially, CP

using texture memory is worse than using global memory because of high texture cache

miss. However, texture memory can outperform global memory on other testing suites;

RPES using shared memory is also worse than using global memory because of bank

conflict. However, shared memory can outperform global memory on other testing suites.

Obviously, constant memory space always outperforms global memory but it is read-only.

 Accordingly, re-deploying inputs into special memory space seamlessly can attain

remarkable improvements but they all have limits detailed in table 1. In CUDA kernel, data

are all shared by threads. For example, built-in data type variables are duplicated in register

affinity to each thread; memory spaces for structured variables such as array space are shared

by all thread. Therefore, dataset structures for GPU applications are classified into SW and

SR to make best use of CUDA memory hierarchy. Furthermore, dataset for above

applications are analyzed and suggestions concluded that shared memory is proposed for

SW; constant memory is advisable for SR and texture memory for SR with structured-grid

dataset, especially for 2D, 3D regular data structures.

5. Conclusions and Future work
In this work, selective CUDA benchmark suites are tested using different memory spaces on

CUDA-enabled GPU NVIDIA GTX 280 for probing into best memory space for special

dataset structure. In order to make best use of CUDA memory hierarchy, dataset structures

for GPU applications are classified into SW and SR. Furthermore, suggestions and

conclusions from experiments is that shared memory is proposed for SW; constant memory

is advisable for SR and texture memory for SR with structured-grid dataset, especially for

2D, 3D regular grid. We are currently performing research on automated data layout pruning

on extension of CUDA (xCUDA), which would transform an OpenMP-like explicit parallel

source program into a standard CUDA program with memory optimizations including

data layout pruning.

Acknowledgements : We would like to thank the IMPACT Research Group Research

Group at the University of Illinois at Urbana-Champaign for the Parboil Benchmark suite

they released online. This work is supported by the National Grand Fundamental Research

Foundation of China under Grant No. 2007CB310901, the National Natural Science

Foundation of China under Grant No. 60803041, and the Innovation Program for Excellent

Xinbiao Gan 138
Graduates Foundation of national University of Defense Technology of China under Grant

No. B090603.
References

[1] J. Nickolls, William J. Dally. The GPU Computing era. IEEE Micro, 2010:31(2), pp. 1–10.
[2] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, et al. Optimization principles and application

performance evaluation of a multithreaded gpu using cuda. In PPoPP, pp. 73–82, 2008.
[3] S. Hong, H. Kim. An analytical model for a GPU architecture with memory-level and thread-

level parallelism awareness. In ISCA, pp. 152–163, 2009.
[4] J. Siegel, J. Ributzka, X.M. Li. CUDA Memory Optimizations for Large Data-Structures in the

Gravit Simulator. Proceedings of the International Conference on Parallel Processing Workshops,
pp.174–181, 2009.

[5] I-Jui Sung, Wen-Mei Hwu. Data Layout Transformation for Structured-Grid Codes on GPU.
Proceedings of the Workshop on Language, Compiler, and Architecture Support for GPGPU,
pp.85–94, 2010.

[6] NVIDIA Corporation. CUDA Programming Guide 2.0, July 2008.
[7] IMPACT Research Group. Parboil benchmark suite. http://impact.crhc.illinois.edu/ parboil. php.
[8] J. E. Stone, J. C. Phillips, P. L. Freddolino, et al. Accelerating molecular modeling applications

with graphics processors. Journal of Computational Chemistry, 2007:28(16), pp. 2618 – 2640.
[9] S. S. Stone, H. Yi, J. P. Haldar, et al. How GPUs Can Improve the Quality of Magnetic

Resonance Imaging. Proceedings of the 5th International Conference on Computing Frontiers,
pp. 1–9, 2008.

[10] S. S. Stone, J. P. Haldar, S. C. Tsao, et al. Accelerating Advanced MRI Reconstructions on
GPUs. Proceedings of the Sixth International Conference on Computing Frontiers, pp. 1283–
1286, 2009.

[11] J. Rys, M. Dupuis, H. F. King. Computation of Electron Repulsion Integrals Using the Rys
Quadrature Method. Journal of Computational Chemistry, 1983:4(2), pp. 154–157.

[12] M. Dupuis and A. Marquez. The Rys Quadrature revisited: A novel formulation for the efficient
computation of electron repulsion integrals over Gaussian functions. Journal of Chemical
Physics, 2001:114(5), pp.2067–2078.

[13] V. V. Kindratenko, A. D. Myers, R. J. Brunner. Implementations of the two-point angular
correlation function on a high-performance reconfigurable computer. Journal of Scientific
Programming, 2009:17(3), pp. 247–259.

Xinbiao Gan received MS degree in computer system architecture from
National University of Defense Technology of China in 2008. He is
currently pursuing PhD degree in computer system architecture from
National University of Defense Technology of China, His research
interests are in the areas of computer architecture, High performance
Computing, Compiler and optimization.

http://portal.acm.org/author_page.cfm?id=81461643108&coll=GUIDE&dl=GUIDE&CFID=98297174&CFTOKEN=72229730�
http://portal.acm.org/author_page.cfm?id=81408597695&coll=GUIDE&dl=GUIDE&CFID=98297174&CFTOKEN=72229730�
http://portal.acm.org/author_page.cfm?id=81436594151&coll=GUIDE&dl=GUIDE&trk=0&CFID=98297174&CFTOKEN=72229730�
http://portal.acm.org/author_page.cfm?id=81100661631&coll=GUIDE&dl=GUIDE&trk=0&CFID=98297174&CFTOKEN=72229730�
http://portal.acm.org/author_page.cfm?id=81430626962&coll=GUIDE&dl=GUIDE&trk=0&CFID=98294696&CFTOKEN=33315701�
http://portal.acm.org/author_page.cfm?id=81453652369&coll=GUIDE&dl=GUIDE&trk=0&CFID=98294696&CFTOKEN=33315701�
http://portal.acm.org/author_page.cfm?id=81453624920&coll=GUIDE&dl=GUIDE&trk=0&CFID=98294696&CFTOKEN=33315701�
http://impact.crhc.illinois.edu/parboil.php�

