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Abstract: A simple step-stress accelerated life test (ALT) under progressive censoring of Type-II is considered in this paper.
To minimize lifespan and decrease test cost, progressive type-II censoring and accelerated life testing are given. When the
lifetime of test units matches the distribution of Burr-XII, cumulative exposure model is assumed. Also, model parameters
maximum likelihood estimates (MLEs) are obtained. Furthermore, to demonstrate the proposed methods, actual dataset is
analyzed. Lastly, estimators' estimated confidence intervals (Cls) are extracted.
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1. Introduction

The investigator is also interested in extreme factors or changing stress factors such as temperature, voltage and load on
experimental units' lifetimes in reliability and life testing studies. Stage stress testing (SST), a special class of accelerated life
testing (ALT), enables the experimenter to increase the stress levels during the experiment at set times to gain information
on life distribution parameters faster than under normal operating conditions. Nelson [1] researched the phase stress model
and data analysis of accelerated life research. Miller et al. [2] proposed optimal simple stage stress plans for accelerated life
testing. The optimum simple step-stress accelerated life tests with censoring were proposed by Bai et al. [3]. Rend et al.
developed a Bayes model for accelerated life testing in step-stress [4]. With type-II censored exponential results, Xiong [5]
studied inference on a simple step-stress model. In simple step-stress models, Watkins [6] studied inferences. For a simple
step-stress model with type-II censoring, Balakrishnan et al. [7] studied point and interval estimation. Using log-logistic
distribution with known scale parameters, Al-Masri [8] studied optimum times for the step-stress cumulative exposure model.
Three related aspects of the maximum probability estimate of parameters were considered in Jalali [9] for the two Burr XII
distribution parameters. The distribution function of Burr (c¢,k) [Burr Type XII] is

F(x)=1—-(1+x°7% x>0, (1)

where parameter ¢ > 0 and k > 0 are the shape parameters of the distribution. Its density function is
f(x) =ckx® (1 +x)"*+D x> 0,c>0and k >0 )
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The distribution is unimodal with the mode at x = (ﬁ) and median at x = (ZF - 1) . Lewis [10] studied Burr

distribution as a general parametric family in applications for the theory of survivorship and reliability. He found the rt*
moment about zero as follows

wo=kp(1+5,k=3), k>, r=012.., 3)
and the mean and the variance are, respectively,
u=kp(1+3,k—2)and (4)
2
veo =kp(1+3 k-3 = [kp (1426 -2)] )

where S(.,.) is the standard beta function. Shape parameters ¢ and k and the cumulative distribution functions associated
with some special cases of Burr (c, k) distribution (Burr Type XII) are displayed in table 1. See Lewis [10].
Table 1: The Burr Type-XII distribution and its special cases.

c k Distribution F(x)

c k Burr (c, k) 1—-(1+x57F
4.874 6.158 Approximate normal 1— (14 x*874)-6.158

c 00 Weibull 1 —exp (—x€)

1 00 Exponential 1 —exp (—x)

o0 k Generalized logistic 1—(1+exp (x))7*

o 1 Logistic 1—(1+exp (x))!

00 00 Gompertz 1—(1+exp (x))

1 1 Pareto 1-(1+x)71

As a lifetime model, the Burr (c, k) distribution can be used, at least when there is a large incidence of early failures
dominating the distribution of lifetime (¢ > 1). Accelerated life testing and repair time are examples of such situations. The
two common distributions of survival or failure time, the Weibull and the exponential are both special or limiting cases of
Burr (c, k) [Burr Type]

2. Assumptions to Obtain the Simple Step-Stress Model

2.1 Notation

ALT  Accelerated Life Testing

SST Step Stress Testing

S0, 81 Stress levels

PDF Probability density function

CDF  Cumulative distribution function

G(t) Cumulative exposure distribution (CED) function
g Probability exposure density (PED) function

n Identical units under an initial stress level S,

tirn < torm <...< tp,n The ordered failure times of the n unit under test
T A fixed time before which the stress level is changed from S; to S,
| — The time when the 7" failure occurs; the experiment is terminated
N, Number of units that fail before time 7, at stress level S;

N, Number of units that fail before time 7, at stress level S,

ci k The shape parameters of the Burr Type XII distribution
L(.) Likelihood function

logL(.) The logarithm of the likelihood function

F Fisher information matrix

MSE Mean square error
MLEs  Maximum likelihood estimates

2.2 Model Description

Suppose that the data comes from a step-stress model based on progressive Type-II censored with two stress levels, S, and
S;. The PDF and the CDF of Burr XII distribution are given by
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fi(t;c) = ikt (A +t) "D >0 k>0 i=1,2, (6)
Fit;e)=1—-QQ+tD)™* t>0 k>0 i=12 7
We deduce the cumulative exposure model (see, Alhadeed [12]) under Burr type-XII distribution.
The CDF function of time to failure under a particular step-stress pattern can be expressed mathematically as follows:
The cumulative population fraction of specimen failing by time ¢t in stress level S, is

GH)=F{®)=1—-1+t)* 0<t<1,. (8)
The cumulative population fraction of specimen failing by time t in stress level S; is
GO =FK[t-—t)+wy]=1-[1+((t—t) +u)2]™ 1,<t<7, )
where u,,the equivalent starting time, is the solution of
F(u) =F (), = u? =1 (10)
Then we get
a
u; = 1,7 (11)
Then we can rewrite G (t) in stress level S; as follows:
e\ 27"
Gt)=1- 1+<(t—‘[1)+‘[1”2> l , T St<T1,. (12)

The simple step stress model is a particular case from the cumulative exposure model, so we can say that the cumulative
exposure distribution (CED) function for Burr type-XII distribution at two stress level is given as:

G(t) =1—(1+t2)7k, 0<t<ty,
(1) = ay e (13)
Gt)=1—-|1+|t—1 +71° , T1<t<oo
The corresponding probability exposure density (PED) function becomes
g1(t) = key 1711 + te1)~(k+ D) 0<t<rty,
9(t) = e a2 (14)
gz(t)zkcz[t—rl+riz] X 1+(t—11+‘[;2> ] T, St < oo,

Suppose that the time data for failure comes from a cumulative exposure model. We consider a simple step-stress model
based on progressive type-II censorship with only two levels of stress, S, and S, .

We have a simple step-stress model under progressive censoring of type-II for equivalent units at an initial stress level and
are defined in advance. At the time of the first failure, R; of n — 1 surviving units are randomly removed from the experiment,
at the time of the second failure, R, of n — 2 — R; surviving units are randomly removed from the experiment, and so on,
the stress level is changed to S, at a pre-fixed time 7,. The life-testing experiment is terminated when the 7" failure time,
t,.-n, OCcurs at a time in which all remaining R, = n —r — --- — R,._; surviving units are removed. Figure (1) depicts such
a simple step-stress model under progressive type-II censoring.

Stress level
: Failure Time

© : Running Time Riyp  wweeeeee

P
R,
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Time-To-Failure

1
1
1
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t
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Fig. 1: Simple step-stress model under progressive type-II censoring
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Under the assumption of the cumulative exposure model, the corresponding cumulative exposure distribution, CED G (t),
and PED g(t) are given in Egs. (13) and (14), respectively. We will observe the following progressively type-II censored
data:
t= {tlzr:n <= tler:n << tr:r:n}' (15)
With the corresponding progressive censoring scheme
R =Ry, Ry), (16)
where }'_  R; =n—r.

3. Maximum Likelihood Estimation

In this section, we consider the likelihood function based on the observed progressively type-II censored data given in Eq.
(15) and then obtain the MLEs of the unknown parameters, c;,c, and k. Let t;,.,, < -+ < t,.,.,, denote the observed
progressively type-II censored sample. Then, the likelihood function of this censored sample seen by Balakrishnan and
Aggarwal [13] can be written as

L(CIICZ'klt) = Cp H?:l g(ti:r:n){l - G(ti:r:n)}Ril tirm <togm < <lrpm, (17)
where = N, + N, , t is the observed failure time data, and
C,=n(n—1-R)n—2—-R, —R)(n—r+1-3{R) =[j,1 R}, (18)

where Z{;}(Ri + 1) = R;. From the CED in Eq. (13) and the corresponding PED in Eq. (14), we obtain the likelihood
function of ¢y, ¢, and k based on the progressively type-II censored sample in Eq. (17) as follows:
If N; =rand N, = 0 in Eq. (17), the likelihood function of ¢y, ¢, and k in Eq. (17) is
L(Cl, Cy, klt) = Cp{{H{:l 91 (ti:r:n)}[1 - Gl (ti:r:n)]Ri}
-1 _ —kR;

= Cp{Timy kertipy (1 + £, " V(A + 67.,) 7). (19)
1. IfN; = 0and N, = rin Eq. (17), the likelihood function of ¢, ¢, and k in Eq. (17) is
L(Cl, €2, klt) = Cp{Hzﬂ:l 92 (ti:r:n) [1 - GZ (ti:r:n)]Ri}'
L(cll CZI klt) =
—(k+1) kR;

€1\ €2 c1\ €271~
1+ (tpgn — T + 772 14 (tigm — 71 + 772 . (20)
1 1

2. In all other cases, the likelihood function of ¢, ¢, and k in Eq. (17) is
L(Cl, Cy, klt) = Cp{[HiV=11 g1 (ti:r:n)][l - Gl (ti:r:n)]Ri} X {[H?=N1+1 92 (ti:r:n)] [1 - GZ (ti:r:n)]Ri} ’
L(cy, ¢, kl8) = C{[IT2, ket (1 + €52 )"0+ D] x (1 + 2 ) 7R

c1762~1
C
Cp H?:l kCZ [ti:r:n -7t le] X

irm irm
c1762-1 c1\ €2 —(k+1)
X H{=N1+1 kCZ [ti:r:n -7t Tiz] x 1+ (ti:r:n -7t T?) ]
cq\ €277 KR
x |1+ (ti:r:n -7, + sz) ] } 2D

From the likelihood function in Eq. (19) - Eq. (21), we observe the following:

1. IfN;, =rand N, = 0in Eq. (15), the likelihood function in Eq. (19) reveals that the MLEs of ¢, does not exits.

2. IfN; =0and N, =rin Eq. (15), Eq. (20) 's likelihood function reveals that the MLEs of c;, ¢, and k do exist.

3. [Ifatleast one failure before 7,and at least one failure after 7; occur in Eq. (15), the likelihood function in Eq. (21) reveals
that the MLEs of ¢y, ¢,, and k do exist.

In the situation, where the log-likelihood function of ¢y, ¢, and k is obtained from Eq. (21) as follows:

L =logL(cy, ¢z, k|t) = log[Cp] + rlog[k] + N, log[c;] + N, log[c,] + (¢; — 1) Zivzll log[t;.;-n]
Tr

a
— Z;V:ll(k(l +R)+ Dlog[l+¢1 |+ (c; — 1) E log [ti:r:n -7, + sz]
i=Ng+1

r 1y €2
- E (k(1+R) + 1 log [1 + (tim -7, + rf) ] : (22)
i=N;+1

Then, we obtain the estimators of ¢y, c, and k by differentiating Eq. (22) with respect to c¢;, ¢, and k, respectively, and
equating to zero, in this case, we have

oL r N c T c
==r- Yo Log[l+tir J(1+R) — Zi=1+N1 log[1+ B?] (1 +R) s = 0, (23)
© 2021 NSP
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aL " logl[t; 14; t ! (cz—1) log[4] 1 T log[‘rl]A-BCZ_l [
hadl - o urmrlirn 2~ 1l ez iB; 2 _
6(:1 + Z lOg[ i:r: n] P + —CzBi T e T 0,
. urn . . i
=t i=N1+1 i=Np+1 o0ed
(24)
.
aL N 4 )
e, 6_22 * Li-ny+l0glBi] - E c2(1+B/?) (log[ ] ¢;B;* —log[t,] i CZBCZ )
i=N;+1
(c2-1) § ' o
c1(c—1 1 c _
ez 5 logln]z®| =0, (25)
i=Ni+1 ~

6=0
a

Where 6 = (¢, ¢, k), 8 = (61,62,E), A;=1+k(1+R) and B; = t;,.,, — 7, + 7,°. Since the closed-form solution to
the nonlinear equations system (23-25) is tough to obtain, we use the Newton-Raphson method to solve the previous nonlinear
equations simultaneously to obtain ¢, &,, and k, see tables (5-9).

4. Asymptotic Variances and Covariance Matrix Under Progressively Type-II Censored

The asymptotic variance and covariance matrix of maximum likelihood estimates are given by the elements of the inverse of
the Fisher information matrix as follows:

8%inL
IU (Q) =E {_ agiggj}' (26)
Unfortunately, the exact mathematical expressions for the previous expectation are complicated to obtain. Therefore, the
Fisher information matrix is given by
%inL
1@ = -5} e

which is obtained by approximating the expectation on operation E and replacing c;, ¢, and k with ¢;, ¢, and k, respectively,

Cohen [14]. The asymptotic variance and covariance matrix F of the maximum likelihood estimates can be written as follows:
-1

_621nL _621nL _621nL
k2 dkdcy dkadc,
9%InL 9%InL 9%InL
== S T : (28)
dc, 0k aci dcqdc,
_621nL _621nL _621nL
dcy0k dcpdcq acz
The elements of matrix F are given as the following:
%L r
oz~ k2’ (29)
921 N1 €1 " BCZ 1 €1
== e |lo 1+R) - log[t,] (1 + R)7;? 30
dkdcy (1+t”1) gltira] 1 +R) 148 glr,] ( i) (30)
=1 i=Ni+1
2 " c1
9°L E (1+Ry) ¢ = 1
= - log[B; B.Z——lo T 2g¢2 31
dkdc, 1+Bi52 ( g[ l] i g[ 1] T,"b; ’ ( )
i=N141 i}
Ny o .
a%L N log[t,]24;t2SL log[r;]24;t L, ) €2 a
ac? - _c_21 - ( - ot 1it61 ml i (Cz - 1) 2B ﬁ lOg[T1]2 sz
t ' i=1 (1+t1rn urn 251 25y
i=Np+1
' g2t a g2lc2—1 2¢1
- —L ——)log[r,]? A;7% — | —= | log[7,]? 4;T,?
(02(1+sz)) gnl® Ay (1+8%2)° glnl® Aty
i=Np+1
T
(4
log[t4]A T% a 2 log[t ]‘L'éBCZ_2
114it 1 c2 pC2— 11T,°B;
————| log|t,]| 7,°B; - 32
+ 182 glri] 7B, o , (32)
i=Np+1
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r

2 r 1 loglt,] % 1
2L log[t1]\ _cz oglr1]c17y log[1]cy 1 c2
dcden ( - Tl +(C2_1) 352 - 35. 2p. log[Tl]Tl
c0Cq c2B; ¢35 B; c3B; c$B;
i=14+N;
i=14+N;
r
a 1 [ Log[t4]c ‘L'%BCZ_1 log[B;]B 2 p2~?t 4
€2 pC2— ety 5y il i 2 c2
_ log[r,] A;7,*B; o~ el b o log[t,]° ¢, AT
c2(1+B;2) (1+B;2) c3(1+B;?)
i=1+N;
r
C1 1 1
-2 Cp ,C2—2
log[t1]4;752 [ logltylei752B;2 log[ty]e17 2B 2 cp—1
+ 1 L — L — + log[B;]B;* 33
1+Bi52 c22 2 g[ l] i ’ ( )
i=1+N;
r r
1 2¢1 1 1
C C C: C;
92 _ Ny log[rl]clrlz 1 log[‘rl]ch‘r1 2 log[‘t:l]ch‘rl2 Zlog['L'l]cl‘rl2
9c2 2 25, +(C2_) - 40p 2 40p. 3(R.
c3 c3 c5B; c5(By) c5(By) c3(B;)
i=Ny+1 i=Ny+1
r o o
C c2—-1 cp—1 C;
_ A _log[‘L’l]ClrlzBi2 +lo [B] BCZ log[‘t:i]cl‘L'lzBi2 _log[Bi]Bi2
l c2 8Loil b; c242 c212
c2(1+B;?) (1+B;2)
i=N;+1
r
1 1
cy ,C2—1 Ccy C2—1
4; | logla2ce?B loglryJey7{2B] c
+ - — + log[B;]| — *— +log[B;]1 B;* | —
1+Bi02 023 g[ l] cz g[ l] i
i=N;+1
a €1
& Cp C2—2 Cp C2—2
log[t1]c1T“B; log[t1]c17{“B; _
c 1 1 cy-1
log[r1]ey 7,2 2 L o tlog[B1B;
c2 ’ (34)
(51

where, 4; =1+ k(1 +R;), B =tjpy — 71 + T;Z. Consequently, maximum likelihood estimators ¢;, &, and k for c;, ¢,
and k, respectively, have an asymptotic variance-covariance matrix defined by inverting Fisher information matrix F and
substituting 8 = (&;, ¢,, k) for 8 = (cy, ¢, k), see Tables (5-9).

5. Confidence Interval for Burr-XII Distribution Under Progressive Type-II Censoring Data

In this part of the paper, we concluded the parameters' upper and lower bound using a 95% confidence interval. The
approximate confidence results are tabulated in Tables (5-9).

6. The Numerical Algorithm Used in the Paper

This section clarifies the algorithm used to generate a progressive type-II censored sample, and estimators ¢, ¢, k, besides,
the mean square error (MSE).

Step 1. Given 7, and the original progressive type-1I censored sample with censoring scheme R = (R;, *-*, R,.), we obtain
é;, ¢, and k from Eq. (17).

Step 2. Based on n, 7, R, 75, &, €5, and k, we generate a random sample of size n from Uniform (0, 1) distribution, and obtain
progressive type-II censored uniform sample (U;.py , =5 Upipig)-

Step 3. Find N, such that

—k
UNl:r:n <1- (1 - Til) < UN1+1:r:n . (35)
Then, for 1 < i < N;, we set
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1
1 c1
tirm = (1= Upra) * = 1] (36)
Andfor N, +1<i<r, weset
birn = [(1 - lrn) 1] +7, - Tlc2 . (37)
Step 4. Based on r, N, 7; and the progressive Type-II censored observations,
{tl:r:n' R tler:n' tN1+’1\:r:n' R tr:r:n} . (38)
Step 5. Repeat steps 2-4 M times and arrange ¢;, ¢, and k in an ascending order to obtain
{e™M,. e, (6™, 6" and (kM. k1) (39)
Then, we get the estimators as follows
ax_ 1 R 1 R ~ 1 Sl
& =+ el e = “oe, and k = -2 k1. (40)

We were substituting the values of parameters &, ", é,", and k* to get (MSE). Furthermore, the asymptotic variance, covariance
matrix and two-sided confidence intervals of the estimators are obtained.

7. Application on Real Data Example

In this section, we introduce a real data example. The real data in Table 2 was collected from chapter 5 of Zhu [15]. For more
information about this data, see Zhu [15]. The failure times of the light bulbs are displayed in Table 1, and the unit removed
from the test before failure is noted by +. In this case, the number of units under stress is n = 64, and 11 of these units were
removed from the test before the failure.

Table 2: The failure times in hours of 64 light bulbs

No. F?illl:::e No. Failure time No. Failure time No. Failure time
1 12.07 17 91.22 33 14.00 49 94.38
2 19.50 18 102.10 34 17.95 50 97.71
3 22.10 19 105.10 35 24.00 51 101.53
4 23.11 20 109.20 36 26.46 52 105.11
5 24.00 21 114.40 37 26.58 53 112.11
6 25.10 22 117.90 38 28.06 54 119.58
7 26.90 23 121.90 39 34.00 55 120.20
8 36.64 24 122.50 40 36.13 56 126.95
9 44.10 25 123.60 41 40.85 57 129.25
10 46.30 26 126.50 42 41.11 58 136.31
11 54.00 27 130.10 43 42.63 59 140+
12 58.09 28 140+ 44 52.51 60 140+
13 64.17 29 140+ 45 62.68 61 140+
14 72.25 30 140+ 46 73.13 62 140+
15 86.90 31 140+ 47 83.63 63 140+
16 90.09 32 140+ 48 91.56 64 140+

To determine whether the data makes a good fit for the Burr distribution, we made a modified Kolmogorov Smirnov
goodness-of-fit test for the progressive type-II censored data. This method was done by Pakyari and Balakrishnan [16]. The
results of p-values for each stress level S;,i = 1, 2, are tabulated in Table 3. the results shows us that the distributions provide
an excellent fit to the given data because all p-values exceed 0.05. The MLEs of ¢;, c,, k are introduced in Table 4.

Table 3: p-values and the value of the statistic for each level
Stress (voltage) 225V 244V
D 1.1006927863141185 0.013692047887372413
p-value 0.30 0.965

Our distribution makes a good fit for the data used by Zhu [15]. The MLEs are introduced in Table 3.
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Table 4: Values of the parameters for the real dataset

Parameter MLEs Lower bound Upper bound
c 6.628880641589399 2.4194947611505766 18.161667165397084
C, 18.88352001192684 5.114098462680956 x 10755 6.972633214689974 x 1056
k 0.027029 7.320913602421803 x 10758 9.979352642043303 x 1053

The relation between scale parameter and acceleration model has the following form In(o;) = a + b In(S;), b > 0,i
0,1,2. By estimating the acceleration model's parameters, we can find that a = —8.42764859826418,b
12.913306559462917, k = 0.024; from the previous values, we can calculate the scale parameter under normal conditions,
o, = 1.68737.

By using the estimated values of k and oy, the reliability function under use conditions is given by:
R(t)= (141687373 )-0.024

(41

1 L s L 1 L L . 1 L 1

20 40 60 80 100

Fig 2: Reliability function under average condition
8. Simulation Study

Simulation studies are conducted in this section to examine the performances of the MLEs, 95%

approximate CI length. The algorithm is as follows:

1. Assign values for n,m, 1.
2. Generate a simple random sample of size m from Uniform (0, 1) distribution, (Uy, Uy, ..., U,).
3. Determine the values of the censored scheme, R;,i = 1, 2, ..., m, such that }/* | R; = n —m.

1

4. SetE; = U(”Ed=m—i+1Rd),i =1,2,..,m.

i

5. Obtain the progressive type-II censored sample, U Uz - Umemen Where Uiy = 1= [10em_iv1 Eqb i =
1,2,..,m.

6. Find ny, such that Uy .., < F1(7) < Up i1:men-

7. From Steps (2)-(6), the order observations, t1.;.m, ta:mns - tnysmins tng+1:mens - s Ememen are calculated as follows:

1
(1= V)= 1],

ti:m:n =
1

1
1 -~ c1
[(1 - Ui:r:n)_E - 1] ’ + 71— 17,19,
8. Solve the nonlinear system in Egs. (23-25) and then evaluate 95% CI for the three parameters, k, c;and c;,.
Table5: n =30,m =15,R;, =R, = R; =5,¢; = 0.25856,c, = 0.27358,k = 0.5,7; = 4.2.

i=n +1,..,m

Parameter | MLEs mean value MSE Lower bound | Upper bound Coverage CI length
probability
(o) 0.246 0.0048 0.094 0.3984 0.93 0.3047
C, 0.2963 0.0142 0.0606 0.532 0.92 0.3378
k 0.29883 0.048 0.0842 0.5146 0.66 0.4715
© 2021 NSP
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Table6: n =300m =30,R, =R, =--- =R, =0,¢; =0.25856,c, = 0.27358,k = 0.5and 7; = 4.2.
Parameter | MLESs mean value MSE Lower bound | Upper bound Coverage CI length
probability
c1 0.27445 0.0046 0.13 0.4193 0.99 0.2898
Cy 0.28014 0.0063 0.113 0.4473 0.95 0.3063
k 0.51689 0.0272 0.2208 0.8129 0.96 0.5921
Table7: n=50,m =30,R, =R, =10,R;...= R, =0,¢c; = 0.25856,c, = 0.27358,k = 0.5 and 7; = 4.2.
Parameter | MLEs mean value MSE Lower bound Upper bound Coverage CI length
probability
C1 0.26125 0.00311 0.1376 0.38491 0.97 0.24731
Cy 0.34075 0.01093 0.14307 0.53842 0.99 0.24183
k 0.32164 0.03741 0.12397 0.51931 0.61 0.39535
Table 8: n =50,m =50,R, =R, =R;..=R, =0,¢; =0.25856,c, = 0.27358,k = 0.5 and 7, = 4.2.
Parameter | MLEs mean value MSE Lower bound Upper bound Coverage CI length
probability
(o 0.26829 0.00333 0.15754 0.37905 0.95000 0.22151
Cy 0.28030 0.00437 0.15266 0.40793 0.93000 0.22638
k 0.49723 0.01388 0.36960 0.62487 0.79000 0.25527
Table9: n =700m =56,R, =R, =R;..= R, =2,¢; =0.25856,c, = 0.27358,k = 0.5 and 7; = 4.2
Parameter | MLEs mean value MSE Lower bound Upper bound Coverage CI length
probability
C1 0.26628 0.00265 0.16929 0.36327 0.93000 0.19398
Cy 0.30472 0.00520 0.17563 0.43382 0.97000 0.18765
k 0.40029 0.01629 0.23476 0.56582 0.79000 0.33106

9. Conclusion

From the results in Tables (4-8), we have observed the following:

1.

The MSEs of MLEs of the considered parameters decrease as the sample size increases, except for a few cases. This
may be due to fluctuations in data.

2. The length of approximate CIs decreases as the sample size increases, except for a few cases. This may be due to
fluctuations in data.

3. For the real data sets, the Burr-XII distribution gives a good fit for the real data.

4. Before acceleration, the real data was fitted using the usual Kolmogorov-Smirnov method, which provides a good
fit for the data.

5. The real data after acceleration was fitted using the modified Kolmogorov-Smirnov method, which provides a good
fit for the data.

6. We estimated the distribution parameters under normal conditions. The reliability function was graphed under the
standard condition, as in figure 2.

7. At time equals zero, the reliability function gives a 100% efficiency, and as time increases, the reliability function
becomes a decreasing function.
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