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Abstract: The aim of the present study is to design a new nonlinear second order singularly perturbed Lane-Emden equation and

report numerical solutions by using a well-known spectral collocation technique. The idea of the present study has been taken from

the standard Lane-Emden equation. For the model validation, three different examples based on the singular perturbed Lane-Emden

equation along with three cases have been presented and the solutions are numerically investigated by using a spectral collocation

technique. Comparison of the present outcomes with the exact solutions shows the exactness, correctness and stability of the designed

model as well as the present scheme. Moreover, absolute error and convergence are derived in the form of plots as well as tables.
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1 Introduction

Singular Lane-Emden equation was introduced first time by famous astrophysicist Jonathan Homer Lane [1] and Robert
Emden [2] working on the thermal execution of a spherical cloud of gas and thermodynamics classical laws [3]. The
models based on singularity describe a various phenomena in the studies of physical science [4], catalytic diffusion
reactions [5], density profile of gaseous star [6], isothermal gas spheres [7], stellar structure [8], catalytic diffusion
reactions [9], electromagnetic theory [10], classical and quantum mechanics [11], mathematical physics [12], oscillating
magnetic fields [13], morphogenesis[16], isotropic continuous media [14] and dusty fluid models [15].

It is always very challenging, difficult and hard to find the numerical and analytic solutions of the singular models
because of the singularity at the origin. There are few existing methods to handle such nonlinear singular Lane-Emden type
of models. To mention some of the methods for solving the singular equations, Bender et al [16] suggested a perturbative
scheme. Shawagfeh [17] proposed Adomian decomposition technique (ADT). Wazwaz [18] also implemented ADT to
avoid the singularity difficulty. Liao [19] used an analytic scheme to handle the singularity, Parand and Razzaghi [20]
discussed a numerical approach for the solution of singular models. Nouh [21] established power series technique by
using the Pade approximation method as well as Euler-Abel transformation.

The present study is relevant to model the nonlinear singular perturbed (SP) Lane-Emden equation. The modeled form
of the SP Lane-Emden equation is written as:

x−η d

dx

(

εxη d

dx

)

Y +G (Y ) = H (x),

y(0) = A, y
′

(0) = 0,

(1)
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the updated form of equation (1) is

εY
′′

(x)+
εη

x
Y

′

(x)+F (x)G (Y ) = H (x),

y(0) = A, y
′

(0) = 0,

(2)

where 0 ≤ ε ≤ 1, η > 1 is the shape factor and F (x), G (Y ), H (x) are given functions. The nonlinear SP Lane-Emden
is basically obtained from the standard Lane-Emden equation. The designed model (2) is verified by solving the four
different examples based on nonlinear SP second order Lane-Emden equations using the numerical spectral collocation
technique. The major features of the present study are investigated as:

–The mathematical model of the nonlinear SP Lane-Emden equation is successfully designed and verified by solving
three examples using the spectral collocation method.

–For the correctness and exactness of the designed model, the obtained numerical outcomes from the numerical spectral
collocation technique are compared with the exact results.

–Manipulation of the designed technique by applying the designed SP Lane-Emden model provided genius outcomes
with greater accuracy and larger reliability.

–The reliability, exactness and correctness of the SP Lane-Emden model is verified through the reliable and consistent
absolute error values of the present and exact outcomes.

–The nonlinear singular second order perturbed Lane-Emden model is always difficult to tackle numerically because of
perturbed form, singularity, non-linearity. However, the spectral collocation technique is one of the best selection and
great choice to challenge such types of complex models.

Recently, there are more interest of appointing the spectral methods to treat with various kinds of differential and
integral equations [22,23,24,25], due to their applicability to finite and infinite domains [26,27,28,29]. The convergence
speed, exponential convergence rates and high accuracy level are the major advantages of spectral method. The spectral
method has been classified to four classes, collocation [31], tau [32], galerkin [33] and Petrov galerkin [34] method.
The collocation ones is a particular kind of spectral methods, that is widely applicable for almost types of differential
equations.

Our paper is coordinated as next. Firstly, facts about shifted Jacobi polynomials are mentioned. The mentioned
approach is executed for the nonlinear second order singular perturbed Lane-Emden in section 3. Three test examples are
solved in Section 4. Finally, conclusions are outlined.

2 Shifted Jacobi polynomials

We consider the Jacobi polynomials J
(ρ ,σ)

k (x), which satisfy the following properties:

J
(ρ ,σ)
k+1

(x) = (a
(ρ ,σ)
k

x−b
(ρ ,σ)
k

)J
(ρ ,σ)
k

(x)−c
(ρ ,σ)
k

J
(ρ ,σ)
k−1

(x),k ≥ 1,

J
(ρ ,σ)
0 (x) = 1,J

(ρ ,σ)
1 (x) =

1

2
(ρ +σ +2)x+

1

2
(ρ −σ),

J
(ρ ,σ)
k

(−x) = (−1)kJ
(ρ ,σ)
k

(x),J
(ρ ,σ)

k
(−1) =

(−1)kΓ (k+σ +1)

k!Γ (σ +1)
, (3)

where ρ , σ >−1, x ∈ [−1,1] and

a
(ρ ,σ)
k =

(2k+ρ +σ + 1)(2k+ρ +σ + 2)

2(k+ 1)(k+ρ +σ + 1)
,

b
(ρ ,σ)
k =

(σ2 −ρ2)(2k+ρ +σ + 1)

2(k+ 1)(k+ρ +σ + 1)(2k+ρ+σ)
,

c
(ρ ,σ)
k =

(k+ρ)(k+σ)(2k+ρ+σ + 2)

(k+ 1)(k+ρ +σ + 1)(2k+ρ+σ)
.

the rth derivative of J
(ρ ,σ)
j (x), is computed as

DrJ
(ρ ,σ)
j (x) =

Γ ( j+ρ +σ + q+ 1)

2rΓ ( j+ρ +σ + 1)
J

(ρ+r,σ+r)
j−r (x), (4)
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where r is an integer. For the shifted Jacobi polynomial J
(ρ ,σ)
L ,k

(x) = J
(ρ ,σ)

k ( 2x
L − 1), L > 0, the explicit analytic form

is written as

P
(ρ ,σ)
L ,k

(x) =
k

∑
j=0

(−1)k− j Γ (k+σ +1)Γ ( j+k+ρ +σ +1)

Γ ( j+σ +1)Γ (k+ρ +σ +1)(k− j)! j!L j
x j

=
k

∑
j=0

Γ (k+ρ +1)Γ (k+ j+ρ +σ +1)

j!(k− j)!Γ ( j+ρ +1)Γ (k+ρ +σ +1)L j
(x−L ) j

.

(5)

Thereby, we conclude the next

P
(ρ ,σ)
L ,k (0) = (−1)k Γ (k+σ + 1)

Γ (σ + 1) k!
,

J
(ρ ,σ)
L ,k

(L ) =
Γ (k+ρ + 1)

Γ (ρ + 1) k!
,

(6)

DrJ
(ρ ,σ)
L ,k (0) =

(−1)k−rΓ (k+σ + 1)(k+ρ +σ + 1)r

LrΓ (k− r+ 1)Γ (r+σ + 1)
, (7)

DrJ
(ρ ,σ)
L ,k

(L ) =
Γ (k+ρ + 1)(k+ρ +σ + 1)r

LrΓ (k− r+ 1)Γ (r+ρ + 1)
, (8)

DrJ
(ρ ,σ)
L ,k

(x) =
G(r+ k+ρ +σ + 1)

L rG(k+ρ +σ + 1)
J

(ρ+r,σ+r)
L ,k−r

(x). (9)

3 Methodology of Shifted Jacobi collocation method

The collocation technique is the simplest of the weighted residuals method. For the first time, Lanczos [35] mentioned
that a convenient selection of the trial function and the collocation nodes are pivotal to the solution accuracy. This work
was refreshed by the authors in [36,37,38].These works included applications of Chebyshev polynomial approaches to
initial value problems. Here, we introduce a numerical method based on shifted Jacobi collocation method to solve new
nonlinear second order singular perturbed Lane-Emden:

εY
′′

(x)+
εη

x
Y

′

(x)+F (x)G (Y ) = H (x), η > 0, < x < L , (10)

related to the initial conditions
Y (0) = ζ1, Y

′

(0) = ζ2. (11)

The solution of Eq. (10) is approximated as.

YK (x) =
K

∑
j=0

ς jJ
(ρ ,σ)
L , j (x) = ∆

(ρ ,σ)
L ,K (x). (12)

We approximate the independent variable using shifted Jacobi collocation method at x
(ρ ,σ)
L ,K , j

nodes. Thus, the required

derivatives of first and second orders of the approximate solutions are then estimated as

drY (x)

dxr
= Y

(r)
K (x) =

K

∑
j=0

ς j

dr

dxr

(

J
(ρ ,σ)
L , j (x)

)

=
K

∑
j=0

ς j
G(r+ j+ρ +σ + 1)

L rG( j+ρ +σ + 1)
J

(ρ+r,σ+r)
L , j−r

(x)

=℘
(ρ ,σ ,r)
L ,K (x),

(13)

then, we can estimated the residual of (10) as

ε℘
(ρ ,σ ,2)
L ,K (x)+

εη

x
℘

(ρ ,σ ,1)
L ,K (x)+F (x)G (∆

(ρ ,σ)
L ,K (x)) = H (x). (14)
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For the current method, the residual (14) is permit to be zero at x
(ρ ,σ)
L ,K , j

(Jacobi-Gauss-Lobatto nodes)

ε℘
(ρ ,σ ,2)
L ,K (x

(ρ ,σ)
L ,K ,i)+

εη

x
(ρ ,σ)
L ,K ,i

℘
(ρ ,σ ,1)
L ,K (x

(ρ ,σ)
L ,K ,i)

+F (x
(ρ ,σ)
L ,K ,i

)G (∆
(ρ ,σ)
L ,K (x

(ρ ,σ)
L ,K ,i

)) = H (x
(ρ ,σ)
L ,K ,i

),

(15)

where i = 1,2, . . . ,K − 1. So, we have K − 1 algebraic equations for K + 1 unknowns, the remaining equations can
obtained from the conditions (11) as

∆
(ρ ,σ)
L ,K (0) = ζ1, ℘

(ρ ,σ ,1)
L ,K (0) = ζ2, (16)

A system of nonlinear algebraic equations are acquired from Eqs. (15) and (16). This system may be solved for
unknown coefficients ς j, j = 0, . . . ,K .

4 Numerical results and comparisons

Using the algorithm presented in the previous section, we give in this section some numerical results. For the model
validation, three different examples based on the singular perturbed Lane-Emden equation along with three cases have
been presented and the solutions are numerically investigated by using a spectral collocation technique. Comparison of
the present outcomes with the exact solutions shows the exactness, correctness and stability of the designed model as well
as the present scheme. Moreover, absolute error and convergence are derived in the form of plots as well as tables.

4.1 Problem I

We start the following nonlinear second order singular perturbed Lane-Emden

εY
′′

(x)+
ε

x
Y

′

(x)+Y = x5
− x4 + 25x3ε − 16x2ε, 0 ≤ x ≤ 1,

Y (0) = 0, Y
′

(0) = 0,

(17)

the exact solution is given by Y (x) = x5 − x4.
In Table (1), we listed the numerical solutions (YK ) of Problem I in case of taking K = 5, and different values of
parameters (ρ ,σ). We note from the results in Table (1), that we have obtained more accurate results. Also, we see in Fig.
1 the prefect matching of the approximate and exact solutions. In Fig. 2, the curve of the absolute errors (E) of Problem I
is displayed.

4.2 Problem II

Here, we test the following nonlinear second order singular perturbed Lane-Emden

εY
′′

(x)+
ε

x
Y

′

(x)+ eY = ex3+1 + 9xε, 0 ≤ x ≤ 1,

Y (0) = 1, Y
′

(0) = 0,

(18)

the exact solution is given by Y (x) = 1+ x3.

In Table (2), we listed the numerical solutions (YK ) of Problem II in case of taking K = 3, and different values of
parameters (ρ ,σ). We note from the results in Table (2), that we have obtained more accurate results.
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Table 1: Numerical solutions of Problem I.

(ρ,σ) ε = 0.01.

(0,0) −1.04083×10−17 −5.55112×10−17x+6.10623×10−16x2 −2.22045×10−15x3 −x4 +x5

( 1
2 ,

1
2 ) −1.38778×10−17 +2.77556×10−17x−8.04912×10−16x2 +5.32907×10−15x3 −x4 +x5

( 1
2 ,−

1
2 ) −1.11022×10−16x2 +1.38778×10−15x3 −x4 +x5

(− 1
2 ,−

1
2 ) 8.67362×10−18 −2.77556×10−17x−7.91034×10−16x2 +2.22045×10−15x3 −x4 +x5

ε = 0.03.

(0,0) −3.60822×10−16x2 −x4 +x5

( 1
2 ,

1
2 ) 2.77556×10−17x+2.39392×10−16x2 −8.88178×10−16x3 −x4 +x5

( 1
2 ,−

1
2 ) 6.93889×10−18 +2.77556×10−16 x3 −x4 +x5

(− 1
2 ,−

1
2 ) 2.77556×10−17 +8.32667×10−17x−9.15934×10−16x2 +3.55271×10−15x3 −x4 +x5

ε = 0.05.

(0,0) −3.1225×10−17 +6.93889×10−17x2 +4.44089×10−16 x3 −x4 +x5

( 1
2 ,

1
2 ) 1.38778×10−17 −2.77556×10−17x+2.01228×10−16x2 −8.88178×10−16x3 −x4 +x5

( 1
2 ,−

1
2 ) 2.77556×10−17 +2.77556×10−17x−1.11022×10−16x2 +3.33067×10−16x3 −x4 +x5

(− 1
2 ,−

1
2 ) −3.81639×10−17 +5.55112×10−17 x+1.11022×10−16x2 −x4 +x5

Fig. 1: Curves of the exact and numerical solutions (Y and YK )of Problem I where ε = 0.05, ρ = σ = 0, and K = 5.

Fig. 2: Curve of the absolute errors (E) of Problem I where ρ = σ = 0, ε = 0.05, and K = 5.
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Table 2: Numerical solutions of Problem II.

(ρ,σ) ε = 0.01. ε = 0.03.

(0,0) +1.11022×10−16x−1.55431×10−15x2 +x3 −1.11022×10−16x+1.77636×10−15x2 +x3

( 1
2 ,0) −2.22045×10−16x2 +x3 +3.10862×10−15x2 +x3

( 1
2 ,

1
2 ) −4.44089×10−16x2 +x3 +2.22045×10−16x−2.66454×10−15x2 +x3

(− 1
2 ,−

1
2 ) +1.77636×10−15x2 +x3 +4.44089×10−16x−2.22045×10−15x2 +x3

(ρ,σ) ε = 0.05. ε = 0.07.

(0,0) −1.11022×10−16x+3.55271×10−15x2 +x3 −2.22045×10−16x−2.66454×10−15x2 +x3

( 1
2 ,0) −2.22045×10−16x2 +x3 +2.22045×10−16x+1.33227×10−15x2 +x3

( 1
2 ,

1
2 ) −3.33067×10−16x−4.66294×10−15x2 +x3 +1.11022×10−16x−8.88178×10−16x2 +x3

(− 1
2 ,−

1
2 ) −1.11022×10−16x+6.66134×10−16x2 +x3 +2.22045×10−16x−1.11022×10−15x2 +x3

Fig. 3: Curves of the exact and numerical solutions (Y and YK )of Problem III where ε = 0.01, ρ = σ = 0, and K = 18.

4.3 Problem III

Here, we test the following nonlinear second order singular perturbed Lane-Emden

εY
′′

(x)+
ε

x
Y

′

(x)+Y = 4ex2

x2ε + 4ex2

ε + ex2

, 0 ≤ x ≤ 1,

Y (0) = 1, Y
′

(0) = 0,

(19)

the exact solution is given by Y (x) = ex2
. Table 3 appears the accurate results for the MEY

of our method. Also, we see
in Fig. 3 the prefect matching of the approximate and exact solutions. In Fig. 4, the curve of the absolute errors (E) of
Problem III is displayed. Moreover, we sketched in Figs. 5 the logarithmic graphs of MEY

obtained by the present method

with different values of ε and ρ = σ = 1
2

and (K = 2,4,6, · · · ,18).

Taking ρ = σ =−
1
2
, ε = 0.04, we obtain the numerical solution of Problem III as:

Y18(x) =1+ 2.53232×10−16x+ x2
− 9.8576× 10−11x3 + 0.5x4

− 6.79226× 10−8x5 + 0.166667x6
− 6.326× 10−6x7

+ 0.0417019x8
− 0.000143255x9+ 0.00876706x10

−

0.00099037x11+ 0.00310202x12
− 0.00223737x13

+ 0.00237687x14
− 0.00154102x15+ 0.000779421x16

− 0.000232208x17+ 0.0000376921x18
.

c© 2020 NSP

Natural Sciences Publishing Cor.



Num. Com. Meth. Sci. Eng. 2, No. 1, 11-19 (2020) / www.naturalspublishing.com/Journals.asp 17

Fig. 4: Curve of the absolute errors (E) of Problem I where ε = 0.01, ρ = σ = 0, and K = 18.

Fig. 5: MEQ convergence of Problem III.

Table 3: MEY
and MEQ

of Problem III.

ε = 0.01

K ρ = σ = 0 ρ = 1
2 , σ = 0 ρ = σ = 1

2 ρ = σ =−
1
2

2 0.5175 0.553157 0.5175 0.5175

6 1.49218×10−4 1.67181×10−4 1.01688×10−4 2.38637×10−4

10 2.15552×10−8 2.57041×10−8 4.2423×10−8 3.29858×10−8

14 2.54621×10−12 2.7609×10−12 5.61429×10−12 3.39999×10−12

18 1.12882×10−15 1.55431×10−15 2.04666×10−15 1.98936×10−15

ε = 0.04

2 0.399183 0.454502 0.399183 0.399183

6 1.15194×10−4 1.16808×10−4 1.51759×10−4 1.38596×10−4

10 2.4376×10−8 2.46543×10−8 4.64442×10−8 2.96568×10−8

14 2.63312×10−12 2.68985×10−12 6.65124×10−12 3.31475×10−12

18 1.24565×10−15 1.60982×10−15 2.38909×10−15 2.4361×10−15
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5 Conclusion

The task to model representing the singular nonlinear perturbed Lane-Emden equation along with numerical expressions
was difficult to tackle. However the numerical outcomes of the model are described by using the spectral collection
technique. Three different examples along with three cases of each example has been numerically solved and compared
with the exact solutions that depicts the exactness and correctness of the designed model. The graphs of absolute error and
accuracy with good measures for all examples have been plotted. For solving such kind of complicated, linear/nonlinear,
singular/non-singular, perturbed Lane-Emden type of problems, the spectral numerical collocation technique can be the
best choice to handle. So one can understand that the proposed numerical spectral technique is not only suitable but also
effective. The present surveys represent that the numerical spectral collocation technique is an effective, efficient and
appropriate technique for solving the nonlinear singular second order perturbed Lane-Emden equations. In future, the
proposed technique will be used to solve nonlinear system of perturbed Lane-Emden equations, perturbed third order
Lane-Emden equation and system of perturbed Lane-Emden equations.
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