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Abstract: In this paper, the existence and uniqueness of the maximal positive definite solution of the nonlinear matrix equation X −

∑m
i=1 A∗

i X−1Ai +∑n
j=1 B∗

jX
−1B j = I is studied. Our technique is based on the coupled fixed-point theorem. A sufficient condition for

the existence of the unique maximal solution of the above nonlinear matrix equation is investigated. Some numerical examples are

presented to show the applicability and the effectiveness of our technique.
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1 Introduction

Consider the nonlinear matrix equation

X +
n

∑
j=1

B∗
jX

−1B j −
m

∑
i=1

A∗
i X−1Ai = I, (1)

where B j , j = 1 , 2 , . . . , n, Ai , i = 1 , 2 , . . . , m are
N ×N nonsingular complex matrices with m and n being
nonnegative integers. I is an N × N identity matrix. B∗

j

and A∗
i represent the conjugate transpose of the matrices

B j and Ai, respectively. This kind of equations arises in
various areas of applications, such as ladder networks [1,
2], dynamic programming [3,4] and control theory [5,6].
Many authors have studied the existence and uniqueness
of a fixed point for different forms of nonlinear matrix
equations (see, [7]-[12]). In [13], Bhaskar and
Lakshmikantham presented the fixed-point theory in
partially-ordered metric spaces and its applications. M.

Berzig et al. [14] studied the existence and uniqueness
of a positive definite solution to the nonlinear matrix
equation

X = Q−A∗X −1A +B∗X −1B.

M. Berzig [15] solved the nonlinear matrix equations of
the type X = Q+∑m

i=1 A∗
i X Ai −∑m

i=1 B∗
i X Bi. J. H. Long et

al. [16] studied the Hermitian positive definite solution of
the nonlinear matrix equation

X +A1
∗X −1A1 +A2

∗X −1A2 = I.

Y. M. He and J. H. Long [17] considered the Hermitian
positive definite solution of the nonlinear matrix equation
X +∑m

i=1 A∗
i X−1Ai = I. Throughout this paper, we denote

H(N) the set of N × N Hermitian
matrices. For H1 , H2 ∈ H(N) , H1 ≥ 0 (H1 > 0), which
means that H1 is a positive semi-definite (positive
definite) matrix. Also, H1 ≥ H2 (H1 > H2) denotes that
H1 − H2 ≥ 0 (H1 − H2 > 0). We denote by ‖ . ‖ and
‖ . ‖tr the spectral norm and the trace norm, respectively,
where ‖ H1 ‖tr = ∑m

t=1 σt(H1) and
σt( H1 ) , t = 1, 2, . . . , m are the singular values of H1 .
We use XL to denote the maximal solution of the matrix
Eq. (1). We organize this paper as follows: First, in
section 2, some definitions, lemmas and theorems that
will be needed to develop this work are introduced. In
section 3, both the existence and uniqueness of the
maximal positive definite solution of the matrix equation
X − ∑m

i=1 A∗
i X−1Ai + ∑n

j=1 B∗
jX

−1B j = I is presented. In
section 4, numerical examples are given to show the
applicability and the effectiveness of our technique.
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2 Preliminaries

The following definitions, lemmas and theorems
proclaimed below are important to develop this work.

Lemma 1. [18] Let H1 ≥ 0 and H2 ≥ 0 be N×N matrices,

then

0 ≤ tr (H1H2)≤ ‖H1 ‖ tr (H2).

Lemma 2. [13] Let H1 ∈ H(N) satisfy −I < H1 < I, then

‖H1 ‖ < 1.

Lemma 3. [19] If 0 < θ ≤ 1,H1 and H2 are positive

definite matrices of the same order where

H1 , H2 ≥ aI > 0, then we have
∥

∥H1
θ −H2

θ
∥

∥

tr
≤ θ aθ−1 ‖H1 −H2 ‖tr and

∥

∥H1
−θ −H2

−θ
∥

∥

tr
≤ θ a− (θ+1) ‖H1 −H2 ‖tr .

Definition 1. [13] LetY be a nonempty set and G : Y ×Y →
Y be a given map, we call an element (y , z) ∈ Y ×Y a

coupled fixed point of G if y = G(y , z) and z = G(z , y).

Definition 2. [13] Let (Y, ≤) be a partially-ordered set

and G : Y ×Y → Y be a given map, we say that G has the

mixed monotone property if for all y , z ∈ Y,

y1 , y2 ∈Y , y1 ≤ y2 yields that, G(y1 , z)≤ G(y2 , z)
z1 , z2 ∈ Y , z1 ≤ z2 yields that G(y , z1)≥ G(y , z2)

Theorem 1. [13] Let (Y, ≤) be a partially-ordered set

granted with a metric space d such that (Y, d) is

complete. Let G : Y ×Y → Y be a continuous mapping

with the mixed monotone property on Y .

If there exists ε ∈ [0 , 1), where
d ( G(y , z) , G(v , w) ) ≤ ε

2
[ d (y , v) + d (z , w) ] for all

(y , z) , (v , w) ∈ Y ×Y where y ≥ v and z ≤ w. Moreover,
there exists y0 , z0 ∈ Y such that y0 ≤ G(y0 , z0)and
z0 ≥ G(z0 , y0). Then,

• (a) G has a coupled fixed point (ỹ , z̃) ∈ Y ×Y ;

• (b) The sequences {yk} and {zk} are defined by
yk+1 = G(yk , zk) and zk+1 = G (zk , yk) converge to ỹ

and z̃, respectively;

In addition, suppose that every pair of elements has a
lower bound and an upper bound, then

• (c) G has a unique coupled fixed point (ỹ , z̃)∈Y ×Y ;

• (d) ỹ = z̃; and

• (e) We have the following estimate:

max {d (yk , ỹ) , d (zk , ỹ)} ≤ εk

2 (1−ε)

[ d (G(y0 , z0) , y0 ) + d (G(z0 , y0) , z0 ].

Theorem 2.(Theorem of Schauder Fixed Point) [20]

Every continuous function g : T → T mapping T into

itself has a fixed point, where T is a nonempty compact

convex subset of a normed vector space.

3 Main Outcomes

3.1 On the Existence and Uniqueness of the

Maximal Solution of Eq. (1).

Suppose that the set of matrices Ψ is defined by
Ψ =

{

X ∈ H(N) : X ≥ 1
2
I
}

.
let the mapping G : Ψ ×Ψ → Ψ associated with Eq.

(1) be defined by

G(X ,Y ) = I−
n

∑
j=1

B∗
jX

−1B j +
m

∑
i=1

A∗
i Y −1Ai . (2)

We prove the mixed monotone property of G in the
following theorem.

Theorem 3.If ∑n
j=1

∥

∥B j

∥

∥

2
<

1
42 and ∑m

i=1 ‖Ai‖
2
<

1
42 , then

the mapping G which is defined by (2) including the mixed

monotone property with respect to the partial order≤.

Proof.Consider the mapping G : Ψ ×Ψ → Ψ defined by
(2) for all X , Y ∈ Ψ , that is,X ≥ 1

2
I , Y ≥ 1

2
I . Let

X , Y , V, W ∈Ψ such that X ≥V andY ≤W .
We have

‖G(X , Y )−G(V, W )‖tr =
∥

∥

∥

∥

∥

−∑n
j=1 B∗

jX
−1B j +∑m

i=1 A∗
i Y−1Ai

+∑n
j=1 B∗

jV
−1B j −∑m

i=1 A∗
i W−1Ai

∥

∥

∥

∥

∥

tr

=

∥

∥

∥

∥

∑n
j=1 B∗

j

(

V−1 −X−1
)

B j

+∑m
i=1 A∗

i

(

Y−1 −W−1
)

Ai

∥

∥

∥

∥

tr

≤
∥

∥

∥∑n
j=1 B∗

j

(

V−1 −X−1
)

B j

∥

∥

∥

tr
+
∥

∥∑m
i=1 A∗

i

(

Y−1 −W−1
)

Ai

∥

∥

tr

= tr
(

∑n
j=1 B∗

j

(

V−1 −X−1
)

B j

)

+ tr
(

∑m
i=1 A∗

i

(

Y−1 −W−1
)

Ai

)

= tr
(

∑n
j=1 B∗

jB j

(

V−1 −X−1
)

)

+tr

(

m

∑
i=1

A∗
i Ai

(

Y−1 −W−1
)

)

(3)

Since V−1 −X−1 ≥ 0 and Y−1 −W−1 ≥ 0.
Using Lemma 1, we get

‖G(X , Y )−G(V, W )‖tr

≤
∥

∥

∥∑n
j=1 B∗

jB j

∥

∥

∥
tr
(

V−1 −X−1
)

+
∥

∥∑m
i=1 A∗

i Ai

∥

∥ tr
(

Y−1 −W−1
)

≤ ∑n
j=1

∥

∥B j

∥

∥

2
tr
(

V−1 −X−1
)

+∑m
i=1

∥

∥Ai

∥

∥

2
tr
(

Y−1 −W−1
)

(4)
(4)

Moreover, since X , Y , V, W ≥ 1
2
I, by Lemma 3 we

get
tr
(

V−1 −X−1
)

≤ ( 1
2
)−2 tr (V −X) =

4 tr (V −X)andtr
(

Y−1 −W−1
)

≤ ( 1
2
)−2 tr (Y −W ) =

4 tr (Y −W) .
So we get,

‖G(X , Y )−G(V W )‖tr ≤ 4∑n
j=1

∥

∥B j

∥

∥

2
‖V −X‖tr

+4∑m
i=1 ‖Ai‖

2 ‖ Y −W‖tr .

(5)
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Which yields that

‖G(X , Y )−G(V, W )‖tr ≤
η
4
(‖V −X ‖tr + ‖Y −W ‖tr) ,

Where η = 42 max
{

∑n
j=1

∥

∥B j

∥

∥

2
, ∑m

i=1 ‖Ai‖
2
}

.

Since ∑n
j=1

∥

∥B j

∥

∥

2
<

1
42 and ∑m

i=1 ‖Ai‖
2
<

1
42 and

Lemma 2, we can easily show that η < 1 . Thus the
mapping G has the mixed monotone property.

Which completes the proof of the theorem.

Now, we will prove the existence and uniqueness of
the maximal positive definite solution of Eq. (1).

Theorem 4.If the following assumptions hold

n

∑
j=1

∥

∥B j

∥

∥

2
<

1

42
and

m

∑
i=1

‖Ai‖
2
<

1

42
, (6)

6
n

∑
j=1

B∗
jB j − 2

m

∑
i=1

A∗
i Ai ≤

3

2
I, (7)

6
m

∑
i=1

A∗
i Ai − 2

n

∑
j=1

B∗
jB j ≤

3

2
I. (8)

Then

1.Equation (1) has a unique maximal solution XL ∈ Ψ .

2.XL ∈

[

I − 2∑n
j=1 B∗

jB j +
2
3 ∑m

i=1 A∗
i Ai ,

I − 2
3 ∑n

j=1 B∗
jB j + 2∑m

i=1 A∗
i Ai

]

.

Proof.We demand that there exists (X , Y )∈H(N)×H(N)
a solution to the system

X = I−
n

∑
j=1

B∗
jX

−1B j +
m

∑
i=1

A∗
i Y−1Ai,

Y = I−
n

∑
j=1

B∗
jY

−1B j +
m

∑
i=1

A∗
i X−1Ai. (9)

Now, taking X0 =
1
2
I and Y0 =

3
2
I

From condition (7) we have

6
n

∑
j=1

B∗
jB j − 2

m

∑
i=1

A∗
i Ai ≤

3

2
I

then

2
n

∑
j=1

B∗
jB j −

2

3

m

∑
i=1

A∗
i Ai ≤

1

2
I

so we have

G(
1

2
I ,

3

2
I) = I − 2

n

∑
j=1

B∗
jB j +

2

3

m

∑
i=1

A∗
i Ai ≥

1

2
I,

that is

X0 =
1

2
I ≤ G(

1

2
I ,

3

2
I).

Moreover, from condition (8) we get

6
m

∑
i=1

A∗
i Ai − 2

n

∑
j=1

B∗
jB j ≤

3

2
I,

then

2
m

∑
i=1

A∗
i Ai −

2

3

n

∑
j=1

B∗
jB j ≤

1

2
I,

so we have

G(
3

2
I ,

1

2
I) = I −

2

3

n

∑
j=1

B∗
jB j + 2

m

∑
i=1

A∗
i Ai ≤

3

2
I

and

Y0 =
3

2
I ≥ G(

3

2
I ,

1

2
I) .

From Theorem 1 (a), there exists (X , Y ) ∈ H(N)×
H(N) where G(X , Y ) = X and G(Y, X) = Y that is, (X , Y )
is a solution to (9). On the other hand, for every X , Y ∈
H(N) there is a greatest lower bound and a least upper
bound. Note also that the partial order G is a continuous
mapping, by Theorem 1, (X , Y ) is the unique coupled fixed
point of G that is

X = Y = XL.

Thus, the unique solution of Eq. (1) is XL. Thus, the proof
of 1) is completed. To prove 2) we should used Theorem
of Schauder Fixed Point, we state the mapping

M :
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

→Ψ by:

M(XL) = G(XL, XL) = I −∑n
j=1 B∗

jX
−1
L B j

+∑m
i=1 A∗

i X−1
L Ai

,

For all XL ∈
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

.

We want to prove that

M
([

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
])

⊆
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

.

Let XL ∈
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

, that is G( 1
2
I , 3

2
I)≤

XL ≤ G( 3
2
I , 1

2
I).

Applying the property of mixed monotone of G yields
that

G
(

G( 1
2
I , 3

2
I), G( 3

2
I , 1

2
I)
)

≤ M(XL)
= G(XL , XL)≤ G

(

G( 3
2
I , 1

2
I) , G( 1

2
I , 3

2
I)
)

,

sinceG( 1
2
I , 3

2
I)≥ 1

2
I and G( 3

2
I , 1

2
I)≤ 3

2
I .

Applying the property of the mixed monotone of G

again implies that

G
(

G( 1
2
I , 3

2
I), G( 3

2
I , 1

2
I)
)

≥ G( 1
2
I , 3

2
I),

(10)

G
(

G( 3
2
I , 1

2
I), G( 1

2
I , 3

2
I)
)

≤ G( 3
2
I , 1

2
I)

(11)

From (10) and (11), it follows that

G(
1

2
I ,

3

2
I)≤ M(XL)≤ G(

3

2
I ,

1

2
I) .
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Thus, our claim that

M
([

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
])

⊆
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

.

holds.
Now, we have a continuous mapping M that maps the

compact convex set
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

into itself,
from Schuader fixed point theorem we get that M has at
least one fixed point in this set, but a fixed point of M is a
solution of Eq. (1), and we proved already that Eq. (1) has
a unique solution in Ψ . Thus, this solution must be in the
set
[

G( 1
2
I , 3

2
I) , G( 3

2
I , 1

2
I)
]

.
That is,

XL ∈

[

I− 2∑n
j=1 B∗

jB j +
2
3 ∑m

i=1 A∗
i Ai ,

I− 2
3 ∑n

j=1 B∗
jB j + 2∑m

i=1 A∗
i Ai

]

.

Which completes the proof of 2) of the theorem.

Now, we present the convergence of the sequences
{Xk} and {Yk} to the maximal positive definite solution
XL of Eq.(1).

Theorem 5.The sequences {Xk} and {Yk} of positive

definite matrices generated from the following iterative

algorithm

X0 =
1
2
IandY0 =

3
2
I.

Xk+1 = I−
n

∑
j=1

B∗
jX

−1
k B j +

m

∑
i=1

A∗
i Y−1

k Ai ,

Yk+1 = I−∑n
j=1 B∗

jY
−1
k B j +∑m

i=1 A∗
i X−1

k Ai

k = 0 , 1 , 2 , . . .
(12)

converge to XL, that is,

lim
k→∞

‖Xk −XL‖tr = lim
k→∞

‖Yk −XL‖tr = 0

with the error

max{ ‖Xk −XL‖tr , ‖ Yk −XL‖tr}

≤ ηk

1−η max{ ‖X1 −X0‖tr , ‖Y1 −Y0‖tr}
,

where 0 < η < 1.

Proof.We consider the iterative process (12). Applying
this process generates the sequences of matrices {Xk} and
{Yk} as follows:

Fork = 0 ,

X1 = I−∑n
j=1 B∗

jX
−1
0 B j +∑m

i=1 A∗
i Y−1

0 Ai

= I− 2∑n
j=1 B∗

jB j +
2
3 ∑m

i=1 A∗
i Ai ≥

1
2
I = X0

,

that is, X1 ≥ X0.
Moreover, for some positive matrix X̃ for the Eq. (1),

and from 2) of Theorem 4 we have

X̃ ∈

[

I − 2∑n
j=1 B∗

jB j +
2
3 ∑m

i=1 A∗
i Ai ,

I − 2
3 ∑n

j=1 B∗
jB j + 2∑m

i=1 A∗
i Ai

]

.

Which means that, 1
2
I ≤ X̃ ≤ 3

2
I. i.e., X̃ ≥ X0 = 1

2
I and

X̃ ≤ Y0 =
3
2
I.

Now,
X̃ = I−∑n

j=1 B∗
jX̃

−1B j +∑m
i=1 A∗

i X̃−1Ai

≥ I −∑n
j=1 B∗

jX
−1
0 B j +∑m

i=1 A∗
i Y−1

0 Ai = X1
,

that is, X̃ ≥ X1. Thus, X̃ ≥ X1 ≥ X0.

Also, for some positive matrix ϒ̃ for the Eq. (1)

Y1 = I −∑n
j=1 B∗

jY
−1
0 B j +∑m

i=1 A∗
i X−1

0 Ai

= I − 2
3 ∑n

j=1 B∗
jB j + 2∑m

i=1 A∗
i Ai ≤

3
2
I = Y0

,

that is, Y1 ≤ Y0.

Moreover,
Ỹ = I −∑n

j=1 B∗
jỸ

−1B j +∑m
i=1 A∗

i Ỹ−1Ai

≤ I−∑n
j=1 B∗

jY
−1
0 B j +∑m

i=1 A∗
i X−1

0 Ai = Y1
.

So, we have, Ỹ ≤ Y1. Thus, Y0 ≥ Y1 ≥ Ỹ .

Suppose that

X̃ ≥ Xk ≥ Xk−1 and Yk−1 ≥ Yk ≥ Ỹ . (13)

Now we will prove that X̃≥Xk+1 ≥Xk and Yk ≥Yk+1 ≥
Ỹ .

Using inequalities (13) yields that

I −∑n
j=1 B∗

jX̃
−1B j +∑m

i=1 A∗
i X̃−1Ai

≥ I−∑n
j=1 B∗

jX
−1
k B j +∑m

i=1 A∗
i Y−1

k Ai

≥ I−∑n
j=1 B∗

jX
−1
k−1B j +∑m

i=1 A∗
i Y−1

k−1Ai .

That is, X̃ ≥ Xk+1 ≥ Xk.

Similarly, we can prove that

I −∑n
j=1 B∗

jỸ
−1B j +∑m

i=1 A∗
i Ỹ−1Ai

≤ I−∑n
j=1 B∗

jY
−1
k B j +∑m

i=1 A∗
i X−1

k Ai

≤ I−∑n
j=1 B∗

jY
−1
k−1B j +∑m

i=1 A∗
i X−1

k−1Ai .

That is, Yk ≥ Yk+1 ≥ Ỹ .

Therefore, the inequalities (13) are true for all
k = 0 , 1 , 2 , . . ..

Hence, the sequence {Xk} is monotonically
increasing and bounded from above by some positive
definite solution X̃(Xk ≥ X̃) of Eq. (1) and the sequence
{Yk} is monotonically decreasing and bounded from
below by some positive definite solution Ỹ (Yk ≤ Ỹ ) of Eq.
(1) .It follows that lim

k→∞
Xk = X̃ and lim

k→∞
Yk = ϒ̃ exist.

Taking limits of (12) gives that X̃ = Ỹ = XL.

Thus, the proof of the theorem is completed.

4 Numerical Examples

In this portion, numerical examples are presented to
confirm the correctness of Theorem 4 and the existence
for the unique maximal positive definite solution XLof Eq.
(1) using the iterative process (12) in Theorem 5 We have
performed the algorithms in MATLAB (writing our own
programs) and we have also run the programs on a PC
Pentium IV.
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Example 1. Consider the nonlinear matrix Eq. (1) with

A1 =





−0.04 −0.02 0.02

−0.02 −0.04 0.06

−0.08 −0.02 −0.04



 , A2 =





0.06 0.02 0.002

0.02 0.06 0.04

−0.04 0.02 0.06



 ,

B1 =





−0.12 −0.03 0.03

−0.03 −0.12 −0.09

−0.09 −0.03 −0.12



and B2 =





0.05 0.01 −0.02

0.01 0.05 0.02

0.02 0.01 0.05



.

The presumptions of Theorem 4 hold, that is,

i)∑n
j=1

∥

∥B j

∥

∥

2
= 0.018277 <

1
42 and

∑m
i=1 ‖Ai‖

2 = 0.04827 <
1
42 ,

ii)
eig
(

3
2
I− 6∑n

j=1 B∗
jB j + 2∑m

i=1 A∗
i Ai

)

= (1.2396 , 1.4224 , 1.4692)
,

which satisfies inequality (7) of Theorem 4.

iii)
eig
(

3
2
I− 6∑m

i=1 A∗
i Ai + 2∑n

j=1 B∗
jB j

)

= (1.4488 , 1.4905 , 1.5151)
,

which satisfies inequality (8) of Theorem 4 Now, We
consider the sequences {Xk} and {Yk} defined in (12) in

Theorem 5 with X0 =
1
2
Iand Y0 =

3
2
I.

We have the errorsfor every iteration k,

R(Xk) =

∥

∥

∥

∥

∥

Xk − I+
n

∑
j=1

B∗
jX

−1
k B j −

m

∑
i=1

A∗
i X−1

k Ai

∥

∥

∥

∥

∥

,

R(Yk) =

∥

∥

∥

∥

∥

Yk − I+
n

∑
j=1

B∗
jY

−1
k B j −

m

∑
i=1

A∗
i Y−1

k Ai

∥

∥

∥

∥

∥

.

after 12 iterations, we get

XL ≈ X12 = Y12

=





0.98709 −0.0066787 −0.01099
−0.0066787 0.98765 −0.013558
−0.01099 −0.013558 0.983675





,

with R12 = 2.318617 e − 016.
The eigenvalues of XL are (0.96473 , 0.99369 , 1 ) .
Example 2.Consider the nonlinear matrix Eq. (1) with

A1 =







0.0002 −0.0004 0.0001 0.15
0.0004 − 0.0016 − 0.0002 − 0.0008
−0.0012 − 0.0063 0.0014 − 0.0018
0.0034 − 0.0012 − 0.0001 − 0.0015






,

A2 =







−0.0005 0.0002 0.0024 − 0.0003
0.0002 − 0.002 0.0005 0.0001
0.0004 0.0003 − 0.0004 − 0.0034
−0.0021 0.0004 0.0006 0.0007






,

B1 =







−0.09 −0.18 0.06 0.003
−0.003 0.012 − 0.039 − 0.015
−0.039 − 0.063 0.012 − 0.0072
−0.033 − 0.006 − 0.09 0.0003






and

B2 =







0.003 − 0.002 − 0.001 0.002
0.0001 0.004 − 0.013 0.0005
−0.013 0.012 − 0.0014 − 0.0104
0.0101 0.0012 0.003 − 0.0012






.

The presumptions of Theorem 4 are satisfied, that is,

i)∑n
j=1

∥

∥B j

∥

∥

2
= 0.02252 <

1
42 and

∑m
i=1 ‖Ai‖

2 = 0.050544 <
1
42 ,

ii)
eig
(

3
2
I− 6∑n

j=1 B∗
jB j + 2∑m

i=1 A∗
i Ai

)

= (1.1992 , 1.4353 , 1.4979 , 1.5428)
,

which satisfies inequality (7) of Theorem 4.

iii)
eig
(

3
2
I− 6∑m

i=1 A∗
i Ai + 2∑n

j=1 B∗
jB j

)

= (1.6 , 1.5006 , 1.5215 , 1.3657)
,

which satisfies inequality (8) of Theorem 4. Now, We
consider the sequences {Xk} and {Yk} defined in (12) in

Theorem 5 with X0 =
1
2
Iand Y0 =

3
2
I.

We get the errorsfor every iteration k,

R(Xk) =

∥

∥

∥

∥

∥

Xk − I+
n

∑
j=1

B∗
jX

−1
k B j −

m

∑
i=1

A∗
i X−1

k Ai

∥

∥

∥

∥

∥

,

R(Yk) =

∥

∥

∥

∥

∥

Yk − I+
n

∑
j=1

B∗
jY

−1
k B j −

m

∑
i=1

A∗
i Y−1

k Ai

∥

∥

∥

∥

∥

.

after 10 iterations, we get

XL ≈ X10 =Y10

=









0.98894 −0.018837 0.0028039 −0.00017124

−0.018837 0.96304 0.011557 0.00031524

0.0028039 0.011557 0.98662 −0.00064303

−0.00017124 0.00031524 −0.00064303 1.0224









,

eig (XL) = (0.94952 , 0.98939 , 0.99967, 1.0224)

with R10 = 1.0489617 e − 018.

5 Conclusion

In this paper, the coupled fixed-point theory on ordered
metric spaces is used to find the solution of the nonlinear
matrix equation X −∑m

i=1 A∗
i X−1Ai +∑n

j=1 B∗
jX

−1B j = I.
An iterative process is proposed to compute the unique
maximal positive definite solution of this nonlinear matrix
equation. Finally, numerical examples are given to show
the applicability and the effectiveness of our technique.
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