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Abstract: Here we consider and study from the trigonometric point of view expectation commutative stochastic positive linear

operators acting on L1-continuous stochastic processes which are Caputo fractional differentiable. Under some mild, general and

natural assumptions on the stochastic processes we produce related trigonometric Caputo fractional stochastic Shisha-Mond type

inequalities pointwise and uniform. All convergences are produced with rates and are given by the trigonometric fractional stochastic

inequalities involving the first modulus of continuity of the expectation of the α-th right and left fractional derivatives of the engaged

stochastic process, α > 0, α /∈ N. The amazing fact here is that the basic non-stochastic real Korovkin test functions assumptions

impose the conclusions of our trigonometric Caputo fractional stochastic Korovkin theory. We include also a detailed trigonometric

application to stochastic Bernstein operators.

Keywords: Stochastic positive linear operator, trigonometric Caputo fractional stochastic Korovkin theory and trigonometric

fractional inequalities, trigonometric Caputo fractional stochastic Shisha-Mond inequality, modulus of continuity, stochastic process,

expectation commutative operator.

1 Introduction

In this work among others we are motivated by the following results.
Theorem A (P.P. Korovkin [1], (1960)) Let Ln : C ([−π ,π ]) → C ([−π ,π ]), n ∈ N, be a sequence of positive linear

operators. Assume Ln (1)
u→ 1 (uniformly), Ln (cost)

u→ cost, Ln (sin t)
u→ sin t, as n → ∞. Then Ln f

u→ f , for every
f ∈C ([−π ,π ]) that is 2π-periodic.

Let f ∈C ([a,b]) and 0 ≤ δ ≤ b− a. The first modulus of continuity of f at δ is given by

ω1 ( f ,δ ) = sup{| f (x)− f (y)| ; x,y ∈ [a,b] , |x− y| ≤ δ} .

If δ > b− a, then we define
ω1 ( f ,δ ) = ω1 ( f ,b− a) .

Another motivation is the following.
Theorem B (Shisha and Mond [2], (1968)). Let L1,L2, ..., be linear positive operators, whose common domain D

consists of real functions with domain (−∞,∞). Suppose 1,cosx,sinx, f belong to D, where f is an everywhere
continuous, 2π-periodic function, with modulus of continuity ω1. Let −∞ < a < b < ∞, and suppose that for
n = 1,2, ...,Ln (1) is bounded in [a,b]. Then for n = 1,2, ...,

‖Ln ( f )− f‖∞ ≤ ‖ f‖∞ ‖Ln (1)− 1‖∞ + ‖Ln (1)+ 1‖∞ ω1 ( f ,µn) , (*)

where

µn = π

∥

∥

∥

∥

(

Ln

(

sin2

(

t − x

2

)))

(x)

∥

∥

∥

∥

1
2

∞

,
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and ‖·‖∞ stands for the sup norm over [a,b].
In particular, if Ln (1) = 1, then (*) reduces to

‖Ln ( f )− f‖∞ ≤ 2ω1 ( f ,µn) .

One can easily see that, for m = 1,2, ...,

µ2
n ≤

(

π2

2

)

[‖Ln (1)− 1‖∞+

‖(Ln (cost)) (x)− cosx‖∞ + ‖(Ln (sin t))(x)− sinx‖∞] ,

so the last along with (*) prove Korovkin’s Theorem A in a quantitative way and with rates of convergence.

One more motivation follows.

Theorem C (see [3], p. 217). Let f ∈Cn ([−π ,π ]), n ≥ 1, and µ a measure on [−π ,π ] of mass m > 0. Put

β :=

(

∫

(

sin
|t|
2

)n+1

·µ (dt)

) 1
n+1

and denote by ω := ω1

(

f (n),β
)

the modulus of continuity of f (n) at β . Then

∣

∣

∣

∣

∫

f dµ − f (0)

∣

∣

∣

∣

≤ | f (0)| · |m− 1|+
n

∑
k=1

∣

∣

∣ f (k) (0)
∣

∣

∣

k!
·
∣

∣

∣

∣

∫

tkµ (dt)

∣

∣

∣

∣

+

w

[

m
1

n+1 +
π

n+ 1

]

· πnβ n

n!
.

Anastassiou in [4]-[6] established a series of sharp inequalities for various cases of the parameters of the problem.
However, Weba in [7]-[10] was the first, among many workers in quantitative results of Shisha-Mond type, to produce
inequalities for stochastic processes. He assumed that the positive linear operators L j are E-commutative (E means
expectation) and stochastically simple. According to his work, if a stochastic process X (t,ω), t ∈ Q - a compact convex
subset of a real normed vector space, ω ∈ Q - probability space, is to be approximated by positive linear operators L j,
then the maximal error in the qth mean is (q ≥ 1)

∥

∥L jX −X
∥

∥= sup
t∈Q

(

E
∣

∣(L jX)(t,ω)−X (t,ω)
∣

∣

q) 1
q .

So, Weba established upper bounds for
∥

∥L jX −X
∥

∥ involving his own natural general first modulus of continuity of X with
several interesting applications.

Anastassiou met ([11]) the pointwise case of q = 1. Without stochastic simplicity of L j he found nearly best and best

upper bounds for
∣

∣E (L jX)(x0)− (EX)(x0)
∣

∣, x0 ∈ Q.
The author here continues his above work on the trigonometric approximation of stochastic processes, now at the

Caputo stochastic fractional level. He derives pointwise and uniform trigonometric Caputo fractional stochastic
Shisha-Mond type inequalities, see the main Theorems 3, 4 and the several related corollaries. He gives an extensive
trigonometric application to stochastic Bernstein operators. He finishes with a pointwise and a uniform fractional
trigonometric stochastic Korovkin theorem, derived by Theorems 3, 4. The stochastic convergences, about stochastic
processes, of our trigonometric fractional Korovkin Theorems 5, 6 are implied only by the convergences of real basic
non-stochastic functions.

Our results here are built on [12].

2 Background - I

We need
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Definition 1.([13]) Let non-integer α > 0, n = ⌈α⌉ (⌈·⌉ is the ceiling of the number), t ∈ [a,b] ⊂ R, ω ∈ Ω , where

(Ω ,F ,P) is a general probability space. Here X (t,ω) stands for a stochastic process. Assume that X (·,ω) ∈ ACn ([a,b])

(spaces of functions X (·,ω) with X (n−1) (·,ω) ∈ AC ([a,b]) absolutely continuous functions), ∀ ω ∈ Ω .
We call stochastic left Caputo fractional derivative

Dα
∗aX (x,ω) =

1

Γ (n−α)

∫ x

a
(x− t)n−α−1

X (n) (t,ω)dt, (1)

∀ x ∈ [a,b], ∀ ω ∈ Ω .
And, we call stochastic right Caputo fractional derivative

Dα
b−X (x,ω) =

(−1)n

Γ (n−α)

∫ b

x
(z− x)n−α−1

X (n) (z,ω)dz, (2)

∀ x ∈ [a,b], ∀ ω ∈ Ω . Above Γ stands for the gamma function.

We make

Remark.(to Definition 1) We further assume here that

∣

∣

∣X
(n) (t,ω)

∣

∣

∣≤ M, ∀ (t,ω) ∈ [a,b]×Ω ,

where M > 0.
Then, by (1), we have

|Dα
∗aX (x,ω)| ≤ 1

Γ (n−α)

∫ x

a
(x− t)n−α−1

∣

∣

∣X
(n) (t,ω)

∣

∣

∣dt ≤

M

Γ (n−α)

∫ x

a
(x− t)n−α−1

dt =
M (x− a)n−α

Γ (n−α + 1)
.

That is

|Dα
∗aX (x,ω)| ≤ M (x− a)n−α

Γ (n−α + 1)
, ∀ x ∈ [a,b] , any ω ∈ Ω . (3)

Also, from (2) we get
∣

∣Dα
b−X (x,ω)

∣

∣≤ 1

Γ (n−α)

∫ b

x
(z− x)n−α−1

∣

∣

∣X
(n) (z,ω)

∣

∣

∣dz ≤

M

Γ (n−α)

∫ b

x
(z− x)n−α−1

dz =
M (b− x)n−α

Γ (n−α + 1)
.

That is
∣

∣Dα
b−X (x,ω)

∣

∣≤ M (b− x)n−α

Γ (n−α + 1)
, ∀ x ∈ [a,b] , any ω ∈ Ω . (4)

It is not strange to assume that Dα
∗aX , Dα

b−X are stochastic processes.

By [14], p. 388, we get that Dα
∗aX (·,ω) ∈ C ([a,b]), ∀ ω ∈ Ω . And by [15], we get that Dα

b−X (·,ω) ∈ C ([a,b]), ∀
ω ∈ Ω .

Similarly, we obtain

|Dα
∗tX (x,ω)| ≤ M (x− t)n−α

Γ (n−α + 1)
≤ M (b− t)n−α

Γ (n−α + 1)
, (5)

∀ x ∈ [t,b] , any t ∈ [a,b] , ∀ ω ∈ Ω ,
and

∣

∣Dα
t−X (x,ω)

∣

∣≤ M (t − x)n−α

Γ (n−α + 1)
≤ M (t − a)n−α

Γ (n−α + 1)
, (6)

∀ x ∈ [a, t] , any t ∈ [a,b] , ∀ ω ∈ Ω .
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Above Dα
∗tX , Dα

t−X are assumed to be stochastic processes for any t ∈ [a,b], and it holds Dα
∗tX (·,ω) ∈ C ([t,b]),

Dα
t−X (·,ω) ∈C ([a, t]), ∀ ω ∈ Ω .

Clearly, then

|E (Dα
∗tX)(x)| ≤ M (b− t)n−α

Γ (n−α + 1)
, (7)

∀ x ∈ [t,b], any t ∈ [a,b], where E is the expectation operator (EX)(t) =
∫

Ω X (t,ω)P(dω) and similarly,

∣

∣E
(

Dα
t−X

)

(x)
∣

∣≤ M (t − a)n−α

Γ (n−α + 1)
, (8)

∀ x ∈ [a, t], any t ∈ [a,b] .
We observe that the first modulus of continuity (δ > 0)

ω1 (E (Dα
∗tX) ,δ )[t,b] := sup

x,y∈[t,b]:
|x−y|≤δ

|E (Dα
∗tX)(x)−E (Dα

∗tX)(y)|

(7)

≤ 2M (b− t)n−α

Γ (n−α + 1)
, (9)

any t ∈ [a,b] .
Hence, it holds (δ > 0)

sup
t∈[a,b]

ω1 (E (Dα
∗tX) ,δ )[t,b] ≤

2M (b− a)n−α

Γ (n−α + 1)
. (10)

Similarly, it holds (δ > 0)

sup
t∈[a,b]

ω1

(

E
(

Dα
t−X

)

,δ
)

[a,t]
≤ 2M (b− a)n−α

Γ (n−α + 1)
. (11)

We also set

ω1 (E (Dα
t X) ,δ ) := max

{

ω1 (E (Dα
∗tX) ,δ )[t,b] ,ω1

(

E
(

Dα
t−X

)

,δ
)

[a,t]

}

, (12)

where δ > 0.
We make

Remark.Let the positive linear operator L mapping C ([a,b]) into B([a,b]) (the bounded functions). By the Riesz
representation theorem ([16]) we have that there exists µt unique, completed Borel measure on [a,b] with

µt ([a,b]) = L(1)(t)> 0, (13)

such that

L( f ) (t) =

∫

[a,b]
f (s)dµt (s) , ∀ t ∈ [a,b] , ∀ f ∈C ([a,b]) . (14)

We denote ‖·‖∞ = ‖·‖∞,[−π ,π ] the supremum norm.

Next we specify [a,b] as [−π ,π ]. Clearly then L : C ([−π ,π ])→ B([−π ,π ]) is the positive linear operator on hand.
Here n = ⌈α⌉, α /∈N, α > 0, k = 1, ...,n− 1. By the use of Hölder’s inequality we notice that

L

(

(

sin

( |s− t|
4

))k
)

(t) =

∫

[−π ,π ]

(

sin

( |s− t|
4

))k

dµt (s)≤

(

∫

[−π ,π ]

(

sin

( |s− t|
4

))α+1

dµt (s)

) k
α+1

(µt ([−π ,π ]))
α+1−k

α+1 = (15)

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) k
α+1

(L(1)(t))
α+1−k

α+1 .
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That is

L

(

(

sin

( |s− t|
4

))k
)

(t)≤ (16)

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) k
α+1

(L(1)(t))
α+1−k

α+1 ,

for k = 1, ...,n− 1.
Consequently, it holds

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))k
)

(t)

∥

∥

∥

∥

∥

∞

≤ (17)

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

k
α+1

∞

‖L(1)‖
α+1−k

α+1
∞ ,

for k = 1, ...,n− 1.
In this work we will use a lot the following well known inequality:

|z| ≤ π sin

( |z|
2

)

, ∀ z ∈ [−π ,π ] . (18)

Furthermore, we observe that

∣

∣

∣L
(

(s− t)k
)

(t)
∣

∣

∣=

∣

∣

∣

∣

∫

[−π ,π ]
(s− t)k

dµt (s)

∣

∣

∣

∣

≤
∫

[−π ,π ]
|s− t|k dµt (s) =

2k

∫

[−π ,π ]

( |s− t|
2

)k

dµt (s)
(18)

≤ (2π)k
∫

[−π ,π ]

(

sin

( |s− t|
4

))k

dµt (s) (19)

= (2π)k
L

(

(

sin

( |s− t|
4

))k
)

(t) .

That is
∣

∣

∣L
(

(s− t)k
)

(t)
∣

∣

∣≤ (2π)k
L

(

(

sin

( |s− t|
4

))k
)

(t) , (20)

∀ t ∈ [−π ,π ], and
∥

∥

∥L
(

(s− t)k
)

(t)
∥

∥

∥

∞
≤ (2π)k

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))k
)

(t)

∥

∥

∥

∥

∥

∞

, (21)

all k = 1, ...,n− 1.
Then, by (16) and (20) we get

∣

∣

∣L

(

(s− t)k
)

(t)
∣

∣

∣≤ (2π)k

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) k
α+1

(L(1)(t))
α+1−k

α+1 , (22)

k = 1, ...,n− 1, ∀ t ∈ [−π ,π ], and by (17) and (21), we find

∥

∥

∥L

(

(s− t)k
)

(t)
∥

∥

∥

∞
≤ (2π)k

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

k
α+1

‖L(1)‖
α+1−k

α+1
∞ , (23)

k = 1, ...,n− 1.
We also have

L

(

|s− t|α+1
)

(t) =

∫

[−π ,π ]
|s− t|α+1

dµt (s) =
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2α+1
∫

[−π ,π ]

( |s− t|
2

)α+1

dµt (s)
(18)

≤ (2π)α+1
∫

[−π ,π ]

(

sin

( |s− t|
4

))α+1

dµt (s) (24)

= (2π)α+1
L

(

(

sin

( |s− t|
4

))α+1
)

(t) .

That is

L
(

|s− t|α+1
)

(t)≤ (2π)α+1
L

(

(

sin

( |s− t|
4

))α+1
)

(t) , (25)

∀ t ∈ [−π ,π ] ,
and

∥

∥

∥L
(

|s− t|α+1
)

(t)
∥

∥

∥

∞
≤ (2π)α+1

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

∞

. (26)

Also we have

Dα
∗tX (t,ω) = Dα

t−X (t,ω) = 0, (27)

∀ ω ∈ Ω , see [17], pp. 358-359.

We assume that

Dα
∗tX (s,ω) = 0, for s < t,

and

Dα
t−X (s,ω) = 0, for s > t,

∀ ω ∈ Ω .

3 Preliminaries

Let (Ω ,F ,P) be a probabilistic space and L1 (Ω ,F ,P) be the space of all real-valued random variables Y = Y (ω) with

∫

Ω
|Y (ω)|P(dω)< ∞.

Let X = X (t,ω) denote a stochastic process with index set [a,b]⊂ R and real state space (R,B), where B is the σ -field
of Borel subsets of R. Here C ([a,b]) is the space of continuous real-valued functions on [a,b] and B ([a,b]) is the space of
bounded real-valued functions on [a,b]. Also CΩ ([a,b]) =C

(

[a,b] ,L1 (Ω ,F ,P)
)

is the space of L1-continuous stochastic

processes in t and BΩ ([a,b]) =

{

X : sup
t∈[a,b]

∫

Ω |X (t,ω)|P(dω)< ∞

}

, obviously CΩ ([a,b])⊂ BΩ ([a,b]).

Let α > 0, α /∈ N, ⌈α⌉ = n, and consider the subspace of stochastic processes

C
α ,n
Ω ([a,b]) := {X : X (·,ω) ∈ ACn ([a,b]) , ∀ ω ∈ Ω and

∣

∣

∣X (n) (t,ω)
∣

∣

∣ ≤ M, ∀ (t,ω) ∈ [a,b]× Ω , where M > 0;

X (k) (t,ω) ∈ CΩ ([a,b]), k = 0,1, ...,n− 1; also Dα
∗tX , Dα

t−X are stochastic processes for any t ∈ [a,b]}. That is, for every

ω ∈ Ω we have X (t,ω) ∈Cn−1 ([a,b]).
Consider the linear operator

L : CΩ ([a,b]) →֒ BΩ ([a,b]) .

If X ∈CΩ ([a,b]) is nonnegative and LX , too, then L is called positive. If EL = LE , then L is called E-commutative.

4 Background - II

Following 3. Preliminaries we proved
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Theorem 1.([12]) Consider the positive E-commutative linear operator L : CΩ ([a,b]) →֒ BΩ ([a,b]), and α > 0, α /∈ N,

⌈α⌉= n, and let X ∈C
α ,n
Ω ([a,b]), with δ > 0.

Then

|(E (LX))(t)− (EX)(t)| ≤ |(EX)(t)| |(L(1)) (t)− 1|+ (28)

n−1

∑
k=1

∣

∣

∣

(

EX (k)
)

(t)
∣

∣

∣

k!

∣

∣

∣L
(

(s− t)k
)

(t)
∣

∣

∣+
ω1 (E (Dα

t X) ,δ )

Γ (α + 1)

(

L
(

|s− t|α+1
)

(t)
) α

α+1









(L(1)(t))
1

α+1 +

(

L
(

|s− t|α+1
)

(t)
) 1

α+1

δ (α + 1)









,

∀ t ∈ [a,b] .
Above ω1 (E (Dα

t X) ,δ ) is as in (12).

We also mention

Theorem 2.([12]) All as in Theorem 1. Then

‖E (LX)−EX‖∞ ≤ ‖EX‖∞ ‖L(1)− 1‖∞+

n−1

∑
k=1

∥

∥

∥EX (k)
∥

∥

∥

∞

k!

∥

∥

∥
L
(

(s− t)k
)

(t)
∥

∥

∥

∞
+ sup

t∈[a,b]

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(29)

∥

∥

∥L
(

|s− t|α+1
)

(t)
∥

∥

∥

α
α+1

∞









‖L(1)‖
1

α+1
∞ +

∥

∥

∥L
(

|s− t|α+1
)

(t)
∥

∥

∥

1
α+1

∞

δ (α + 1)









< ∞.

We specify:

Definition 2.If 0 < α < 1, then n = 1, and C
α ,1
Ω ([a,b]) := {X : X (·,ω) ∈ AC ([a,b]) , ∀ ω ∈ Ω and

∣

∣

∣
X (1) (t,ω)

∣

∣

∣
≤ M, ∀

(t,ω) ∈ [a,b]×Ω , where M > 0; X (t,ω) ∈ CΩ ([a,b]) ; also Dα
∗tX, Dα

t−X are stochastic processes for any t ∈ [a,b]}. We

will specialize on C
α ,1
Ω ([−π ,π ]) .

Note 1.From [9, pp. 3-5] we have the following results
(i) C ([a,b])⊂CΩ ([a,b]) ,
(ii) if X ∈CΩ ([a,b]), then EX ∈C ([a,b]),
and
(iii) if L is E-commutative, then L maps the subspace C ([a,b]) into B([a,b]) .

5 Main Results

We present the following pointwise result over [−π ,π ] .

Theorem 3.Consider the 3. Preliminaries for [a,b] = [−π ,π ] and the positive E-commutative linear operator

L : CΩ ([−π ,π ]) →֒ BΩ ([−π ,π ]), and α > 0, α /∈ N, ⌈α⌉= n, and let X ∈C
α ,n
Ω ([−π ,π ]), with δ > 0.

Then

|(E (LX))(t)− (EX)(t)| ≤ |(EX)(t)| |(L(1)) (t)− 1|+

n−1

∑
k=1

∣

∣

∣

(

EX (k)
)

(t)
∣

∣

∣

k!
(2π)k

L

(

(

sin

( |s− t|
4

))k
)

(t)+

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(2π)α

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) α
α+1
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(L(1)(t))
1

α+1 +
2π

δ (α + 1)

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) 1
α+1



 , (30)

∀ t ∈ [−π ,π ] .
Above ω1 (E (Dα

t X) ,δ ) is over [−π ,π ].

Proof.From (28) we have (∀ t ∈ [−π ,π ])

|(E (LX))(t)− (EX)(t)| ≤ |(EX)(t)| |(L(1)) (t)− 1|+

n−1

∑
k=1

∣

∣

∣

(

EX (k)
)

(t)
∣

∣

∣

k!

∣

∣

∣L
(

(s− t)k
)

(t)
∣

∣

∣+
ω1 (E (Dα

t X) ,δ )

Γ (α + 1)

(

L
(

|s− t|α+1
)

(t)
) α

α+1









(L(1)(t))
1

α+1 +

(

L

(

|s− t|α+1
)

(t)
) 1

α+1

δ (α + 1)









(by (20), (25))

≤ |(EX)(t)| |(L(1)) (t)− 1|+

n−1

∑
k=1

∣

∣

∣

(

EX (k)
)

(t)
∣

∣

∣

k!
(2π)k

L

(

(

sin

( |s− t|
4

))k
)

(t)+

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(2π)α

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) α
α+1



(L(1)(t))
1

α+1 +
2π

δ (α + 1)

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) 1
α+1



 , (31)

proving the claim.

By (30) we obtain the following uniform estimate

Theorem 4.All as in Theorem 3. Then

‖E (LX)−EX‖∞ ≤ ‖EX‖∞ ‖L(1)− 1‖∞+

n−1

∑
k=1

∥

∥

∥EX (k)
∥

∥

∥

∞

k!
(2π)k

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))k
)

(t)

∥

∥

∥

∥

∥

∞

+

sup
t∈[−π ,π ]

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(2π)α

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

α
α+1

∞



‖L(1)‖
1

α+1
∞ +

2π

δ (α + 1)

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

1
α+1

∞



< ∞. (32)

We give
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Corollary 1.Consider the positive E-commutative linear operator L : CΩ ([−π ,π ]) →֒ BΩ ([−π ,π ]), and 0 < α < 1 and

let X ∈C
α ,1
Ω ([−π ,π ]), with δ > 0.

Then

|(E (LX))(t)− (EX)(t)| ≤ |(EX)(t)| |(L(1)) (t)− 1|+

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(2π)α

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) α
α+1



(L(1)(t))
1

α+1 +
2π

δ (α + 1)

(

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

) 1
α+1



 , (33)

∀ t ∈ [−π ,π ] .

Proof.By (30).

We continue with

Corollary 2.All as in Corollary 1. Then

‖E (LX)−EX‖∞ ≤ ‖EX‖∞ ‖L(1)− 1‖∞+

sup
t∈[−π ,π ]

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(2π)α

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

α
α+1

∞



‖L(1)‖
1

α+1
∞ +

2π

δ (α + 1)

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

1
α+1

∞



 . (34)

Proof.From (33).

Corollary 3.All as in Corollary 1 and L(1) = 1. Then

‖E (LX)−EX‖∞ ≤

sup
t∈[−π ,π ]

ω1 (E (Dα
t X) ,δ )

Γ (α + 1)
(2π)α

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

α
α+1

∞



1+
2π

δ (α + 1)

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

1
α+1

∞



 . (35)

Proof.From (34).

In particular we give

Corollary 4.All as in Corollary 1 and L(1) = 1. Then

‖E (LX)−EX‖∞ ≤

2α+1πα

Γ (α + 1)
sup

t∈[−π ,π ]

ω1



E (Dα
t X) ,

2π

α + 1

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

1
α+1

∞





∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

α
α+1

∞

. (36)
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Proof.By (35): we take there

δ =
2π

α + 1

∥

∥

∥

∥

∥

L

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

1
α+1

∞

> 0.

In case of

∥

∥

∥

∥

L

(

(

sin
(

|s−t|
4

))α+1
)

(t)

∥

∥

∥

∥

∞

= 0, we have that L

(

(

sin
(

|s−t|
4

))α+1
)

(t) = 0, ∀ t ∈ [−π ,π ] . That is, by (14),

∫

[−π ,π ]

(

sin
(

|s−t|
4

))α+1

dµt (s) = 0, ∀ t ∈ [−π ,π ], where µt is a probability measure on [−π ,π ] .

Since sin
(

|s−t|
4

)

≥ 0, ∀ s ∈ [−π ,π ], we get sin
(

|s−t|
4

)

= 0, a.e., that is |s− t|= 0, a.e., and s = t, a.e., which means

µt {s ∈ [−π ,π ] : s 6= t}= 0, i.e. µt = δt , ∀ t ∈ [−π ,π ] , where δt is the unit Dirac measure.
Consequently we have

E (LX)(t) = L(EX)(t) =

∫

[−π ,π ]
(EX)(s)dδt (s) = (EX)(t) ,

∀ t ∈ [−π ,π ] .
That is E (LX) = EX over [−π ,π ]. Therefore both sides of inequality (36) equal to zero.
Hence (36) is always true.

6 Application

Consider the Bernstein polynomials on [−π ,π ] for f ∈C ([−π ,π ]) :

BN ( f ) (x) =
N

∑
k=0

(

N

k

)

f

(

−π +
2πk

N

)(

x+π

2π

)k(π − x

2π

)N−k

, (37)

N ∈N, any x ∈ [−π ,π ]. There are positive linear operators from C ([−π ,π ]) into itself.
Setting g(t) = f (2πt −π), t ∈ [0,1], we have g(0) = f (−π), g(1) = f (π), and

(BNg)(t) =
N

∑
k=0

(

N

k

)

g

(

k

N

)

tk (1− t)N−k = (BN f ) (x) , x ∈ [−π ,π ] . (38)

Here x = ϕ (t) = 2πt −π is an 1− 1 and onto map from [0,1] onto [−π ,π ]. Clearly here g ∈C ([0,1]).
Notice also that

(

BN

(

(·− x)2
))

(x) =
[(

BN

(

(·− t)2
))

(t)
]

(2π)2 =
(2π)2

N
t (1− t)

=
(2π)2

N

(

x+π

2π

)(

π − x

2π

)

=
1

N
(x+π)(π − x)≤ π2

N
, ∀ x ∈ [−π ,π ] .

I.e.
(

BN

(

(·− x)2
))

(x)≤ π2

N
, ∀ x ∈ [−π ,π ] . (39)

In particular
(BN1)(x) = 1, ∀ x ∈ [−π ,π ] . (40)

Define the corresponding stochastic application of BN as follows:

BN (X (·,ω))(t) =
N

∑
k=0

(

N

k

)

X

(

−π +
2πk

N
,ω

)(

t +π

2π

)k(
π − t

2π

)N−k

, (41)

∀ N ∈N, ∀ t ∈ [−π ,π ], ∀ ω ∈ Ω , where X is a stochastic process. Clearly BNX is a stochastic process.
Notice that

E (BNX)(t) =
N

∑
k=0

(

N

k

)

(EX)

(

−π +
2πk

N

)(

t +π

2π

)k(π − t

2π

)N−k

= BN (EX)(t) , (42)

i.e. EBN = BNE , that is BN is an E-commutative positive linear operator from CΩ ([−π ,π ]) into itself.
We give
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Corollary 5.Let 0 < α < 1 and X ∈C
α ,1
Ω ([−π ,π ]). Then

‖E (BNX)−EX‖∞ ≤ 2α+1πα

Γ (α + 1)

sup
t∈[−π ,π ]

ω1



E (Dα
t X) ,

2π

α + 1

∥

∥

∥

∥

∥

BN

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

1
α+1

∞





∥

∥

∥

∥

∥

BN

(

(

sin

( |s− t|
4

))α+1
)

(t)

∥

∥

∥

∥

∥

α
α+1

∞

, (43)

∀ N ∈N.

Proof.By (36).

In particular we get:

Corollary 6.Let X ∈C
1
2 ,1

Ω ([−π ,π ]). Then

‖E (BNX)−EX‖∞ ≤ 4
√

2

sup
t∈[−π ,π ]

ω1






E

(

D
1
2
t X

)

,
4π

3

∥

∥

∥

∥

∥

BN

(

(

sin

( |s− t|
4

)) 3
2

)

(t)

∥

∥

∥

∥

∥

2
3

∞







∥

∥

∥

∥

∥

BN

(

(

sin

( |s− t|
4

)) 3
2

)

(t)

∥

∥

∥

∥

∥

1
3

∞

, (44)

∀ N ∈N.

Proof.By (43) for α = 1
2
.

We make

Remark.By |sinx|< |x|, ∀ x ∈ R−{0}, in particular sinx ≤ x, for x ≥ 0, we get

(

sin

( |·− t|
4

)) 3
2

≤
( |·− t|

4

) 3
2

=
1

8
|·− t| 3

2 .

Hence
∥

∥

∥

∥

∥

BN

(

(

sin

( |·− t|
4

)) 3
2

)

(t)

∥

∥

∥

∥

∥

∞

≤ 1

8

∥

∥

∥BN

(

|·− t| 3
2

)

(t)
∥

∥

∥

∞
. (45)

We observe that

BN

(

|·− t| 3
2

)

(t) =
N

∑
k=0

∣

∣

∣

∣

t +π − 2πk

N

∣

∣

∣

∣

3
2
(

N

k

)(

t +π

2π

)k(
π − t

2π

)N−k

(by discrete Hölder’s inequality)

≤
[

N

∑
k=0

(

t +π − 2πk

N

)2(
N

k

)(

t +π

2π

)k(
π − t

2π

)N−k
] 3

4

(46)

=
(

BN

(

(·− t)2
)

(t)
) 3

4
(39)

≤ π
3
2

N
3
4

, ∀ t ∈ [−π ,π ] .
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Consequently it holds
∥

∥

∥BN

(

|·− t| 3
2

)

(t)
∥

∥

∥

∞
≤ π

3
2

N
3
4

, (47)

and
∥

∥

∥

∥

∥

BN

(

(

sin

( |·− t|
4

)) 3
2

)

(t)

∥

∥

∥

∥

∥

∞

≤ π
3
2

8N
3
4

, ∀ N ∈ N. (48)

We derive

Proposition 1.Let X ∈C
1
2 ,1

Ω ([−π ,π ]). Then

‖E (BNX)−EX‖∞ ≤ 2
√

2π
4
√

N
sup

t∈[−π ,π ]

ω1

(

E

(

D
1
2
t X

)

,
π2

3
√

N

)

, (49)

∀ N ∈N.
Hence lim

N→∞
E (BNX) = EX, uniformly.

Proof.By (44) and (48).

7 Commutative Trigonometric Caputo fractional Stochastic Korovkin Results

Here L is meant as a sequence of positive E-commutative linear operators and all assumptions are as in Theorem 3.

We give

Theorem 5.We further assume that L(1)(t) → 1 and L

(

(

sin
(

|s−t|
4

))α+1
)

(t) → 0, then (E (LX))(t) → (EX)(t), for

any X ∈C
α ,n
Ω ([−π ,π ]), ∀ t ∈ [−π ,π ], a pointwise convergence; where α > 0, α /∈ N, ⌈α⌉= n.

Proof.Based on (30) and (16), and that L(1)(t) is bounded as a sequence of functions. Also ω1 (E (Dα
t X) ,δ ) over [−π ,π ]

is bounded, see (10), (11) and (12).

We continue with

Theorem 6.We further assume that L(1)(t)→ 1, uniformly and
∥

∥

∥

∥

L

(

(

sin
(

|s−t|
4

))α+1
)

(t)

∥

∥

∥

∥

∞

→ 0, then E (LX)→ EX, uniformly over [−π ,π ], for any X ∈C
α ,n
Ω ([−π ,π ]); where α > 0,

α /∈N, ⌈α⌉= n.

Proof.Based on (32) and (17), and that ‖L(1)‖∞ is bounded. Also it is sup
t∈[−π ,π ]

ω1 (E (Dα
t X) ,δ )< ∞, by (10), (11) and (12).

We finish with

Remark.The stochastic convergences of Theorems 5, 6 are derived by the convergences of the basic and simple real

non-stochastic functions

{

1,
(

sin
(

|s−t|
4

))α+1
}

, an amazing fact!
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