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1 Introduction

The classical Ostrowski inequality was established in 1938
by Ostrowski [1], and is given as follows: For every x ∈
[a,b],
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∣

∣

f (x)−
1

b− a

b
∫

a

f (t)dt

∣

∣

∣

∣

∣

∣

(1)

≤

[

1

4
+

(x− a+b
2
)2

(b− a)2

]

(b− a)
∥

∥ f ′
∥

∥

∞
,

where f is a differentiable function defined on a finite
interval [a,b], whose derivative is integrable and bounded
over [a,b]. Moreover the constant 1/4 is the best possible.

During the past few years many researchers have
given considerable attention to Ostrowski’s type
inequalities for their applications in different aspects. In
particular, such inequalities can be used to estimate errors
in approximating values of a function by its integral
mean. Also, they can be used in numerical analysis to
obtain error bounds for some special means, and for
quadrature rules of approximating the Riemann integral.
Several generalizations and variants of Ostrowski-type
inequalities have been obtained, see for example [2]-[6].

In [7], Set et al. have introduced new Ostrowski-type
inequalities for strongly convex functions. Also, they have
established several integral inequalities which involve
product of strongly-convex and convex functions. In [8],
Tunc has introduced new Ostrowski-type inequalities for

absolutely continuous mappings whose first derivatives in
absolute value are h-convex.

In [9], Angulo et al. have introduced the notion of
strongly h-convex functions defined on real normed
spaces and presented some properties and representations
of such functions. They have developed a characterization
of inner product spaces involving the new notion of
strongly h-convex functions, and obtained
Hermite–Hadamard–type inequality for such functions.
For further information about strongly convex functions,
we refer the reader to [10].

The main purpose of this paper is to generalize the
results obtained in [7] and [8], and establish some new
Ostrowski-type inequalities for the class of functions with
the property that the absolute value of their derivatives are
strongly h-convex. Moreover, we discuss some
applications of the results obtained.

Throughout this paper, h : [0,1]→ [0,∞) is a function,
R is the set of real numbers, I is any interval and I◦ is the
interior of I.

Recall that for a < b, a function f : [a,b] → R is
strongly h-convex with modulus c > 0 if

f ((1− t)x+ ty) (2)

≤ h((1− t)) f (x)+ h(t) f (y)− ct (1− t)(x− y)2

for all x,y ∈ [a,b] and t ∈ [0,1] .
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2 Main Results

We start this section with the following lemma which will
be used in obtaining our results.

Lemma 2.1. [3] Let f : I ⊂ R → R be a differentiable

mapping on I◦, and a,b ∈ I with a < b. If f
′
∈ L1 [a,b]

then

f (x)−
1

b− a

∫ b

a
f (u)du (3)

=
(x− a)2

b− a

∫ 1

0
t f

′
(tx+(1− t)a)dt

−
(b− x)2

b− a

∫ 1

0
t f

′
(tx+(1− t)b)dt

for each x ∈ [a,b].

Theorem 2.1. Let f : I ⊂ R → R be a differentiable

mapping on I◦, and a,b ∈ I with a < b. Let f
′
∈ L1 [a,b] .

If

∣

∣

∣
f
′
∣

∣

∣
is strongly h-convex on [a,b] with modulus c > 0

and

∣

∣

∣
f
′
∣

∣

∣
≤ M, where M > 0, then
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∣
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f (x)−
1
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∫ b

a
f (u)du

∣

∣

∣

∣

(4)

≤
(x− a)2

b− a

[

M

∫ 1

0
h(t)dt −

c(x− a)2

12

]

+
(b− x)2

b− a

[

M

∫ 1

0
h(t)dt −

c(b− x)2

12

]

for each x ∈ [a,b].

Proof. Using Identity (3) and the triangle inequality, we
get that
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f (u)du
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0
t

∣

∣

∣
f
′
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∣

∣
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(b− x)2
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∫ 1

0
t

∣

∣

∣
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∣

∣
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dt.

Since

∣

∣

∣
f
′
∣

∣

∣
is strongly h-convex on [a,b] with modulus c >

0 and

∣

∣

∣
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′
∣

∣

∣
≤ M, we have
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0
t

∣

∣
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′
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∣

∣
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0
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∣

∣
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′
(x)

∣

∣

∣
+ th(1− t)

∣
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∣

∣

∣
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]
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∫ 1

0
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12

= M

∫ 1

0
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12

and
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0
t

∣

∣

∣
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∣

∣
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≤
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0
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∣

∣
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′
(x)

∣

∣

∣
+ th(1− t)

∣

∣

∣
f
′
(b)

∣

∣

∣

−ct2 (1− t)(b− x)2
]

dt

≤ M

∫ 1

0
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.

This implies that

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
(x− a)2

b− a

[

M

∫ 1

0
h(t)dt −
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12

]

+
(b− x)2

b− a

[

M

∫ 1

0
h(t)dt −

c(b− x)2

12

]

.

Remark 2.1.

1. When h(t) = t for each t ∈ [0,1], Inequality(4) reduces
to the inequality

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
(x− a)2

2(b− a)

[

M−
c(x− a)2

6

]

+
(b− x)2

2(b− a)

[

M−
c(b− x)2

6

]

,

which is obtained in [7].
2. If c −→ 0+ Inequality(4) reduces to the inequality

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(5)

≤
(x− a)2 +(b− x)2

b− a

[

M

∫ 1

0
h(t)dt

]

.

3. In [8], Tunc has obtained the inequality
∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(6)

≤
M
[

(x− a)2 +(b− x)2
]

b− a

[

∫ 1

0
h
(

t2
)

+ h
(

t − t2
)

dt

]

,

where h is super multiplicative, that is,
h(xy) ≥ h(x)h(y) for each x,y ∈ [0,1] , h(t) ≥ t for
each t ∈ [0,1] , and f satisfies the conditions of

Theorem 2.1 except that strong h-convexity of

∣

∣

∣
f
′
∣

∣

∣
is

replaced by h−convexity. Clearly, Inequality (5) is
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better than Inequality (6) because of the fact that

∫ 1

0
h(t)dt =

∫ 1

0
h(t)(t +(1− t))dt

≤
∫ 1

0
h(t)(h(t)+ h(1− t))dt

=

∫ 1

0
h
(

t2
)

+ h
(

t − t2
)

dt.

Corollary 2.1. In Inequality(4), if we choose x = a+b
2

then
we obtain the midpoint inequality

∣

∣

∣

∣

f

(

a+ b

2

)

−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(7)

≤
M (b− a)

2

[

∫ 1

0
h(t)dt

]

−
c(b− a)3

96
.

Corollary 2.2. Suppose that h(t) = ts for each t ∈ [0,1] ,
where s ∈ [0,1). Let f : I ⊂ R → R be a differentiable

mapping on I◦, and a,b ∈ I with a < b. Let f
′
∈ L1 [a,b] .

If

∣

∣

∣
f
′
∣

∣

∣
is strongly h-convex on [a,b] with modulus c > 0

and

∣

∣

∣
f
′
∣

∣

∣
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∣
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∣

∣
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1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(8)
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(x− a)2
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[

M
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]
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M
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−
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12

]

.

for each x ∈ [a,b].

Proof. Note that

∫ 1

0
h(t)dt =

∫ 1

0
tsdt

=
1

s+ 1
.

Theorem 2.2. Suppose that q > 1 with 1
p
+ 1

q
= 1. Let f :

I ⊂ R→R be a differentiable mapping on I◦, and a,b ∈ I

with a < b. If f
′
∈ L1 [a,b] and

∣

∣
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′
∣

∣

∣

q
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on [a,b] with modulus c > 0 and

∣
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∣

∣

∣
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∣

∣

∣
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f (u)du
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∣

∣

∣

(9)
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(

1
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) 1
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b− a

[

2Mq

∫ 1

0
h(t)dt −

c(x− a)2

6

] 1
q

+
(b− x)2

b− a

[

2Mq

∫ 1

0
h(t)dt −

c(b− x)2

6

] 1
q



 .

for each x ∈ [a,b].

Proof. Using Identity (3) and the triangle inequality, we
get that
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∣

∣

∣

f (x)−
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b− a

∫ b

a
f (u)du
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∣

∣

∣
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∫ 1

0
t

∣

∣

∣
f
′
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∣

∣

∣
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∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣
dt.

By Holder’s inequality,
∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣
dt
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a
t pdy
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∣

∣
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∣

∣

q

dt

)
1
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1
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p
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a

∣

∣
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′
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∣

∣

∣

q

dt
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q

,
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∣

∣
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f
′
(tx+(1− t)b)

∣

∣

∣
dt

≤
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∫ b

a
t pdy
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1
p
(

∫ b

a

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣

q

dt
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1
q
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(

1

p+ 1

)
1
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(

∫ b

a

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣

q

dt

)
1
q

.

Since

∣

∣

∣
f

′
∣

∣

∣

q

is strongly h - convex with modulus c and
∣

∣

∣
f
′
∣

∣

∣
≤ M,

∫ b

a

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣

q

dt

≤

∫ 1

0

[

h(t)
∣

∣

∣
f
′
(x)

∣

∣

∣

q

+ h(1− t)
∣

∣

∣
f
′
(a)

∣

∣

∣

q

−ct (1− t)(x− a)2
]

dt

≤ 2Mq

∫ 1

0
h(t)dt −

c(x− a)2

6
,
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and

∫ b

a

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣

q

dt

≤

∫ 1

0

[

h(t)
∣

∣

∣
f
′
(x)

∣

∣

∣

q

+ h(1− t)
∣

∣

∣
f
′
(b)

∣

∣

∣

q

−ct (1− t)(b− x)2
]

dt

≤ 2Mq

∫ 1

0
h(t)dt −

c(b− x)2

6
.

Therefore,
∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤

(

1

p+ 1

)
1
p

×





(x− a)2

b− a

[

2Mq

∫ 1

0
h(t)dt −

c(x− a)2

6

]
1
q

+
(b− x)2

b− a

[

2Mq

∫ 1

0
h(t)dt −

c(b− x)2

6

]
1
q



 .

Remark 2.2.

1. When h(t) = t for each t ∈ [0,1], Inequality(9) reduces
to the inequality

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(10)

≤

(

1

p+ 1

)
1
p

×





(x− a)2

b− a

[

Mq −
c(x− a)2

6

]
1
q

+
(b− x)2

b− a

[

Mq −
c(b− x)2

6

]
1
q



 ,

which is obtained in [7].
2. If c −→ 0+, Inequality(4) reduces to the inequality

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(11)

≤
(x− a)2 +(b− x)2

b− a

(

1

p+ 1

) 1
p
[

2Mq

∫ 1

0
h(t)dt

]
1
q

.

3. In [8], Tunc has obtained the inequality
∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(12)

≤
M (h(1))

1
q

[

(x− a)2 +(b− x)2
]

b− a

[

∫ 1

0
h(t p)dt

]
1
p

,

where h is super additive, that is, h(x+ y) ≥ h(x) +
h(y) for each x,y ∈ [0,1] , h(t) ≥ t for each t ∈ [0,1] ,
and f satisfies the conditions of Theorem 2 except that

strong h-convexity of

∣

∣

∣
f
′
∣

∣

∣
is replaced by h−convexity.

Clearly, Inequality (11) is better than Inequality (12)
because of the facts that

1

p+ 1
=

∫ 1

0
t pdt

≤

∫ 1

0
h(t p)dt,

and

2

∫ 1

0
h(t)dt =

∫ 1

0
h(t)+ h(1− t)dt

≤

∫ 1

0
h(1)dt = h(1) .

Corollary 2.3. In Inequality (9), if we choose x= a+b
2

then
we obtain the midpoint inequality
∣

∣

∣

∣

f

(

a+ b

2

)

−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
(b− a)

2

(

1

p+ 1

) 1
p

[

2Mq

∫ 1

0
h(t)dt −

c(b− a)2

24

] 1
q

.

(13)

The following Theorem gives an improvement of
Inequality (9).

Theorem 2.3. Suppose that q > 1 with 1
p
+ 1

q
= 1. Let f :

I ⊂R→R be a differentiable mapping on I◦, and a,b ∈ I

with a < b. If f
′
∈ L1 [a,b] and

∣

∣

∣
f
′
∣

∣

∣

q

is strongly h-convex

on [a,b] with modulus c > 0 and

∣

∣

∣
f
′
∣

∣

∣
≤ M, where M > 0,

then
∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

(14)

≤
(x− a)2

2(b− a)

[

2Mq

∫ 1

0
h(t)dt −

c(x− a)2

6

]
1
q

+
(b− x)2

2(b− a)

[

2Mq

∫ 1

0
h(t)dt −

c(b− x)2

6

]
1
q

.

for each x ∈ [a,b].

Proof. Using Identity (3) and the triangle inequality, we
get that

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
(x− a)2

b− a

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣
dt

+
(b− x)2

b− a

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣
dt.
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Using Holder’s inequality and the fact that t = t
1
p t

1
q , we

get that

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣
dt

≤

(

∫ 1

0
tdt

)
1
p
(

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣

q

dt

)
1
q

=

(

1

2

) 1
p
(

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣

q

dt

)
1
q

,

and

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣
dt

≤

(

∫ 1

0
tdt

)
1
p
(

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣

q

dt

)
1
q

=

(

1

2

)
1
p
(

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣

q

dt

)
1
q

.

Since

∣

∣

∣
f

′
∣

∣

∣

q

is strongly h - convex with modulus c and
∣

∣

∣
f
′
∣

∣

∣
≤ M,

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)a)

∣

∣

∣

q

dt

≤

∫ 1

0
t

[

h(t)
∣

∣

∣
f
′
(x)

∣

∣

∣

q

+ h(1− t)
∣

∣

∣
f
′
(a)

∣

∣

∣

q

−ct (1− t)(x− a)2
]

dt

≤ Mq

∫ 1

0
h(t)dt −

c(x− a)2

12
,

and

∫ 1

0
t

∣

∣

∣
f
′
(tx+(1− t)b)

∣

∣

∣

q

dt

≤

∫ 1

0
t

[

h(t)
∣

∣

∣
f
′
(x)

∣

∣

∣

q

+ h(1− t)
∣

∣

∣
f
′
(b)

∣

∣

∣

q

−ct (1− t)(b− x)2
]

dt

≤ Mq

∫ 1

0
h(t)dt −

c(b− x)2

12
.

Therefore,

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
(x− a)2

2
1
p (b− a)

[

Mq

∫ 1

0
h(t)dt −

c(x− a)2

12

] 1
q

+
(b− x)2

2
1
p (b− a)

[

Mq

∫ 1

0
h(t)dt −

c(b− x)2

12

]
1
q

=
(x− a)2

2(b− a)

[

2Mq

∫ 1

0
h(t)dt −

c(x− a)2

6

]
1
q

+
(b− x)2

2(b− a)

[

2Mq

∫ 1

0
h(t)dt −

c(b− x)2

6

]
1
q

.

Corollary 2.4. In Inequality (9), if we choose x= a+b
2

then
we obtain the midpoint inequality

∣

∣

∣

∣

f

(

a+ b

2

)

−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
(b− a)

4

[

2Mq

∫ 1

0
h(t)dt −

c(b− a)2

24

]
1
q

. (15)

Remark 2.3. If c −→ 0+, Inequality (15) reduces to the
inequality

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
M (b− a)

2
2− 1

q

[

∫ 1

0
h(t)dt

]
1
q

.

(16)

3 Some Applications

We start this section with an application to cumulative
distribution functions. Let X be a random variable taking
its values in the finite interval [a,b] , where a < b,with a
probability density function f : [a,b] → [0,1]. The
cumulative distribution function is defined as:

F (x) = Pr(X ≤ x) =

∫ x

a
f (t)dt.

The expectation of X is defined as:

E (X) =

∫ b

a
t f (t)dt.

Proposition 3.1. Let X be a random variable taking its
values in the finite interval [a,b] , where a < b, with a
probability density function f : [a,b] → [0,1]. If
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f ∈ L1 [a,b] such that | f | is strongly h-convex on [a,b]
with modulus c > 0 and | f | ≤ M, where M > 0, then

∣

∣

∣

∣

F (x)−
b−E (X)

b− a

∣

∣

∣

∣

(17)

≤
(x− a)2

b− a

[

M

∫ 1

0
h(t)dt −

c(x− a)2

12

]

+
(b− x)2

b− a

[

M

∫ 1

0
h(t)dt −

c(b− x)2

12

]

.

for each x ∈ [a,b].

Proof. Using integration by parts and the facts that F
′
= f

and F (b) = 1, we get that

E (X) = b−
∫ b

a
F (t)dt.

Using Inequality (4) with f replaced by F , we have

∣

∣

∣

∣

F (x)−
1

b− a

∫ b

a
F (u)du

∣

∣

∣

∣

≤
(x− a)2

b− a

[

M

∫ 1

0
h(t)dt −

c(x− a)2

12

]

+
(b− x)2

b− a

[

M

∫ 1

0
h(t)dt −

c(b− x)2

12

]

.

But
∫ b

a
F (t)dt = b−E (X) ,

which implies that

∣

∣

∣

∣

F (x)−
b−E (X)

b− a

∣

∣

∣

∣

≤
(x− a)2

b− a

[

M

∫ 1

0
h(t)dt −

c(x− a)2

12

]

+
(b− x)2

b− a

[

M

∫ 1

0
h(t)dt −

c(b− x)2

12

]

.

The second application of the results obtained is
devoted to arithmetic and generalized log means. Recall
that for any two positive numbers a,b with a 6= b, the
arithmetic mean is defined as:

A(a,b) =
a+ b

2
,

and the generalized log-mean is defined as:

Lr (a,b) =

(

br+1 − ar+1

(r+ 1)(b− a)

)

1
r

for r ∈ R−{−1,0} .

Proposition 3.2. Let 0 < a < b, α ∈ (0,1], and q > 1 with
1
p
+ 1

q
= 1. Then for each s ∈ [2,∞), we have

|As (a,b)−Ls
s (a,b)| (18)

≤
M (b− a)

2
2− 1

q

(

1

α + 1

)
1
q

.

Proof. Let s ∈ [2,∞) and f (x) = xs for x ∈ [a,b] . Let

h(t) = tα for t ∈ [0,1] . Note that f
′
∈ L1 [a,b],

∣

∣

∣
f
′
∣

∣

∣

q

is

h-convex on [a,b], and

∣

∣

∣
f
′
∣

∣

∣
≤ M = sbs−1. Using

Inequality (16), we have

∣

∣

∣

∣

f (x)−
1

b− a

∫ b

a
f (u)du

∣

∣

∣

∣

≤
M (b− a)

2
2− 1

q

[

∫ 1

0
h(t)dt

]
1
q

=
M (b− a)

2
2− 1

q

(

1

α + 1

)
1
q

.

But

f

(

a+ b

2

)

= As (a,b) ,

and

1

b− a

∫ b

a
f (u)du = Ls

s (a,b) ,

which implies that

|As (a,b)−Ls
s (a,b)|

≤
M (b− a)

2
2− 1

q

(

1

α + 1

) 1
q

.

For our next application, recall that a tagged partition
P of a finite interval [a,b] is a finite sequence of numbers
a = x0 < x1 < · · · < xn = b, with corresponding tags
ti ∈ [xi−1,xi], for i = 1, . . . ,n. In addition P is said to be

uniform if (xi − xi−1) =
(b−a)

n
for each i = 1, . . . ,n. The

Riemann sum of a Riemann integrable function f over the
interval [a,b] with respect to the tagged partition P is
given as:

S ( f ,P) =
n

∑
k=1

f (ti)(xi − xi−1).

Proposition 3.3. Let f : [a,b] → R be a differentiable

mapping on on (a,b), where a < b. Let f
′
∈ L1 [a,b] such

that

∣

∣

∣
f
′
∣

∣

∣
is strongly h-convex on [a,b] with modulus c > 0

and

∣

∣

∣
f
′
∣

∣

∣
≤ M, where M > 0. If

P : a = x0 < x1 < · · · < xn = b is a uniform tagged
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partition with corresponding tags ti ∈ [xi−1,xi], then
∣

∣

∣

∣

S ( f ,P)−

∫ b

a
f (u)du

∣

∣

∣

∣

(19)

≤
M (b− a)2

n

[

∫ 1

0
h(t)dt

]

−
c(b− a)4

96n3
.

Proof. Let P : a = x0 < x1 < · · · < xn = b be a uniform
tagged partition with corresponding tags ti ∈ [xi−1,xi]. For
each 1 ≤ i ≤ n, applying inequality (4) over the interval
[xi−1,xi] , we have

∣

∣

∣

∣

f (ti)(xi − xi−1)−
∫ xi

xi−1

f (u)du

∣

∣

∣

∣

≤ M
[

(ti − xi−1)
2 +(xi − ti)

2
]

[

∫ 1

0
h(t)dt

]

−
c

12

[

(ti − xi−1)
4 +(xi − ti)

4
]

.

Using the triangle inequality and properties of Riemann
integral, we get that

∣

∣

∣

∣

S ( f ,P)−

∫ b

a
f (u)du

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

f (ti) (xi − xi−1)−
n

∑
i=1

∫ xi

xi−1

f (u)du

∣

∣

∣

∣

∣

≤
n

∑
i=1

∣

∣

∣

∣

f (ti) (xi − xi−1)−

∫ xi

xi−1

f (u)du

∣

∣

∣

∣

≤ M

[

∫ 1

0
h(t)dt

]

n

∑
i=1

[

(ti − xi−1)
2 +(xi − ti)

2
]

−
c

12

n

∑
i=1

[

(ti − xi−1)
4 +(xi − ti)

4
]

Note that
n

∑
i=1

[

(ti − xi−1)
2 +(xi − ti)

2
]

≤
n

∑
i=1

(xi − xi−1)
2 ≤

(b− a)2

n
,

and for each i = 1,2, ...,n , x ∈ [xi−1,xi] ,
[

(x− xi−1)
4 +(xi − x)4

]

≥

[

(

xi−1 + xi

2
− xi−1

)4

+

(

xi −
xi−1 + xi

2

)4
]

=
1

8
(xi − xi−1)

4 =
(b− a)4

8n4
.

Therefore,
∣

∣

∣

∣

S ( f ,P)−
∫ b

a
f (u)du

∣

∣

∣

∣

≤
M (b− a)2

n

[

∫ 1

0
h(t)dt

]

−
c(b− a)4

96n3
.
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