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Abstract: We study the linearization of nonlinear second-order ordinary differential equations from the point transformation viewpoint.

A new algorithm for finding linearizing point transformation is constructed. The transformation is used to map the underlying class

of equations into a linear second-order ordinary differential equation which is in the general form. The general solution of this class

of equations is obtained by solving the linearized equation and applying the point transformation. Moreover, we apply the obtained

linearization criteria to the interesting problems of nonlinear ordinary differential equations, nonlinear partial differential equations and

system of nonlinear ordinary differential equations.
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1 Introduction

Most differential equation systems in engineering,
economics and also mathematics are naturally nonlinear
problems; see, examples [1,2,3,4,5]. This system is
always difficult to analyze its solution directly. One of the
powerful method to solve them is to transform the
original systems into the system of linear differential
equations which is much more easier to analyze, this
method is simply called linearization.

The main tools used to solve the linearization problem
are transformations such as point, contact, tangent,
generalized Sundman transformations. In this paper, we
focus on linearization of nonlinear second-order ordinary
differential equations from the point transformation
viewpoint.

The linearization problem via a point transformation
for a second-order ordinary differential equation was first
investigated by Lie [6]. He found criteria that a nonlinear
equation can be mapped into a linear equation via a point
transformation. Later, Liouville [7] and Tresse [8]
attacked the equivalence problem for second-order
ordinary differential equations in terms of relative
invariants of the equivalence group of point

transformations. Moreover, Cartan [9] approached the
second-order ordinary differential equations by geometric
structure of a certain form.

Since the Lie test is the main tool of the algorithm
development in the paper, let us recall it in detail.

Lie obtained the result that any second-order
linearizable ordinary differential equation y′′ = f (x,y,y′)
which can be mapped into the Laguerre canonical form of
linear equation u′′ = 0 via a point transformation
t = ϕ(x,y),u = ψ(x,y) has to be of the form

y′′+ a(x,y)y′3 + b(x,y)y′2 + c(x,y)y′+ d(x,y) = 0, (1)

where

a =∆−1 (ϕyψyy −ϕyyψy) ,

b =∆−1 (ϕxψyy −ϕyyψx + 2(ϕyψxy −ϕxyψy)) ,

c =∆−1 (ϕyψxx −ϕxxψy + 2(ϕxψxy −ϕxyψx)) ,

d =∆−1 (ϕxψxx −ϕxxψx) ,

and ∆ = ϕxψy − ϕyψx 6= 0 is a Jacobian of change of
variables. Moreover, he also found that a second-order
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ordinary differential equation is linearizable if and only if
it has the form (1) with the coefficients satisfying the
conditions

3axx − 2bxy + cyy − 3axc+ 3ayd + 2bxb− 3cxa

−cyb+ 6dya = 0,

bxx − 2cxy + 3dyy− 6axd+ bxc+ 3byd− 2cyc

−3dxa+ 3dyb = 0.

Linearizing transformations are found by solving
involutive systems of partial differential equations. These
systems depend on the coefficient a.

If a = 0, then ϕ = ϕ(x) and the involutive system is

ψyy = ψyb, 2ψxy = (ϕx
−1ψyϕxx +ψyc),

ψxx = ϕx
−1ψxϕxx +ψyd,

2ϕxϕxxx − 3ϕ2
xx −ϕx

2(4(dy + bd)− (2cx+ c2)) = 0.

(2)

If a 6= 0, then ϕy 6= 0 and the functions ϕ(x,y) and
ψ(x,y) satisfy the involutive system of partial differential
equations

ϕyψyy = ϕyyψy + a∆ ,

2ϕ2
y ψxy = 2ϕxyϕyψy −ϕyy∆ − (aϕx − bϕy)∆ ,

ϕ2
y ψxx = 2ϕxyϕyψx −ϕxϕyyψx −ϕ2

x ψxa

+ϕxϕyψxb+ϕ2
y (ψyd −ψxc) ,

ϕ2
y ϕxx = 2ϕxyϕxϕy −ϕ2

x ϕyy −ϕ3
x a+ϕ2

x ϕyb

−ϕxϕ2
y c+ϕ3

y d,

2ϕyϕyyy = 3
(

ϕ2
yy − 2ϕxyϕya+ 2ϕxϕyya+ϕ2

x a2
)

−2ϕxϕy (ay + ab)

+ϕ2
y

(

2by − 4ax+ 4ac− b2
)

,

6ϕ2
y ϕxyy = 3(4ϕxyϕyyϕy −ϕxϕ2

yy + 2ϕxϕyyϕyb

−2ϕxyϕ2
y b)+ 3ϕ3

x a2

+3ϕxϕ2
y (−2ax + 2ac− b2)

+2ϕ3
y (−bx + 2cy+ 3ad).

(3)

In this paper, we focus on finding the necessary and
sufficient conditions which allow the nonlinear
second-order ordinary differential equation to be
transformed to the general linear equation
u′′ + α(t)u′ + β (t)u + γ(t) = 0. We have found a new
algorithm for finding linearizing point transformation. It
is worth mentioning that among the examples one can
find such well-known equations as parachute equation,
equation for the variable frequency oscillator, equation
describing the geodesics on pseudosphere and equation
for non-polynomial oscillator. We also make use of a
travelling wave solution to obtain the solution of modified
generalized Vakhnenko equation. Furthermore, the
linearization criteria can be applied to Newtonian systems
as well. Note also that after obtaining the linearizing
transformation the general solution of the original
equation is obtained in quadrature.

2 Formulation of the linearization theorems

2.1 Obtaining necessary condition of

linearization

We begin with investigation the necessary conditions for
linearization. Recall that a general linear second-order
ordinary differential equation has the form

u′′+α(t)u′+β (t)u+ γ(t) = 0. (4)

Here we consider the nonlinear second-order ordinary
differential equations

y′′ = f (x,y,y′) , (5)

which can be transformed to the general linear equation
(4) by the point transformation

t = ϕ (x,y) ,

u = ψ (x,y) .
(6)

Notice that if ϕy = 0, a transformation (6) is called a fiber-
preserving transformation. So, we arrive at the following
theorem.

Theorem 1.Any second-order ordinary differential

equations linearizable by point transformation has to be

the form

y′′+ a(x,y)y′3 + b(x,y)y′2 + c(x,y)y′+ d(x,y) = 0, (7)

where

a = ∆−1(−ϕyyψy +ϕ3
y β ψ +ϕ3

y γ +ϕ2
y ψyα

+ϕyψyy),

b = ∆−1(−2ϕxyψy + 3ϕxϕ2
y β ψ + 3ϕxϕ2

y γ

+2ϕxϕyψyα +ϕxψyy −ϕyyψx +ϕ2
y ψxα

+2ϕyψxy),

c = ∆−1(−2ϕxyψx −ϕxxψy + 3ϕ2
x ϕyβ ψ + 3ϕ2

x ϕyγ

+ϕ2
x ψyα + 2ϕxϕyψxα + 2ϕxψxy +ϕyψxx),

d = ∆−1(−ϕxxψx +ϕ3
x β ψ +ϕ3

x γ +ϕ2
x ψxα

+ϕxψxx),

(8)

and ∆ = ϕxψy − ϕyψx 6= 0 is a Jacobian of change of

variables.

Proof. The derivatives are changed by the formulae

u′ (t) =
Dxψ

Dxϕ

=
ψx + y′ψy

ϕx + y′ϕy

= g(x,y,y′),
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u′′ (t) =
Dxg

Dxϕ

=
gx + y′gy + y′′gy′

ϕx + y′ϕy

= P(x,y,y′,y′′),

where

gx =
(ϕx + y′ϕy) (ψxx + y′ψxy)− (ψx + y′ψy) (ϕxx + y′ϕxy)

(ϕx + y′ϕy)
2

,

gy =
(ϕx + y′ϕy)(ψxy + y′ψyy)− (ψx + y′ψy)(ϕxy + y′ϕyy)

(ϕx + y′ϕy)
2

,

gy′ =
(ϕx + y′ϕy)(ψy)− (ψx + y′ψy) (ϕy)

(ϕx + y′ϕy)
2

,

and Dx = ∂
∂x

+ y′ ∂
∂y

+ y′′ ∂
∂y′ + ... is a total derivative.

Substituting the resulting expression into the linear
equation (4) we arrive at the necessary form (7), where
a,b,c and d are some functions of x and y as defined in
system of equation (8).

2.2 Obtaining sufficient conditions of

linearization, linearizing transformation and

coefficients of linear equation

We have shown in the previous subsection that every
linearizable second-order ordinary differential equation
belongs to the class of equation (7). In this subsection, we
formulate the main theorems containing sufficient
conditions for linearization as well as the methods for
constructing the linearizing transformations and the
coefficients of linear equation.

To obtain sufficient conditions, one has to solve the
compatibility problem. Consider the representations of
the coefficients a,b,c and d through the unknown
functions ϕ and ψ in system of equation (8). The
compatibility analysis depends on the value of ϕy. A
complete study of all cases is given here.

Case ϕy = 0

From relations (8), one defines

a = 0, ψyy = ψyb,

α = (ϕxxψy − 2ϕxψxy +ϕxψyc)/(ϕ2
x ψy), (9)

β = (−ϕ2
x ψyγ + 2ψxyψx −ψxxψy −ψxψyc

+ψ2
y d)/(ϕ2

x ψyψ).
(10)

Since αy = 0, differentiating equation (9) with respect to
y, one arrives at the condition

cy = 2bx.

Since βy = 0, differentiating equation (10) with respect to
y, one arrives at the coefficient

γ = (−dyψ2
y ψ − 2ψ2

xyψ + 2ψxyψxψy +ψxyψycψ

+ψxxyψyψ −ψxxψ2
y −ψxψ2

y c+ψ3
y d

−ψ2
y bdψ)/(ϕ2

x ψ2
y ).

(11)

Since γy = 0, differentiating equation (11) with respect to
y, one arrives at the condition

bxx =−bxc+ byd+ dyy + dyb.

Case ϕy 6= 0

According to our notations, the following equations hold

ψx = (ϕxψy −∆)/ϕy, (12)

and

αx = (ϕxαy)/ϕy, (13)

βx = (ϕxβy)/ϕy, (14)

γx = (ϕxγy)/ϕy. (15)

So, a system of equation (8) becomes

−ϕyyψy+ϕ3
y β ψ+ϕ3

y γ+ϕ2
y ψyα +ϕyψyy−a∆ = 0, (16)

−2∆yϕy − 3ϕxϕyyψy + 3ϕxϕ3
y β ψ + 3ϕxϕ3

y γ

+3ϕxϕ2
y ψyα + 3ϕxϕyψyy + 3ϕyy∆ −ϕ2

y α∆

−ϕyb∆ = 0,

(17)

−∆xϕ2
y − 3∆yϕxϕy + 3ϕxyϕy∆ − 3ϕ2

x ϕyyψy

+3ϕ2
x ϕ3

y β ψ + 3ϕ2
x ϕ3

y γ + 3ϕ2
x ϕ2

y ψyα + 3ϕ2
x ϕyψyy

+3ϕxϕyy∆ − 2ϕxϕ2
y α∆ −ϕ2

y c∆ = 0,

(18)

−∆xϕxϕ2
y −∆yϕ2

x ϕy +ϕxyϕxϕy∆ +ϕxxϕ2
y ∆

−ϕ3
x ϕyyψy +ϕ3

x ϕ3
y β ψ +ϕ3

x ϕ3
y γ +ϕ3

x ϕ2
y ψyα

+ϕ3
x ϕyψyy +ϕ2

x ϕyy∆ −ϕ2
x ϕ2

y α∆ −ϕ3
y ∆d = 0.

(19)

From equation (16), one obtains the coefficient

γ = (ϕyyψy −ϕ3
y β ψ −ϕ2

y ψyα −ϕyψyy + a∆)/ϕ3
y . (20)

And from equation (17), one obtains the coefficient

α = (−2∆yϕy + 3ϕxa∆ + 3ϕyy∆ −ϕyb∆)/(ϕ2
y ∆). (21)

Substituting equation (20) into equation (15), one obtains
the coefficient

β = (−axϕy∆ 2 + ayϕx∆ 2∆xϕya∆ −∆yyϕy∆ + 2∆ 2
y ϕy

−2∆yϕxa∆ − 2∆yϕyy∆ +∆yϕyb∆ + 3ϕxya∆ 2

+ϕyyy∆ 2 −ϕyyb∆ 2)/(ϕ3
y ∆ 2).

(22)
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From equation (18), one gets the derivative

∆x = (∆yϕxϕy + 3ϕxyϕy∆ − 3ϕ2
x a∆ − 3ϕxϕyy∆

+2ϕxϕyb∆ −ϕ2
y c∆)/ϕ2

y .

From equation (19), one gets the derivative

ϕxx = (2ϕxyϕxϕy −ϕ3
x a−ϕ2

x ϕyy +ϕ2
x ϕyb

−ϕxϕ2
y c+ϕ3

y d)/ϕ2
y .

Substituting equation (21) into equation (13), one gets the
derivative

ϕxyy = (3axϕxϕ2
y + 3ayϕ2

x ϕy − bxϕ3
y − 3byϕxϕ2

y

+2cyϕ3
y + 9ϕxyϕxϕya+ 6ϕxyϕyyϕy − 3ϕxyϕ2

y b

−3ϕ3
x a2 − 9ϕ2

x ϕyya+ 3ϕ2
x ϕyab+ 3ϕxϕyyyϕy

−6ϕxϕ2
yy + 3ϕxϕyyϕyb− 3ϕxϕ

2
y ac

+3ϕ3
y ad)/(3ϕ2

y ).

Substituting equation (22) into equation (14), one gets the
condition

axx = (3axc− 3ayd+ 2bxy − 2bx+ 3cxa− cyy

+cyb− 6dya)/3.

Comparing the mixed derivative (ϕxx)yy = (ϕxyy)x, one
gets the condition

bxx = 6axd − bxc− byd+ 2cxy + 2cyc+ 3dxa

−3dyy− 3dyb.

All obtained results can formulate the main theorems
containing sufficient conditions for linearization, the
methods for constructing the linearizing transformations
and the coefficients of linear equation as follows.

Theorem 2.Equation (7) is linearizable by point

transformation (6) with the function ϕ = ϕ(x) if and only

if its coefficients satisfy the conditions

a = 0, cy = 2bx, bxx =−bxc+ byd+ dyy + dyb. (23)

Provided that the conditions (23) are satisfied, the

linearizing transformation (6) is obtained by solving the

compatible system of equations

ϕy = 0,ψyy = ψyb, (24)

and the coefficients α ,β and γ of the resulting linear

equation (4) are given by equations

α = (ϕxxψy − 2ϕxψxy +ϕxψyc)/(ϕ2
x ψy),

β = (−ϕ2
x ψyγ + 2ψxyψx −ψxxψy −ψxψyc

+ψ2
y d)/(ϕ2

x ψyψ),

γ = (−dyψ2
y ψ − 2ψ2

xyψ + 2ψxyψxψy +ψxyψycψ

+ψxxyψyψ −ψxxψ2
y −ψxψ2

y c+ψ3
y d

−ψ2
y bdψ)/(ϕ2

x ψ2
y ).

Theorem 3.Equation (7) is linearizable by point

transformation (6) if and only if its coefficients satisfy the

conditions

axx = (3axc− 3ayd+ 2bxy − 2bx+ 3cxa− cyy

+cyb− 6dya)/3,

bxx = 6axd− bxc− byd+ 2cxy + 2cyc+ 3dxa

−3dyy − 3dyb.

(25)

Provided that the conditions (25) are satisfied, the

linearizing transformation (6) is obtained by solving the

compatible system of equations

ψx = (ϕxψy −∆)/ϕy,

∆x = ∆yϕxϕy + 3ϕxyϕy∆ − 3ϕ2
x a∆ − 3ϕxϕyy∆

+2ϕxϕyb∆ −ϕ2
y c∆)/ϕ2

y ,

ϕxx = (2ϕxyϕxϕy −ϕ3
x a−ϕ2

x ϕyy +ϕ2
x ϕyb

−ϕxϕ2
y c+ϕ3

y d)/ϕ2
y ,

ϕxyy = (3axϕxϕ2
y + 3ayϕ2

x ϕy − bxϕ3
y − 3byϕxϕ2

y

+2cyϕ3
y + 9ϕxyϕxϕya+ 6ϕxyϕyyϕy

−3ϕxyϕ2
y b− 3ϕ3

x a2 − 9ϕ2
x ϕyya+ 3ϕ2

x ϕyab

+3ϕxϕyyyϕy − 6ϕxϕ2
yy + 3ϕxϕyyϕyb

−3ϕxϕ2
y ac+ 3ϕ3

y ad)/(3ϕ2
y ),

(26)

and the coefficients α ,β and γ of the resulting linear

equation (4) are given by equations

α = (−2∆yϕy + 3ϕxa∆ + 3ϕyy∆ −ϕyb∆)/(ϕ2
y ∆),

β = (−axϕy∆ 2 + ayϕx∆ 2∆xϕya∆ −∆yyϕy∆ + 2∆ 2
y ϕy

−2∆yϕxa∆ − 2∆yϕyy∆ +∆yϕyb∆ + 3ϕxya∆ 2

+ϕyyy∆ 2 −ϕyyb∆ 2)/(ϕ3
y ∆ 2),

γ = (ϕyyψy −ϕ3
y β ψ −ϕ2

y ψyα −ϕyψyy + a∆)/ϕ3
y .

3 Some applications

In this section we focus on finding some applications
which satisfy Theorem 1, Theorem 2 and Theorem 3. The
obtained results are as follows.

3.1 Parachute equation

The idea of this application is based on a model for
movement of a parachutist during the air using Newton’s
II law is ∑F = ma. The motion of skydiver when the
coefficient of air resistance changes between free-fall and
the final steady state descent with the parachute is dully
deployed.

Consider the parachute equation [10] in the form

y′′+ ky′2 − g = 0, (27)

with initial conditions y(0) = 0 and y′(0) = 0.

Here k = πρCd D2

8m
where
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m is the mass of the body and parachute,
ρ is the density of the fluid in which the body moves,
Cd is the drag coefficient for the parachute (1.5 for

parabolic profile and 0.75 for flat),
D is the effective diameter of the parachute.
The solution of equation (27) is

y =
1

k
(log(

e
√

gkx + 1

2
)−

√

gkx).

3.1.1 Applying the obtained theorems to the problem

By using the obtained theorems, we get the results as
follow. Equation (27) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b = k, c = 0, d =−g.

One can check that these coefficients obey the conditions
in the Theorem 2. Hence, an equation (27) is linearizable
by point transformation. The linearizing transformation is
found by solving the following equations

ϕy = 0, ψyy = kψy. (28)

One can find the particular solution for equations in (28)
as

ϕ = x,ψ =
eky

k
.

Therefore, the linearizing point transformation of (27)
takes the form

t = x, u =
eky

k
. (29)

So, the coefficients of the resulting linear equation (4) are

α = 0, β =−gk, γ = 0.

Hence, the nonlinear equation (27) can be mapped by
transformation (29) into the linear equation

u′′− gku = 0. (30)

The general solution of equation (30) is

u =C1e
√

gkt +C2e−
√

gkt , (31)

where C1 and C2 are arbitrary constants. Substituting
equation (29) into equation (31), we obtain the following
general solution of (27) given by

eky = k(C1e
√

gkx +C2e−
√

gkx). (32)

Substituting the initial condition y(0) = 0 and y′(0) = 0
into equation (32), one obtains the particular solution of
equation (27) as

y =
1

2
(log(

e
√

gkx + 1

2
)−

√

gkx).

3.2 Equation for the variable frequency

oscillator

A variable frequency oscillator (VFO) in electronics is an
oscillator whose frequency can be tuned (i.e. varied) over
some range. It is a necessary component in any tunable
radio receiver or transmitter that works by the
superheterodyne principle and controls the frequency to
which the apparatus is tuned.

In 2013, Mastafa, Al-Dueik and Mara’beh [11]
considered the ordinary differential for the variable
frequency oscillator

y′′+ yy′2 = 0. (33)

They showed that this equation can be linearizable by
generalized Sundman transformation

u(t) = ψ(x,y), dt = φ(x,y)dx, ψy 6= 0.

By using their method, the solution of equation (33) is

erfi(
y√
2
) =C1x+C2,

where erfi(y) = 2√
Π

∫ y
0 et2

dt is an imaginary error function

and C1, C2 are arbitrary constants.

3.2.1 Applying the obtained theorems to the problem

By using the obtained theorems, we get the results as
follow. Equation (33) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b = y, c = 0, d = 0.

One can check that these coefficients obey the conditions
in the Theorem 2. Hence, an equation (33) is linearizable
by point transformation. The linearizing transformation is
found by solving the following equations

ϕy = 0, ψyy = ψyy. (34)

One can find the particular solution for equations (34) as

ϕ = x, ψ =
∫

e
y2

2 dy.

Therefore, the linearizing point transformation of (33)
takes the form

t = x, u =

∫

e
y2

2 dy. (35)

So, the coefficients of the resulting linear equation (4) are

α = 0, β = 0, γ = 0.

Hence, the nonlinear equation (33) can be mapped by
transformation (35) into the linear equation

u′′ = 0.
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So that
u =C1t +C2, (36)

where C1 and C2 are arbitrary constants. Substituting
equation (35) into equation (36), we get the general
solution of (33) as

∫

e
y2

2 dy =C1x+C2,

or
erfi(

y√
2
) =C1x+C2.

3.3 Equation describe the geodesics on

pseudosphere

In 2013, Mastafa, Al-Dueik and Mara’beh [11]
considered the ordinary differential for describes the
geodesics on pseudosphere.

y′′+ 2y′2− e2y = 0. (37)

They showed that this equation can be linearizable by
generalized Sundman transformation

u(t) = ψ(x,y), dt = φ(x,y,y′)dx, ψy 6= 0.

By using their method, the solution of equation (37) is

e−2y + x2 =C1x+C2,

where C1 and C2 are arbitrary constants.

3.3.1 Applying the obtained theorems to the problem

By using the obtained theorems, we get the results as
follow. Equation (37) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b =−2, c = 0, d =−e2y.

One can check that these coefficients obey the conditions
in the Theorem 2. Hence, an equation (37) is linearizable
by point transformation. The linearizing transformation is
found by solving the following equations

ϕy = 0, ψyy =−2ψy. (38)

One can find the particular solution for equations (38) as

ϕ = x,ψ =−1

2
e−2y.

Therefore, one obtains the linearizing transformation

t = x, u =−1

2
e−2y. (39)

So, the coefficients of the resulting linear equation (4) are

α = 0, β = 0, γ =−1.

Hence, the nonlinear equation (37) can be mapped by
transformation (39) into the linear equation

u′′− 1 = 0. (40)

The general solution of equation (40) is

u =
t2

2
+C1t +C2, (41)

where C1 and C2 are arbitrary constant. Substituting
equation (39) into equation (41), we get the general
solution of (37) as

e−2y + x2 =C1x+C2.

3.4 The one-dimensional non-polynomial

oscillator

In the note [12], Mathew and Lakshmanan presented a
remarkable nonlinear system that all its bounded periodic
motions are simple harmonic. The system is a particle
obeying the highly nonlinear equation of motion

(1+λ y2)y′′+(α −λ y′2)y = 0, (42)

where λ and α are arbitrary parameters.

3.4.1 Applying the obtained theorems to the problem

By using the obtained theorems, we get the results as
follow. Equation (42) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b =− λ y

λ y2 + 1
, c = 0, d =

αy

λ y2 + 1
.

One can check that the first and second conditions of
equation (23) in Theorem 2 are satisfied. Now, the last
condition of equation (23) is satisfied when the following
condition holds, that is,

(λ y2 − 2)αλ y = 0.

Two cases arise.

Case 1: α = 0
In this case, the equation (42) takes the form

(1+λ y2)y′′−λ y′2y = 0. (43)

The linearizing transformation is found by solving the
following equations

ϕy = 0, ψyy =− ψyλ y

λ y2 + 1
. (44)
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One can find the particular solution for equation (44) as

ϕ = x, ψ =
1√
λ
(ln |

√

λ y2 + 1+
√

λ y).

Therefore, one obtains the linearizing transformation

t = x, u =
1√
λ
(ln |

√

λ y2 + 1+
√

λ y). (45)

So, the coefficients of the resulting linear equation (4) are

α̃ = 0, β̃ = 0, γ̃ = 0.

Hence, the nonlinear equation (43) can be mapped by
transformation (45) into the linear equation

u′′ = 0. (46)

The general solution of (46) is

u =C1t +C2, (47)

where C1 and C2 are arbitrary constants. Substituting
equation (45) into equation (47), we get the general
solution of equation (43) as

1√
λ
(ln |

√

λ y2 + 1+
√

λ y) =C1x+C2.

Case 2: λ = 2
y2

In this case, the equation (42) takes the form

3y′′y− 2y′2+αy2 = 0. (48)

The linearizing transformation is found by solving the
following equations

ϕy = 0, ψyy =−2ψy

3y
. (49)

One can find the particular solution for equation (49) as

ϕ = x, ψ = y
1
3 .

Therefore, one obtains the linearizing transformation

t = x, u = y
1
3 . (50)

So, the coefficients of the resulting linear equation (4) are

α̃ = 0, β̃ =
α

9
, γ̃ = 0.

Hence, the nonlinear equation (48) can be mapped by
transformation (50) into the linear equation

u′′+
α

9
u = 0. (51)

The general solution of equation (51) is

u =C1 cos

√
α

3
t +C2 sin

√
α

3
t, (52)

where C1 and C2 are arbitrary constants. Substituting
equation (50) into equation (52), we get the general
solution of equation (48) as

y = (C1 cos

√
α

3
x+C2 sin

√
α

3
x)3.

3.5 Modified generalized Vakhnenko equation

In 2009, Ma, Li and Wang [13] considered a modified
generalized Vakhnenko equation (mGVE),

∂

∂x
(D2u+

1

2
pu2+β u)+qDu= 0, D=

∂

∂ t
+u

∂

∂x
, (53)

where p, q, β are arbitrary non-zero constants.
To construct the exact solutions for mGVE is all

important. For examples, when p = β = 0 and q = 1,
equation (53) is reduced to well-known Vakhnenko
equation(VE), which governs the nonlinear propagation
of high-frequency wave in a relaxing medium [14]-[16]
and the VE has soliton solutions as in ref [16]. When
p = q = 1 and β an arbitrary non-zero constant, equation
(53) is reduced as the generalized VE (GVE), in [17] it
was shown that GVE has N-soliton solution. When
p = 2q and β is an arbitrary non-zero constant, equation
(53) has a loop-like, hump-like and cusp-like soliton
solutions [18,19,20]. In [21], it was shown that equation
(53) has travelling wave solution and single-soliton
solution.

3.5.1 Applying the obtained theorems to the problem

Consider a modified generalized Vakhnenko equation (53),
we can rewrite it in the form

2ututx + 2[uuxutx + ut(uuxx + u2
x)]+ 2u2uxx

+2u(ux)
3 + puux+β ux+ q(ut + uux) = 0.

(54)

Of particular interest among solutions of equation (54) are
travelling wave solutions:

u(x, t) = H(x−Dt),

where D is a constant phase velocity and the argument x−
Dt is a phase of the wave. Substituting the representation
of a solution into equation (54), one finds

2D2H ′H ′′− 2DH ′(2HH ′′+H ′2)+ 2H2H ′H ′′

+2HH ′3 + pHH ′+β H ′+ q(−DH ′+HH ′) = 0.
(55)

By using the obtained theorems, we get the results as
follow. Equation (55) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b =− 1

D−H
, c = 0, d =

β −Dq+ pH+ qH

2(D2 − 2DH +H2)
.

From Theorem 2, equation (55) is linearizable if and only
if

β =−Dp.

The linearizing transformation is found by solving the
following equations

ϕH = 0, ψHH =− ψH

D−H
. (56)

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


256 S. Suksern, C. Sawatdithep: Reduction of second-order ODEs into...

One can find the particular solution for equation (56) as

ϕ = x−Dt, ψ = 2DH −H2.

Therefore, one obtains the linearizing transformation

t̃ = x−Dt, ũ = 2DH −H2. (57)

So, the coefficients of the resulting linear equation (4) are

α̃ = 0, β̃ = 0, γ̃ =−(p+ q).

Hence, the nonlinear equation (55) can be mapped by
transformation (57) into the linear equation

ũ′′− (p+ q) = 0. (58)

The general solution of equation (58) is

ũ = (p+ q)
t̃2

2
+C1t̃ +C2, (59)

where C1 and C2 are arbitrary constants. Substituting
equation (57) into equation (59), we get the general
solution of ordinary differential (55) as

2DH −H2 = (p+ q)
(x−Dt)2

2
+C1(x−Dt)+C2.

So, the general solution of partial differential equation is

2Du− u2 = (p+ q)
(x−Dt)2

2
+C1(x−Dt)+C2.

3.6 Newtonian System

In 2001, Soh and Mahomed [22] considered the
Newtonian system:

x′′ = x′2 + y′2, (60)

y′′ = 2x′y′. (61)

Note that x′ = dx
dz

and y′ = dy
dz
. By using the Lie algorithm,

they obtained all the symmetries of equations (60) and
(61). They showed that these equations can be
transformed to the system of equation X ′′ = 0, Y ′′ = 0.

3.6.1 Applying the obtained theorems to the problem

Consider nonlinear second-order ordinary differential
system (60) and (61), combining equations (60) and (61),
one gets

x′′+ y′′ = x′2 + 2x′y′+ y′2. (62)

Let ω = x+ y, so that equation (62) becomes

ω ′′−ω ′2 = 0. (63)

By using the obtained theorems, we get the results as
follow. Equation (63) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b =−1, c = 0, d = 0.

One can check that these coefficients obey the conditions
in the Theorem 2. Hence, an equation (63) is linearizable
by point transformation. The linearizing transformation is
found by solving the following equations

ϕω = 0, ψωω =−ψω . (64)

One can find the particular solution for equation (64) as

ϕ = z,ψ = e−ω .

Therefore, one obtains the linearizing transformation

t = z, u = e−ω . (65)

So, the coefficients of the resulting linear equation (4) are

α = 0, β = 0, γ = 0.

Hence, the nonlinear equation (63) can be mapped by
transformation (65) into the linear equation

u′′ = 0. (66)

The general solution of equation (66) is

u =C1t +C2, (67)

where C1 and C2 are arbitrary constants. Substituting
equation (65) into equation (67), we get the particular
solution

ω =− ln(z).

Since ω = x+ y, we have

x =− ln(z)− y (68)

so that

x′ =−1

z
− y′. (69)

Substituting equation (69) into equation (61), we have

y′′+ 2y′2 +
2

z
y′ = 0. (70)

By using the obtained theorems again, we get the results
as follow. Equation (70) is an equation of the form (7) in
Theorem 1 with the coefficients

a = 0, b = 2, c =
2

z
, d = 0.

One can check that these coefficients obey the conditions
in the Theorem 2. Hence, an equation (70) is linearizable
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by point transformation. The linearizing transformation is
found by solving the following equations

ϕy = 0, ψyy = 2ψy. (71)

One can solve the particular solution for equation in (71)
as

ϕ = z, ψ = ze2y.

Therefore, one obtains the linearizing transformation

t = z, u = ze2y. (72)

So, the coefficients of the resulting linear equation (4) are

α = 0, β = 0, γ = 0.

Hence, the nonlinear equation (70) can be mapped by
transformation (72) into the linear equation

u′′ = 0. (73)

The general solution of equation (73) is

u =C3t +C4, (74)

where C3 and C4 are arbitrary constants. Substituting
equation (72) into equation (74), we get the solution

y =
1

2
ln(

C3z+C4

z
). (75)

Substituting equation (75) into equation (68), we have

x =− lnz− 1

2
ln(

C3z+C4

z
).

So, we get the solution of Newtonian system (60) and (61)
as

x =− ln(z)− 1
2

ln(C3z+C4
z

),

y =
1

2
ln(

C3z+C4

z
).

3.7 Example for case ϕy 6= 0

Consider the nonlinear second-order differential equation
[23]

y′′− 2y′3y = 0. (76)

By setting v = y′. The formulas above lead to

v
dv

dy
− 2v3y = 0.

This a first-order separable differential equation. Its
resolution gives

v =− 1

y2 +C
,

where C is an arbitrary constant. Since y′ = dy
dx

= v, we get

dy

dx
=− 1

y2 +C
.

Since this is a separable first-order differential equation,
one gets, after resolution,

y3 +Cy =−x+C∗,

where C∗ is an arbitrary constant.

3.7.1 Applying the obtained theorems to the problem

By using the obtained theorems, we get the results as
follow. Equation (76) is an equation of the form (7) in
Theorem 1 with the coefficients

a =−2y, b = 0, c = 0, d = 0.

One can check that these coefficients obey the conditions
in the Theorem 3. Hence, an equation (76) is linearizable
by point transformation. The linearizing transformation is
found by solving the following equations

ψx = (ϕxψy −∆)/ϕy, (77)

ϕxx = (ϕx(2ϕxyϕy + 2ϕ2
x y−ϕxϕyy))/ϕ2

y , (78)

ϕxyy = (−6ϕxyϕxϕyy+ 2ϕxyϕyyϕy − 4ϕ3
x y2

+6ϕ2
x ϕyyy− 2ϕ2

x ϕy +ϕxϕyyyϕy

−2ϕxϕ2
yy)/ϕ2

y ,

(79)

∆x = (3∆(ϕxyϕy + 2ϕ2
x y−ϕxϕyy))/ϕ2

y . (80)

One can find the particular solution for the equations (77)-
(80) as

ϕ = y, ψ =−x.

Therefore, one obtains the linearizing transformation

t = y, u =−x. (81)

So, the coefficients of the resulting linear equation (4) are

α = 0, β = 0, γ =−2t.

Hence, the nonlinear equation (76) can be mapped by
transformation (81) into the linear equation.

u′′− 2t = 0. (82)

Therefore, the general solution of equation (82) is

u =C1 +C2t +
t3

3
, (83)

where C1 and C2 are arbitrary constants. Substituting
equation (81) into equation (83), we get the solution

−x =C1 +C2y+
y3

3
.
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4 Conclusion

This paper is devoted to find the conditions which allow
the second-order ordinary differential equation to be
transformed to the general linear equation. Necessary
conditions which guarantee that the second-order
ordinary differential equation can be linearized are found
in Theorem 1. Theorem 2 and Theorem 3 are sufficient
conditions for the linearization problem, they are selected
by the way of finding a linearizing transformation. We
have found that a new algorithm for finding linearizing
point transformation (24) and (26) which can be solved
easier than (2) and (3). Finally, some applications are
provided to demonstrate our procedure.
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