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Abstract: In this paper, we establish some new inequalities of Hermite-Hadamard type for the strongly-generalized nonconvex
function by using the generalized fractional integral operator. Some new results as special cases are provided as well. At the end,

some applications to special mean are obtained.

Keywords: Hermite—-Hadamard inequalities, strongly convex function, generalized fractional integral operator.

1 Introduction

Definition 1./1] A function .% : I C R — R is said to be
convex on I if

Flh+ (1 —10)b) <1.7)+(1—1).F (L)
holds for every £y,0, € I and 1 € [0,1].

Definition 2./2] A function F : I C R — R is called
strongly convex with modulus 0 € R™ | if

F (4 (1 =0)b) <1F () +(1—1).F (6) — 0:(1 —1) (b —£1)?
holds for every £y,0, € I and 1 € [0,1].

Strongly convex functions have been introduced by
Polyak, see [2] and references therein. Since strong
convexity is a strengthening feature of the notion of
convexity, some properties of strongly convex functions
are just stronger versions of known properties of convex
functions. Strongly convex functions have been used for
proving the convergence of a gradient-type algorithm for
minimizing a function. They play an important role in
optimization theory and mathematical economics.

The most significant inequality is the Hermite—Hadamard
integral inequality, see [3]. This double inequality is
expressed as:

0+ 4, 1 l y(fl)—l—y(fz)
< < —r =7
y( 2 >_€2—€1/£1 F(ndr< 2

D

The double inequality (1) has became a very important
foundation within the field of mathematical analysis and
optimization, several applications of these inequalities
have been found in number of settings. Furthermore,
several inequalities of special means can be discovered
for the specific options of the function .%. Due to large
applications of double inequality (1), literature is growing
and giving its some new proofs, augmentations,
improvements and generalizations, see [4]-[10],[11,12,
13,14] and the references therein.

In [5], Raina R. K. introduced a class of functions defined
formally by

+oo k)
Fo )= FIOo Wy 2y W _u g
p,l( ) pA ( ) ,;)F(Pk—i-l)
where p,A > 0,|x| < R and ¢ = (0(0),...,0(k),...) is

a bounded sequence of positive real numbers. Note that,

if we take in (2) p = 1,4 =0 and o(k) = ((azl;gf)k) for

k=0,1,2,..., where o, and y are parameters which can
take arbitrary real or complex values (provided that y #
0,—1,-2,...), and the symbol (a); denotes the quantity

I'(a+k)

(a)r = '@ =a(a+1)...(a+k—1), k=0,1,2,...,
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and restrict its domain to |x| < 1 (with x € C), then we have
the classical hypergeometric function, that is

FO(x) — ey v (@B
Jp,l (x) =F(o,B;7;x) = kgomxk.

Also, if 0 = (1,1,...) with p = &, (Re(a) > 0),A =1
and restricting its domain to x € C in (2) then we have the
classical Mittag-Leffler function

—+oo 1 r

Eq(x) = k;omx .

Now we are able to define a new class of function
involving ﬂ; 5 () (Raina function).

Definition 3.If a function 4 : I — R satisfies the following
inequality

g(f] + laﬁz}gl (Zz — 51)) < (1 — l)%(&) -+ l%(£2) — 9!(1 — l)(ng [1)2,
forall1€[0,1] and £y,4, € I, where ygl(ﬂz —{1) >0,
then ¢4 is called strongly-generalized nonconvex with

modulus value 6 > 0. Taking ygl (la—0)=t,—£; >0
in our definition, then we obtain definition 2.

Definition 4./13] The left and right side generalized
fractional integrals for a function G are defined as

T —
ZTI¢%(1) = M%(z)dl, 7>/,

o T—1
0 _

leg(t) = [ Mg(l)dl, T < by,

2 T 1—7T

Our main goal during this paper is to prove in Section 2
inequalities for the strongly generalized nonconvex
functions by using the generalized fractional integral
operator. We prove several corollaries as special cases of
our main results. In Section 3, some applications to
special mean are obtained. In Section 4, a briefly
conclusion is given as well.

2 Main Results

Throughout this section the following notation is used:

0= [ﬁ[,f[#’gggl(fzfﬁ)] where ﬂ;l(£2761)>0.

Theorem 1.Let & : O — (0,+c0) be strongly-generalized
nonconvex function with modulus value 6 > 0. Then the
following inequality for the generalized fractional integral
holds:

oI+ FS (= )+ (250,60 6T () < (F(0) + ()P~ 20(2— 1)?P,
(3)
where

1 9(F 5 (L—t))

Py = ] , di, = [y (1=0)@(FF, (62— t1))dr.

Proof.Since ¢ is strongly-generalized nonconvex function,
then we have

(g(f] +l..9:’;):l(£2 —51)) < (l - l)%(é[) -l-l%(ﬂz) - 91(1 —l)(€2—£|)2
“)

and

%(f] + (1 — l),?gl(fz —Z])) < lg(él) + (l - l)%(éz) — Gl(l — l)(fg — Z])Z.
%)
Adding (4) and (5), we obtain

g(fl +ly;l(f2 —fl))—l—g(fl + (1 —l)y;l(fz—fl))

< ((1=0F (1) +19 (L) — 01(1 — 1) (L2 — £1)?)

+ (19 (0) + (1= 0D (L) — 0:1(1 — 1) (b — £1)%)
= (G(0))+9 () —261(1 —1) (b — £1). (6)
Multiplying (6) with w on both sides and

integrating the resultant inequality with respect to 1 over
[0, 1], we have required result (3).

Corollary 2Let 4 : O — (0,+0) be strongly generalized
nonconvex function with modulus value 6 > 0. Then the
following inequality for the Riemann integral holds:

O+F2, (L) RY:
setale Tt G@dT< (@) +9 () - Mg

N

Proof-We can easily prove this result by using ¢ (1) =1 in
Theorem 1.

Corollary 3Let 4 : O — (0,+o0) be strongly generalized
nonconvex function with modulus value 6 > 0. Then the

following inequality for the Riemann fractional integral
holds:

m 1890+ 7, (6 - 0) +IE9(0)]
L @)+9(h)  8(L-4) ®
- o o2 +30+2°

Proof:-We can easily prove this result by using ¢ (1) = @
in Theorem 1.

Corollary 4Let 4 : O — (0,+o0) be strongly generalized
nonconvex function with modulus value 6 > 0. Then the
following inequality for the k-Riemann fractional integral
holds: mmm

Ef(a) o @G0 ), o
Fot—aF L s? O Zoale ) g, (O
pa %2
< @) +9(k)) 6(6— )%k ©)
- o (k+a)(2k+oa)”

ProofWe can easily prove this result by using
a

o) = kli,ja) in Theorem 1.
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Corollary 5Let & : O — (0,+o00) be strongly generalized Adding (13) and (14), we have
nonconvex function with modulus value 6 > 0. Then the " o U
following inequality for the conformable fractional G+ 7 (6 —0))%h (b +177, (6= 0)
integral holds: G (b + (1= 0).F5 (L= )% (b + (1= ).F, (L~ 1))
ALY+ T, (6 — 1)) < (%(Z.H%(S))(zg%?) (10) < (1=2(1=0)M(%, %l £) — 91(‘7’)“2*75]2)2[4(%1:%2;[1fl)
) 9{[‘]"“7@‘*2 (6 + o) (8 — 81 - ) } + 21 =)N(%,%:01,0) +2 (0:1(1 —1) (1 — £1)*) . (15)
a2 ekl o ' - 0TS (=) .
. . . Multiplying (15) with —£*——— on both sides and
ProofWe can easily prove this result by using . ine the obtained i ol ith
~ 4(f»— 1)@ in Theorem 1 and & in (0, 1) integrating the obtained inequality with respect to 1 over
() =1tz e [0, 1], then we have required inequality (12).
Corollary 6. Let & : O — (0,40) be strongly

generalized nonconvex function with modulus value
0 > 0. Then the following inequality for the fractional
integral with exponential kernel holds:

[’a+%(/1 +F (b —0))+ ’Zlﬁigl((‘z,(‘l))35(51)]

Q11

_ @) +9(0) {E“T*‘fﬁm—nu}* 075, (L —b)(L— 4)
- o—1 o

where

i 1—
Q:/O 1(1—1)exp (—Taﬁ;l(fz—fl) z) du.

ProofWe can prove this result by
¢(1) = L exp (—1=21) in Theorem 1 and o in (0, 1).

Theorem 7.Let 94, O — (0,400)  be
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
generalized fractional integral holds:

using

(I O F L B TSmO g 1y ) AR
< (P —2P)M(F), %301, 02) — 8(6y — ()2 Py L) il L)
+ 2PNy Gl ) +202 (0 — 1) Py, (12)
where
M(%1,%2:41,62) = G1(L1)%(0) +%1(02)%a(42),
N(41,%;41,42) = 91(£1)%(L2) + 1 (02)%(41),
L(%),%:01,02) =51 (L) +91(02) + (1) +a(4s)
and

! 2
P3:/0 (1= 1Y20(F, (62— £1)1)ds

Proof.Since ¢,,%, are strongly-generalized nonconvex
functions, we have

G (O +1LF5 5 (=) (O + 177, (L —0))
< ((1=0%(0) +1%1 () — 01(1 —1) (L — 1))
X

(1=0%(01) +1%(£2) — 01(1 — 1) (b2 — £1)?)
= (1=0’% (L)% (0) + PG (L)% (6) = 0:(1 =) (b — () (% (0) + % (61))
— 02 (1=0)(la— )% (L) + % (6) +1(1 =) (% ()G (L) +% (L)% (6))
+ (61 (1—=1)(ly— )2 (13)

and
G+ (1=0)F5, (L= 0)G 0+ (1= 0)F], (b~ )

< (G (6) +(1=0% (L) = 01(1 =) (= 1))
x (19 (0) + (1= )% (L) — 61(1 —1) (L2 — £1)?)
= PAQ ()% (0) + (1= 1% (L) () — 07 (1= 1) (b — ) (S (0) + 4 (61))
— 01(1—=1)* (= 01)* (G () +D(£2)) +1(1 = 1) (G ()G (02) + 91 (62) %3 (01))
+ (01 —1)(ta—01)?). (14)

Corollary 8Let  %4,% O — (0,4c) be
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
Riemann integral holds:

> (32 = Qngl( )% (7)dT < Z(M(%l542;51,52)3-4-1\7(%7‘52;41,132))
(16)

00y —1;)?
*%L(%,%;ﬁhgz)wL

02 (0r — £1)*
15

Proof:-We can easily prove this result by using ¢(z) =1 in
Theorem 7.

Corollary 9Let 9, O — (0,400) be
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
Riemann fractional integral holds:

I'la)
[Foa =P [

G0+ T, (= 0)D(0 +F7, (62— ()

+I((1+7° (-t~ 91 (6 )%((.)]

( FaT) aH))M(%,%;éhez)f%L(%%;ghm

e (a N it ) + %W an
Proof:-We can easily prove result by using ¢ (1) = F’((;) in
Theorem 7.
Corollary 10Let IR 0O — (0,40) be

strongly-generalized nonconvex functions with modulus
value 0 > 0. Then the following inequality for the
k-Riemann fractional integral holds:

file) -0+ 7 (6~ 11)

o
@ |15 A2,
)k B

Tl

‘M(fz

o G e ).
+ ’(fﬁygl({z,{]))akﬂl (/1)52(‘1)]

! 2a L eall, —))?
- | M(9] %301, 3) — Ly Gty .0
- (U((tHk) kl}(a+2k+l)> G 90:00:02) = e e 1y M 20 )
2 4
2a da(a+k)0% (6 ~ 1)
2% N Gyl )+ AT ) s
i@z N ) e i) as)

Proof.-We can prove this result by using ¢(z) = ka ( ) in
Theorem 7.
Corollary 11Let 4, O — (0,40) be

strongly-generalized nonconvex functions with modulus
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value 60 > 0. Then the following inequality for the
conformable fractional integral holds:

212%1 (f] +3ZGA(£2 ffl))gz(fl +3ZGA(£2 ,gl))
< (R —2R2)M(91,%;01,02) — 8(La — £1)*RoL(%1, %23 61, 2)
+ 2R2N(g1,g2;£],£2)+292(£2 741 )4R3,

where
Bl b))
1= )
(04

(1+ T, (L~ 1)

R — ) (b — 1)1

_ 1 ]‘1’2
1T LGP a8, ()
and
¢ _
Ry = m ffzzf'(’?gz(fszl) 1+ Tl =) - ACRDED
Proof.-We can prove this result by using ¢ (1) = 1(¢, — 1)~
in Theorem 7 and @ in (0, 1).

Corollary 12Let  4,,% O — (0,40)  Dbe
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
fractional integral with exponential kernel holds:

o

GACED) [I‘?% (b +F, (L= 0) (0 + T, (6= 1))
pANTE

29, -4 “')’%([')]

< (Ui —20)M(%1,%301,6) — 8(6 — 00)*U>L(%) %5301, 2)
+ 2UN(%, %301, 02) +20% (6, — 0,)*Us,

where
1— exp(fAﬂ‘:)L (b —11))
Ul = - )
11—«
FO (L—1)) 1
p.A
UZZ#/O (1= 1) exp(—AFZ, (62— £1)1)ds
and
T3l —1t)
Us —%/O (1 =1 exp(—AFZ, (G- 1)1)d.

ProofWe can prove this result by using
¢(1) = Lexp(—Ar), where A = 1=% in Theorem 7 and o
in (0, 1).

Theorem 13.Let IR O —  (0,4)
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
generalized fractional integral holds:

LJM. (O 4+ T (o~ )6+ TS, (L~ 1))
1

58, -0l (4 )%(z,)}

<5 (A ~2P)F@7. 92:00,0) +4PG(5: 9501, )
—20(6, — 0, PL(G) %y L) + 202 (£, — )4P.} , (19)
where

F(glzag227gla€2)
G(%,%:01,02)

=GL(0) + 9] () + 45 (0) + 95 (L),
=9 (fl)gl (fz) +g2(€1)g2(f2).

Proof.Since ¥,%, are strongly-generalized nonconvex
functions, then we have

G (0 +1F8, (L= 0) (0 +1F8, (= 1))

< ((1=0% (61) + 11 (62) — 0:(1 — 1) (b — £1)%)
(1 =)D (1) +1%(£2) — 0:(1 — 1) (L2 — £1)?)
%{((1 DG () + % (6) — 611 1) (6 — ))°
+ (1= .)+l%<zz)79,<171)<@7(.)2)2}

S[a-gi ) 2920+ 20 g% 0)

—20(6, —01)*(1(1 = 1)°%, (6) + (1 — 0% (L))
T (01— 1)l — 01)2) + (1= 1)*F2(01) + 2GR (0) + 211 — )% (01)%h (62)
= 20(6— 0021 — % () + 2(1 — )% ()] + (6 (171)@24,)2)2] 20)

IA

In a similar way, we have

(—10))
< 3 [PHR(0) + (1 (0) + 20 - )% ()% ()
=206 — 1) (P (1= )% (&) +1(1 = 1)*% (L))
(01— 1) (s~ 0+ PG + (1~ PG (E) + (1 — )5 )
= 20(6—0)*[P(1=0)% () +1(1— 1) % ()] + (0:(1 = 1) (£, — /)2)} @1

GO+ (1=0)F5, (L~ 0)% (6 + (10T,

Adding (20) and (21), we have

G (0 +
+4 (0 +

lﬁcl(fz 741))%2(41 +1JOZ.61(£2 7f]))
(1=0)F 73 (L= 0)) %6 + (1 —1).F ], (6 — 1))

< % (21t —1)+

2
- 21(171)9(@40%(%,%;5,,@)H(@(/grel)z) ].(22)

DF(G2,93:.01,00) +4(1 —1)G (9,501, 05)

FO (L
Multiplying (22) with 9 Fpa ) on both sides and

integrating the obtained inequality with respect to 1 over
[0, 1] we have our required inequality (19).

Corollary 14. Let %,% O — (0,400) be
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
Riemann integral holds:

LT, (=)
[WNZ 02 1/1

2 @2.p (7 /s
G ()% (v)d %[ (F(2.97 .Il.lz?G(%’l,ﬁz,ﬁl‘[_))

(23)

PRy
,ML(% iy, 0n) +26% (0, — £ )4] .

Proof.-We can easily prove this result by using ¢(z) =1 in
Theorem 13.

Corollary 15Let R 0 —  (0,400) be
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
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Riemann fractional integral holds:

m@i@glw {’ﬁ#%l (b + F2 )= 0) (b + .77, (6= 11))
+I(!7|+r7;l(£24,))*gl ((,)%2(4,)] (24)
1 1 20 2, o .
< 3 (m - m) F(glz,gz 0, 0) + mG(%,?fg,fhfg)
, ) 2a W 2, a4 20
- e(zzJI)ZWL(%,J/MJZH@ (b —1y) FaiD | (25)
Proof:-We can easily prove result by using ¢ (1) = F’((;) in
Theorem 13.
Corollary 16Let  4,,% O — (0,4c) be

strongly-generalized nonconvex functions with modulus
value 0 > 0. Then the following inequality for the
k-Riemann fractional integral holds:

I () ., . )
% If‘rk%] @ +:igl(¢z41))gz</, +;igl(¢z41))
EHICEINE:

o P (v
e, +78 0 RS )!z(‘l)]

<3 G, %ty 02)

)F(s«/,z.«/zz;f,.fZH

R S I
Ti(a k) k(a+2kt1) K (ot 2k+ 1)

20

2
_ U — )% %
0(tr —11) M@ f)

Ly Dyt 0y) + 0%y —01)*

2
e . (26)
(a1 2k+1)

Proof.-We can prove this result by using ¢(z) = kli,ja) in
Theorem 13.
Corollary 17Let  4,,% O — (0,4c) be

strongly-generalized nonconvex functions with modulus
value 60 > 0. Then the following inequality for the
conformable fractional integral holds:

2[5015%1((1 +ﬁ;l(€2—€1))g2(€1 +ﬁ;l(€2—€1))
< (Ri —2R2)F (9], 93:01,02) — (L, — 1)’ RaG(G), %2301, 02)
+ 2R L(G), %2301, 42) +20% (Lo — £1)*R3,
where R1,Ry and R3 are defined as in Corollary 11.

Proof-We can prove this result by using ¢ (1) = 1(¢, —1)*~!

in Theorem 13 and  in (0, 1).

Corollary 18Let  4,,% 0O — (0,4c) be
strongly-generalized nonconvex functions with modulus
value 6 > 0. Then the following inequality for the
[fractional integral with exponential kernel holds:

o

Fo 6=t [17]&, (O + T (b~ )% (6 + TS, (b~ 1))

Iy - BB
< (Ui —2Ua)F(92,93:01,6) — 0(6 — 00) U2 G(G1, %3 01, )
+ 2L L(G), %01, 0) + 267 (0 — €1)*Us, @7

where Uy,Uy and Us are defined as in Corollary 12.
ProofWe can prove this result by using

¢(1) = Lexp(—Ai), where A = =2 in Theorem 13 and
ain (0,1).

Remark.If we tend to suppose 6 = 0 in all proved results
of this paper, then all results hold for the generalized
nonconvex function.

Remark.Taking ygﬂ (b — 1) =€, —£; > 0 in Theorems
7 and 13, then all results hold for the strongly convex
function.

Remark.For different positive values of p,A, where
o = (0(0),...,0(k),...) is a bounded sequence of
positive real involving ﬂ;l(-) (Raina function) in our

theorems, we have different fascinating inequalities of
Hermite-Hadamard type.

3 Applications

Consider the following special means for different positive
real numbers /1, {;, as follows:

1.The arithmetic mean:

0+ ¢
A(ly,0) = ];L 2,
2.The harmonic mean:
2
H(€17£2) = 1 1
ntn
3.The logarithmic mean:
b — 1
Ll,l) = —————
(b, 62) In|fy| —In |6y’

4.The generalized log-mean:

ESJFI_ETL] r
5 =8 | rez\{—1.0}
] AL

Using the theory results in Section 2, we give some
applications to special means.

Proposition 1.Let 0 < ¢ < {5 and 6 > 0. Then for r € N
and r > 2, the following inequality hold:

Lr(€17£2) =

0=t

12
(28)

Proof.Taking 4(t) = 7" and ¢ (1) =1 in Theorem 1, one
can obtain the result immediately.

Proposition 2.Let 0 < {; < ¢, and 6 > 0. Then the
following inequality holds:

<

L. (£1,£1+9‘§l(52—€1)) —A(4,6)

1 1

B 0(tr—€)?
L(fhfl +ﬁ;”1(€2_£1)) H (6, 6)

- 12

(29)
Proof.Taking 4 (1) = % and ¢ (1) = in Theorem 1, one can
obtain the result immediately.

Remark.Taking different strongly-generalized nonconvex
functions we can derive many interesting inequalities
using results given in this part and special means.
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4 Perspective

In this paper, we have defined a new class of functions
involving 9,;1(') (Raina  function) and some
Hermite—-Hadamard type integral inequalities are
provided as well. Interested reader can establish new
inequalities via fractional operators or multiplicative
integrals. Also, these results can be applied in convex
analysis, optimization and different areas of pure and
applied sciences.
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