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1 Introduction

Throughout this paper, R is a commutative Noetherian ring
with non-zero identity.

Let a be an ideal of R and let I(G) be the edge ideal
of a graph simple, finite and with no isolated vertices. By
Hi
a
(I(G)) we mean

lim
−→
t∈N

ExtiR(R/a
t , I(G)),

the i-th local cohomology module of I(G) with respect to
the ideal a, for i ≥ 0. For more details about local
cohomology modules, see [1].

Local cohomology was introduced by Grothendieck
and many people have worked about the understanding of
their structure, (non)-vanishing and finiteness properties.
For example, Grothendieck’s non-vanishing theorem is
one of the important theorems in local cohomology

We provide here results for local cohomology
modules which involve the theory of graphs, together
with the edge ideal of a graph. In this study, we
investigate modules which involve the theory of graphs,
together with the edge ideal of a graph simple and finite.

In the Section 2, we put some definitions and
prerequisites for a better understanding of the theory and
results. We introduce preliminaries of the theory of
graphs which involving the edge ideal of a graph G;
associated to the graph G is a monomial ideal

I (G) = (viv j | viv j is an edge of G) ,

with viv j = v jvi and with i 6= j, in the polynomial ring R =
K [v1,v2, . . . ,vs] over a field K, called the edge ideal of G.
The preliminaries of the theory of graphs were introduced
in this Section 2 together with the concepts suitable for the
work.

In the Section 3, we prove some properties of modules
and submodules with respect to theory in question,
properties that involve the edge ideal of a graph G, which
is a graph simple and finite, with no isolated vertices.
Moreover, in this section we use some definitions as edge
subcategory, edge weakly Laskerian module and the
concept of local cohomology module J-cofinite, for J an
ideal of the ring R = K[v1, . . . ,vs].

Throughout the paper, we mean by a graph G, a finite
simple graph with the vertex set V (G) and with no isolated
vertices.

Here we use properties of commutative algebra and
homological algebra for the development of the results
(see [3] and [5]).

Moreover, we observe that this theory of the edge ideal
together with local cohomology can be found in [8] and
[9].

2 Prerequisites of the graphs theory

Let us present in this section the concepts of the graphs
theory that we are using in the course of this work.
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2.1 Edge ideal of a graph

This section is in accordance with [2] and [6].
Let R = K [v1, . . . ,vs] be a polynomial ring over a field

K, and let Z =
{

z1, . . . ,zq

}

be a finite set of monomials in
R. The monomial subring spanned by Z is the
K-subalgebra,

K [Z] = K [z1, . . . ,zq]⊂ R.

In general, it is very difficult to certify whether K [Z]
has a given algebraic property - e.g., Cohen-Macaulay,
normal - or to obtain a measure of its numerical invariants
- e.g., Hilbert function. This arises because the number q

of monomials is usually large.

Thus, consider any graph G, simple and finite without
isolated vertices, with vertex set V (G) = {v1, . . . ,vs}.

Let Z be the set of all monomials viv j = v jvi, with i 6= j,

in R = K [v1, . . . ,vs], such that
{

viv j

}

is an edge of G, i.e.,
the graph finite and simple G, with no isolated vertices,
is such that the squarefree monomials of degree two are
defining the edges of the graph G.

Definition 21A walk of length s in G is an alternating
sequence of vertices and edges
w = {v1,z1,v2, . . . ,vs−1,zh,vs}, where zi = {vi−1vi} is the
edge joining vi−1 and vi.

Definition 22A walk is closed if v1 = vs. A walk may also
be denoted by {v1, . . . ,vs}, where the edges are evident by
context. A cycle of length s is a closed walk, in which the
points v1, . . . ,vs are distinct.

A path is a walk with all the points being distinct. A
tree is a connected graph without cycles and a graph is
bipartite if all its cycles are even. A vertex of degree one
is called an end point.

Definition 23A subgraph G
′
⊆ G is called induced if

viv j = v jvi, with i 6= j, is an edge of G
′

whenever vi and

v j are vertices of G
′

and viv j is an edge of G.

The complement of a graph G, for which we write Gc,
is the graph on the same vertex set in which viv j = v jvi,
with j 6= i, is an edge of Gc if and only if it is not an edge
of G. Finally, let Ck denote the cycle on k vertices; a chord
is an edge which is not in the edge set of Ck. A cycle is
called minimal if it has no chord.

If G is a graph without isolated vertices, simple and
finite, then let R denote the polynomial ring on the vertices
of G over some fixed field K.

Definition 24([2]) According to the previous context, the
edge ideal of a finite simple graph G, with no isolated
vertices, is defined by

I (G) = (viv j | viv j is an edge of G) ,

with viv j = v jvi, and with i 6= j.

3 Results

In this section, present some results about the modules and
submodules which involve the theory of graphs together
with the edge ideal of a graph G, which is simple and finite
and with no isolated vertices.

Here, we take K as a fixed field and we consider
K[v1,v2 . . . ,vs] as the ring polynomial over the field K.
Since K is a field, we have that K is a Noetherian ring and
then K[v1, . . . ,vs] is also a Noetherian ring (Theorem of
the Hilbert Basis).

Remark 31By the previous context, R = K[v1,v2 . . . ,vs]
is a Noetherian ring. Thus, the edge ideal I (G) is an
R-module, and thus we can get characterizations for this
module under certain hypothesis.

We denote by m = (v1, . . . ,vs) the homogeneous
maximal ideal of R = K[v1, . . . ,vs], where we have I(G)
as a monomial ideal of R which is finitely generated.

Definition 32Let R = K[v1, . . . ,vs] be the ring
polynomial, I(G) is the edge ideal in R of a finite simple
graph G, with no isolated vertices. An edge subcategory
S of the category of R-modules with respect to the ideal
m is a class of R-modules such that if the R-module I(G)
is m-torsion and (0 :I(G) m) is in S then we have that I(G)
is in S.

We have now the following proposition.

Proposition 33Let R = K[v1, . . . ,vs] be the ring

polynomial, I(G) be the edge ideal in R of a finite simple

graph G, with no isolated vertices. Let S be an edge

subcategory with respect to the ideal m and let t be an

integer. Suppose that T is an R-module such that

ExtiR(R/m,T ) is in S for all i < t. Then Hi
m
(T ) is in S

for all i < t.

Proof.We prove the result by induction on i. It is
straightforward to see that the result is true when i = 0.
Suppose that i > 0 and that the result has been proved for
i− 1. It easily follows from the exact sequence

0 → Γm(T )→ T → T/Γm(T )→ 0,

that ExtiR(R/m,T ) is in S if and only if

ExtiR(R/m,T/Γm(T )) is in S. Also, by [1, Corollary
2.1.7], we have that

Hi
m
(T )∼= Hi

m
(T/Γm(T )),

for all i > 0. Therefore, we assume that Γm(T ) = 0. Now,
let E be an injective envelope of T . Then,

Γm(E) = HomR(R/m,E) = 0.

We put L = E/T and we consider the exact sequence

0 → T → E → L → 0.
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We obtain isomorphisms:

Hi
m
(T )∼= Hi−1

m
(L),

for all i > 0, and

ExtiR(R/m,T )∼= Exti−1
R (R/m,L),

for all i > 0.
We use the induction hypothesis applied to L, and we

conclude that the R-module Hi
m
(T ) is in S for all i < t.

We conclude so the proof.

In the same context, it follows the following result
which involve the definition of edge subcategory.

Proposition 34Let R = K[v1, . . . ,vs] be the ring

polynomial, I(G) the edge ideal in R of a finite simple

graph G, with no isolated vertices. Let S be an edge

subcategory with respect to the ideal m. Let t be an

integer such that we have the index j ≤ t. Suppose that

dim(I(G)/mI(G))≤ 1.

Then, ExtiR(R/m,H j
m(I(G))) is in S, for all i ≥ 0.

Proof.Consider the following spectral sequence

E
p,q
2 := Ext

p
R(R/m,H

q
m(I(G)))

p
→ Ext

p+q
R (R/m, I(G)) = Hp+q.

In view of [7, Theorem 4.3], we have E
p,q
2 = 0 unless q =

0,1. It follows that the exact sequence

Hp+1 →E
p+1,0
2 →E

p−1,1
2 →Hp →E

p,0
2 →E

p−2,1
2 →Hp−1,

which in turn yields the exact sequence

Ext
p+1
R (R/m, I(G))→ Ext

p+1
R (R/m,Γm(I(G)))→ Ext

p−1
R (R/m,H1

m
(I(G)))→

Ext
p
R(R/m, I(G))→ Ext

p
R(R/m,Γm(I(G)))→ Ext

p−2
R (R/m,H1

m
(I(G))).

Since, by our assumption, the R-modules

ExtiR(R/m,Γm(I(G))) and ExtiR(R/m, I(G)),

are in S for all i ≥ 0, we have that the result it follows.

Definition 35Let R = K[v1, . . . ,vs] be the ring polynomial,
I(G) the edge ideal in R of a finite simple graph G, with
no isolated vertices. The R-module I(G) is said to be edge
weakly Laskerian if any quotient of I(G) has finitely many
of associated prime ideals, where the prime ideals are in
R = K[v1, . . . ,vs].

4 Some results of applications

Recall that the spectrum of R, denoted by Spec(R), is the
set of prime ideals of R with the Zariski topology, which is
the topology where the closed sets are

V(J) = {p ∈ Spec(R) | J ⊆ p} ,

for ideals J ⊆ R.
We presented now the following result.

Theorem 41Let R = K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with

no isolated vertices. Let S be an edge subcategory with

respect to the ideal m. Let t be an integer. Suppose that

m ∈ V(J). Moreover, suppose that I(G) is edge weakly

Laskerian module. Then Hi
m
(I(G)) ∈S for all i < t.

Proof.By using the induction on t, the theorem is proved. It
is straightforward to see that the result is true when t = 1.
Suppose that t > 1, and the result holds for the case t − 1.
Since,

Hi
J(I(G))∼= Hi

J(I(G)/ΓJ(I(G))),

for all i > 0, we may replace I(G) by I(G)/ΓJ(I(G)) and
hence to assume that there exists an element v ∈ m, such
that v is a non-zero divisor on I(G). The exact sequence

0 → I(G)
v
→ I(G)→ I(G)/vI(G)→ 0,

induces two exact sequences

→ Hi−1
J (I(G)/vI(G))→ Hi

J(I(G))
v
→ Hi

J(I(G))→ Hi
J(I(G)/vI(G)),

and

→ Hi−1
m

(I(G)/vI(G))→ Hi
m
(I(G))

v
→ Hi

m
(I(G))→ Hi

m
(I(G)/vI(G)) (∗)

of local cohomology modules which involve the edge ideal
of G. The induction hypothesis and the above sequences
yield that the R-modules Hi

m
(I(G)) and Hi

m
(I(G)/vI(G))

are in S for all i< t−1. It suffices to show that Ht−1
m

(I(G))
is in S. Now, the exactness of (∗), in conjunction with the
fact that

(

0 :
Ht−1
m (I(G)) m

)

⊆
(

0 :
Ht−1
m (I(G)) v

)

,

and our hypotheses, show that Ht−1
m

(I(G)) is in S, and this
proves our claim.

Now, we have the following theorem which involves
the definition of edge weakly Laskerian module.

Theorem 42Let R = K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with

no isolated vertices. Let S be an edge subcategory with

respect to the ideal m. Suppose that I(G) is edge weakly

Laskerian module and let r be a non-negative integer such

that

Hr
m
(R/p) ∈S for all p ∈ Supp(I(G)).

Then, Hr
m
(I(G)) ∈S.

Proof.Note that, there exists a filtration of the submodules
of I(G):

0 ⊆ M0 ⊂ M1 ⊂ . . .⊂ Ml = M,

such that for each 1 ≤ j ≤ l, we have then

M j/M j−1
∼= R/p j,

where p j ∈ Supp(I(G)). We use induction on l. When l =
1, we have

Hr
m
(R/p) = Hr

m
(I(G)),
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is in S, where we put p= p j. Now, suppose that l > 1, and
the result has been proved for l− 1. The exact sequence

0 → Ml−1 → Ml → Ml/Ml−1 → 0,

induces the long exact sequence

Hr
m
(Ml−1)→ Hr

m
(Ml)→ Hr

m
(Ml/Ml−1).

It follows that we have

Hr
m
(Ml) ∈S,

and this completes the proof.

Definition 43Let R = K[v1, . . . ,vs] be the ring polynomial,
and I(G) be the edge ideal in R of a finite simple graph
G, with no isolated vertices. The R-module Hi

m
(M), for an

R-module any M and i ≥ 0, is called J-cofinite if we have
J 6=m, and J is not any maximal ideal of R, with

Supp(I(G))⊆ V(J),

and ExtiR(R/m, I(G)) is a finitely generated R-module, for
every i ≥ 0.

In the following result, we use the Theorem 42.

Proposition 44Let R = K[v1, . . . ,vs] be the ring

polynomial, and I(G) be the edge ideal in R of a finite

simple graph G, with no isolated vertices. Suppose that

dim(I(G)) = d, and let S be an edge subcategory with

respect to the ideal m such that S is contained in the

class of J-cofinite modules, according to the Definition

43, and Artinian modules. Moreover, suppose that I(G) is

edge weakly Laskerian module. Then, Hd
m
(I(G)) is an

R-module Artinian and J-cofinite, yet of according to the

Definition 43.

Proof.It is enough, in view of the Theorem 42, to show
that the R-module Hd

m
(R/p) is Artinian and J-cofinite,

according to the Definition 43, for all p ∈ Supp(I(G)). If
J ⊆ p, then R/p is J-torsion and then

Hd
m
(R/p)∼= Hd

m
(I(G)).

Since dim(R/p)≤ d then, in view of [4, Proposition 5.1],
we have that Hd

m
(R/p) ∼= Hd

m
(I(G)) is Artinian and

J-cofinite. If J is not in contained in p, then we have that

dim[(R/p)/J(R/p)]< dim(R/p)≤ d,

and so

Hd
m
(R/p)∼= Hd

m
(I(G)) = 0,

by [7, Theorem 4.3].

Thus, the proof is completed.

We conclude the paper with a theorem that involves the
previously presented concepts.

Theorem 45Let R = K[v1, . . . ,vs] be the ring polynomial,

and I(G) be the edge ideal in R of a finite simple graph G,

with no isolated vertices. Let S be an edge subcategory

with respect to the ideal m. Suppose that I(G) is edge

weakly Laskerian module and let t be a non-negative

integer. Then, we have that the R-module Hi
m
(R/p) is in

S for all i > t and p ∈ Supp(I(G)).

Proof.We use descending induction on i. Now, assume that
i > t and that the claim holds for i+ 1. We want to show
that Hi

m
(R/p) is in S for all p ∈ Supp(I(G)). Suppose the

contrary. We set:

A :=
{

p | p ∈ Supp(I(G)), Hi
m
(R/p) is not in S

}

.

Thus A 6= /0; it follows that the set A has a maximal
element, and let p be one such element. Since
p ∈ Supp(I(G)), there exists a non-zero map
f : I(G)→ R/p. The exact sequence

0 → Ker( f )→ I(G)→ Im( f )→ 0,

yields the exact sequence

Hi
m
(I(G))→ Hi

m
(Im( f ))→ Hi+1

m
(Ker( f )).

Since Supp(Ker( f )) ⊂ Supp(I(G)), it follows from the
inductive hypothesis that the R-module Hi+1

m
(R/p) is in S

for all p ∈ Supp(Ker( f )), so that, in view of the Theorem
42, and the above exact sequence, the R-module
Hi
m
(Im( f )) is in S. There exists a filtration

0 = Ns ⊂ Ns−1 ⊂ Ns−2 ⊂ . . .⊂ N0 = Coker( f ),

of submodules of Coker( f ), such that for each 0 ≤ i ≤ s,
we have that

Ni−1/Ni
∼= R/qi,

where qi ∈ Supp(Coker( f )). Then by the maximality of p,
we have Hi

m
(R/qi) is in S. Next, the exact sequence

0 → Im( f )→ R/p→ Coker( f )→ 0,

yields the exact sequence

Hi
m
(Im( f ))→ Hi

m
(R/p)→ Hi

m
(Coker( f )).

It follows that Hi
m
(R/p) is in S, which is a contradiction.

We finalize then the proof.

We finished the article with the following conclusion.

5 Conclusion

In this article, we can relate the theory of graphs, with
respect to the edge ideal of a simple graph, to the theory
of local cohomology modules. With the results of the
article, we show the importance of local cohomology
theory as a study tool within the commutative algebra
theory.

Moreover, by making this relationship, we get
applications for the edge ideal in a general theory of
modules.
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