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Abstract: In this paper the pseudo almost periodic solutions of a class of nonautonomous third-order differential equation with multiple

finite delay is studied by various fixed-point theorems. Moreover, by using new and sufficient conditions, we study the uniformly-

bounded and global attractivity of the pseudo almost periodic solutions. Further, an example is given to illustrate the validity of the

obtained results.
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1 Introduction

As we all known in applied science some practical and
complex problems are associated with higher order
nonlinear differential equations, such as non-linear
oscillations ( see [1]-[4]). Furthermore, the most attractive
topics are dedicated to the stability, instability,
boundedness, oscillations, non-oscillations of the
solutions ( see [5]-[13]).

On the other hand, the study of real phenomena often
requires notions that go beyond the concept of periodicity,
which take into account the fact that these phenomena are
not entirely periodic. The central tool in this work is the
concept of pseudo almost periodic functions which is a
naturale generalization of bohr almost periodic. This
notion was introduced by Zhang in 1992 ( see [14]).
Consequently, the existence of almost periodic, pseudo
almost periodic solutions are one of the most attracting
topics in the qualitative theory of differential equations
thanks to their significance and applications in various
fields ( see [15]-[19]).

Furthermore, systems of differential equations with
delay argument occupy more than a place of central
importance in all areas of science and particularly in the
biological sciences. These equations are used as models
to describe many physical and biological systems ( see
[6]-[10]). Therefore, it is very important to determine the
qualitative behavior of solutions when there is a delay.

Motivated by the above discussion, the main aim is to
study the existence and uniqueness of the pseudo almost
periodic of the nonautonomous third-order differential
equation with multiple and finite delay described by the
the following equation

x(3)(t)+ a(t)x(2)(t) + b(t)x(1)(t)+
n

∑
i=1

gi(t,x(t − ri(t)))

= p(t).

where a(.), b(.) and p(.) and for i = 1,2, . . . ,n, gi(.x(.−
ri(.))) are real valued and continuous, bounded functions,
with gi(0,0) = 0 for all i = 1, . . . ,n and ri(.) is real-valued
positive and continuous function.

By new and sufficiently condition we prove the
existence of the pseudo almost periodic solution by using
various fixed point. First, by Banach’s fixed point theorem
and some operator we prove the existence and uniqueness
of the solution. In addition, by Schauder and
Leray-Schauder fixed-point theorems, we establish the
existence of the third-order differential equation as above,
finally we prove the existence of the pseudo almost
periodic solutions by Krasnoselskii fixed-point theorem.

Therefore, by using new technics and new sufficiently
condition we prove the uniformly-bounded solution, and
the attractivity global of the pseudo almost periodic
solutions. Finally, an example is given to demonstrate our
result.
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This article is organized as follows. In section 2 we
recall some basic definitions of the pseudo almost
periodic functions. In section 3, we introduce some
necessary notations, lemma which are used later, and we
study the uniformly-bounded of the solutions. Section 4 is
dedicated to prove the existence and uniqueness of the
pseudo almost periodic solution from three theorems of
fixed point. In the next section we study the attractivity
global by new approach. Finally, an example is given to
demonstrate the effectiveness of our results.

2 Pseudo almost periodic functions

This paragraph recalls some interesting properties of the
pseudo almost periodic functions which is necessary for
the study of the existence and uniqueness of the pseudo
almost periodic solutions.

Let BC(R,R) be the space of bounded continuous
functions f : R → R. Obviously, the space BC(R,R) is
equipped with the super norm

‖ f‖∞ = sup
t∈R

| f (t)|,

is a Banach space.

Definition 1.[13] A function f ∈ BC(R,R) is called

(Bohr) almost periodic if for each ε > 0, there exists

lε > 0 such that every interval of length lε contains at

least a number τ with the following property:

sup
t∈R

| f (t + τ)− f (t)|< ε.

The collection of all almost periodic functions f : R→ R

is denoted by AP(R,R).
Besides, we define the class of functions PAP0(R,R)

as follows

PAP0(R,R) =

{

g ∈ BC(R,R) : M[g] = 0

}

,

where M[g] = limr→∞
1
2r

∫ r
−r |g(t)|dt.

Definition 2.[14] A function f ∈ BC(R,R) is called

pseudo almost periodic if it can be expressed as

f = g+ h

where g ∈ AP(R,R) and h ∈ PAP0(R,R).
The collection of such functions are denoted by

PAP(R,R).

Remark. The functions g and h in the above definitions
are respectively called the almost periodic and the ergodic
perturbation components of the pseudo almost periodic
function f . The decomposition given in definition above
is unique. We observe that (PAP(R,R),‖.‖∞) is a Banach
space.

Example 1. Consider the function defined by

f (t) = sin t + sin(
√

2t)+ (1+ t2)−2
,

for all t ∈R. It can be easily checked that the function f is
pseudo almost periodic. Indeed, the function t → sin(t)+

sin(
√

2t) belongs to AP(R,R) and the function t → (1+
t2)−2 is in PAP0(R,R).

Lemma 1.[16] Suppose that x1(.), r(.) ∈ AP(R,R+),
ṙ(.) ∈ BC(R,R+) and x2(.) ∈ PAP0(R,R+), then

(1) x1(t − r(t)) ∈ AP(R,R+).
(2) x2(t − r(t)) ∈ PAP0(R,R+), if inft∈R(1− ṙ(t))> 0.

3 Main assumptions and preliminary results

We consider the nonautonoumous differential equation of
the third order with multiple deviating arguments:

x(3)(t)+ a(t)x(2)(t) + b(t)x(1)(t)+
n

∑
i=1

gi(t,x(t − ri(t)))

= p(t), (1)

where a(.),ri(.) are almost periodic functions and p(.) is
pseudo almost periodic function.

Throughout this paper, given a bounded continuous
function f defined on R, let f̄ and f be defined as

f̄ = sup
t
| f (t)|, f = inf

t
| f (t)|.

Let us pose

x′(t) = y(t)−αx(t),y′(t) = z(t)−β y(t)

where α,β are constants.

Then the equation (1) can be written as follows:

x′(t) = y(t)−αx(t)

y′(t) = z(t)−β y(t)

z′(t) = −(a(t)−α −β )z(t)+ [(α +β )(a(t)−α)− b(t)

−β 2]y(t)− [α2(a(t)−α)−αb(t)]x(t)

−
n

∑
i=1

gi(t,x(t − ri(t)))+ p(t). (2)

Let Λ = (PAP(R,R))3. Then, Λ is a Banach space with
the norm defined by

‖ω‖Λ = sup
t∈R

‖ω(t)‖= sup
t∈R

max
1≤i≤3

|ωi(t)|.

In order to establish our results let us consider the
following conditions

(H1) For all 1 ≤ i ≤ n, ri(t) is continuous differentiable
on t ∈ R, ṙi(t) that is uniformly continuous on R with
inft∈R(1− ṙi(t))> 0.
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(H2) The function g is global Lipschitz continuous, that
is, there exists Lg > 0 such that for all u,v ∈ R

|gi(t,u)− gi(t,v)| ≤ Lg|u− v|.

(H3) There exist constants α > 1,β > 1 such that

0 < supt

(

|(α +β )(a(t)−α)−β 2 +α2(a(t)−α)−

b(t)(1+α)− nLg|
)

< inft{a(t)−α −β},

which is denote by

µ =
supt (|(α+β )(a(t)−α)−β 2+α2(a(t)−α)−b(t)(1+α)−nLg|)

inft{a(t)−α−β} .

Now we establish some Lemmas in order to obtain our
main results.

Lemma 2. If f (.) ∈ PAP(R,R), then the function G : t 7→
∫ t
−∞ e−(t−s)α f (s)ds is pseudo almost periodic function.

Proof.First, the function G satisfies

|G(t)| ≤ 1

α
‖ f‖∞

which proves that the integral is well defined. Since f is
pseudo almost periodic function, one can write

f = f1 + f2,

where f1 ∈ AP(R,R) and f2 ∈ PAP0(R,R). Hence

G(t) =
∫ t

−∞
e−(t−s)α f1(s)ds+

∫ t

−∞
e−(t−s)α f2(s)ds

= G1(t)+G2(t).

Let us prove the almost periodicity of t → G1(t).
f1 ∈ AP(R,R), then for all ε > 0 there exists a number lε
such that in any interval [ρ ,ρ + lε ] (ρ ∈ R) one finds a
number τ , with property

sup
t∈R

| f1(t + τ)− f1(t)| < ε.

We can write

| G1(t + τ)−G1(t)|

= |
∫ t

−∞
f1(s+ τ)e−(t−s)α ds−

∫ t

−∞
f1(s)e

−(t−s)α ds|

≤
∫ t

∞
| f1(s+ τ)− f1(s)|e−(t−s)α ds

≤ sup
ξ

| f1(ξ + τ)− f1(ξ )|
∫ t

∞
e−(t−s)α ds <

ε

α
.

Consequently, G1(.) ∈ AP(R,R). Next, we have to prove
that G2 ∈ PAP0(R,R), i.e.

limT→∞
1

2T

∫ T
−T |

∫ t
∞ e−(t−s)α f2(s)ds|dt = 0.

limT→∞
1

2T

∫ T

−T
|
∫ t

∞
e−(t−s)α f2(s)ds|dt

≤ lim
T→∞

1

2T

∫ T

−T

∫ t

∞
e−(t−s)α | f2(s)|dsdt

≤ lim
T→∞

1

2T

∫ T

−T

∫ −T

∞
e−(t−s)α | f2(s)|dsdt

+ lim
T→∞

1

2T

∫ T

−T

∫ t

−T
e−(t−s)α | f2(s)|dsdt

= I1 + I2,

where

I1 = lim
T→∞

1

2T

∫ T

−T

∫ −T

∞
e−(t−s)α | f2(s)|dsdt,

I2 = lim
T→∞

1

2T

∫ T

−T

∫ t

−T
e−(t−s)α | f2(s)|dsdt.

Now, we have to prove that I1 = I2 = 0.

I1 ≤ ‖ f2‖∞ lim
T→∞

1

2T

∫ T

−T

∫ −T

∞
e−(t−s)α dsdt

≤ ‖ f2‖∞ lim
T→∞

1

2T

e−Tα

α

∫ T

−T
e−tα dt

= ‖ f2‖∞ lim
T→∞

1

2Tα2
[1− e−2Tα ] = 0.

On the other hand

1
2T

∫ T

−T

∫ t

−T
e−(t−s)α | f2(s)|dsdt

≤ 1

2T

∫ T

−T

∫ T+u

0
e−αu| f2(t − u)|dudt

≤ 1

2T

∫ ∞

0
e−αu(

∫ T+u

−T−u
| f2(s)|ds)du

≤
∫ ∞

0
e−αu(

1

2T

∫ T+u

−T−u
| f2(s)|ds)du.

Since f2 ∈ PAP0(R,R), then

lim
T→∞

1

2T

∫ T+u

−T−u
| f2(s)|ds = 0,

uniformly with respect to u. Finally, by the Lebesgue’s
dominated convergence Theorem, we obtain I2 = 0.
Consequently, G belongs to PAP(R,R).

Lemma 3. Let a(.) ∈ AP(R,R) and f (.) ∈ PAP(R,R),
then the function

F : t 7→ ∫ t
−∞ f (s)e−

∫ t
s (a(u)−α−β )duds is pseudo almost

periodic function.

Proof.Let us pose that ψ(t) = a(t)− α − β . First, the
function F satisfies

|F(t)| ≤ 1

ψ
‖ f‖∞ < ∞.
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Hence, F is well defined. Since f ∈ PAP(R,R), then one
can write f as follows f = f1 + f2, where f1 ∈ AP(R,R),
and f2 ∈ PAP0(R,R). Hence,

F(t) =

∫ t

−∞
f1(s)e

−∫ t
s (a(u)−α−β )duds

+

∫ t

−∞
f2(s)e

−∫ t
s (a(u)−α−β )duds

= F1(t)+F2(t).

Let us prove that F1 belongs to AP(R,R). Since
f1(.),a(.) ∈ AP(R,R), then for all ε > 0 there exists a
number lε such that in any interval [ρ ,ρ + lε ] (ρ ∈ R) one
finds a number τ , with property

sup
t∈R

| f1(t + τ)− f1(t)|<
ε

ψ
, sup

t∈R
|a(t + τ)− a(t)|< ε.

We can write

| F1(t + τ)−F1(t)|

≤
∫ t

−∞
| f1(s+ τ)||e−

∫ t
s ψ(u+τ)du − e−

∫ t
s ψ(u)du|

+

∫ t

−∞
| f1(s+ τ)− f1(s)|e−

∫ t
s ψ(u)duds

≤ ε

ψ

∫ t

−∞
e−(t−s)ψds

+‖ f1‖∞

∫ t

−∞
e−

∫ t
s ψ(u)du|e−

∫ t
s (ψ(u+τ)−ψ(u))du− 1|

≤ ε + ‖ f1‖∞

∫ t

−∞
e−(t−s)ψ |e−

∫ t
s (ψ(u+τ)−ψ(u))du − 1|

< ε.

Consequently, F1(.) ∈ AP(R,R). Let us study the
ergodicity of F2(.).

limT→∞
1

2T

∫ T

−T
|
∫ t

∞
e−

∫ t
s ψ(u)du f2(s)ds|dt

≤ lim
T→∞

1

2T

∫ T

−T

∫ t

∞
e−(t−s)ψ | f2(s)|dsdt

≤ lim
T→∞

1

2T

∫ T

−T

∫ −T

∞
e−(t−s)ψ | f2(s)|dsdt

+ lim
T→∞

1

2T

∫ T

−T

∫ t

−T
e−(t−s)ψ | f2(s)|dsdt ≤ I1 + I2,

where

I1 = lim
T→∞

lim
T→∞

1

2T

∫ T

−T

∫ −T

∞
e−(t−s)ψ | f2(s)|dsdt,

I2 = lim
T→∞

1

2T

∫ T

−T

∫ t

−T
e−(t−s)ψ | f2(s)|dsdt.

Now, we shall prove that I1 = I2 = 0.

I1 ≤ ‖ f2‖∞ lim
T→∞

1

2T

∫ T

−T

∫ −T

∞
e−(t−s)ψdsdt

≤ ‖ f2‖∞ lim
T→∞

1

2T

e−Tψ

ψ

∫ T

−T
e−tψdt

= ‖ f2‖∞ lim
T→∞

1

2Tψ2
[1− e−2Tψ ] = 0.

On the other hand

1
2T

∫ T

−T

∫ T+u

0
e−uψ | f2(t − u)|dudt

≤ 1

2T

∫ ∞

0
e−ψu(

∫ T+u

−T−u
| f2(s)|ds)du

≤
∫ ∞

0
e−ψu(

1

2T

∫ T+u

−T−u
| f2(s)|ds)du.

Since f2 ∈ PAP0(R,R), then

lim
T→∞

1

2T

∫ T+u

−T−u
| f2(s)|ds = 0,

uniformly with respect to u. Finally, by the Lebesgue’s
dominated convergence Theorem, we obtain I2 = 0.
Consequently, F belongs to PAP(R,R).

3.1 Uniformly-bounded

Theorem 1. Assume that (H1)− (H3) are satisfied, then

all the solutions of equation (2) are uniformly bounded. In

other words, there exists M > 0 such that

‖X(t)‖Λ ≤ M.

Proof.In order to prove the inequalities as above, let us
prove that for every h > 1, and for each t ≥ 1

‖X(t)‖Λ < hM.

Let us prove that by contradiction. Suppose there exists
t ′ > 0, such that

{

‖X(t ′)‖Λ = hM,

‖X(t)‖Λ < hM,0 ≤ t < t ′.

We have to prove this result in three cases.

Case1.‖X(t ′)‖Λ = |x(t ′)|. Then

hM = |x(t ′)| =
∣

∣

∣

∣

[x(0)+

∫ t′

0
y(s)eαsds]e−αt′

∣

∣

∣

∣

≤ hM[1+
1

α
(eαt − 1)]e−αt′

< hM,

which gives a contradiction. Consequently, for all t ≥
0, ‖X(t)‖Λ ≤ hM. Let us take h → 1, then ‖X(t)‖Λ ≤
M.

Case2.‖X(t ′)‖Λ = |y(t ′)|.
y(t ′) = [y(0)+

∫ t′
0 z(s)eβ sds]e−β t′ , similarly of case 1,

we obtain ‖X(t)‖Λ ≤ M.
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Case3.‖X(t ′)‖Λ = |z(t ′)|. Then

hM = |z(t ′)|

=

∣

∣

∣

∣

[z(0)+

∫ t′

0
e
∫ s

0 ψ(u)du

[

((α +β )(a(s)

−α)−β 2 − b(s))y(s)

−(α2(a(s)−α)−αb(s))x(s)

−
n

∑
i=1

gi(s,x(s− ri(s)))+ p(s)

]

ds

∣

∣

∣

∣

e−
∫ t′

0 ψ(u)du

≤ hMe−t′ψ [1+ sup
t

∣

∣

∣

∣

(α +β )(a(t)−α)

−β 2 − b(t)+ (α2(a(t)−α)−αb(t))

−nLg

∣

∣

∣

∣

∫ t′

0
esψds]

≤ hMe−t′ψ [1+ µ(et′ψ − 1)]

< hM,

which gives a contradiction. Consequently, for all t ≥ 0,
‖X(t)‖Λ ≤ M.

4 Existence of the pseudo almost periodic

solutions

In this section, under new sufficient conditions we prove
the existence of the pseudo almost periodic solution of (2).
In our study we will use different fixed point theorems.

4.1 Banach’s Fixed point Theorem

Theorem 2. Assume that (H1)− (H3) hold, then the

system (2) has a unique pseudo almost periodic solution

X∗(t).

Proof.Let us consider the operator T defined by, for all
(x,y,z) ∈ Λ ,

T (x,y,z)(t) =

(

∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
ϕ(s)e−

∫ t
s ψ(u)duds

)

,

where

ϕ(t) = p(t)+ [(α +β )(a(t)−α)−β 2− b(t)]y(t)

−[α2(a(t)−α)−αb(t)]x(t)−
n

∑
i=1

gi(t,x(t − ri(t)))

In virtue of Lemma (2) and (3) the operator T is a mapping
of Λ into itself. Now, we have to prove that the operator
T is a contraction. For X = (x,y,z),V = (u,v,w) ∈ Λ , we
have

TV (t) =

(

∫ t

−∞
v(s)e−(t−s)α ds,

∫ t

−∞
w(s)e−(t−s)β ds,

∫ t

−∞
φ(s)e−

∫ t
s ψ(u)duds

)

where

φ(t) = p(t)+ [(α +β )(a(t)−α)−β 2− b(t)]v(t)

−[α2(a(t)−α)−αb(t)]u(t)

−
n

∑
i=1

gi(t,u(t − ri(t))),

and

‖TX −TV‖Λ = sup
t

max |
(

∫ t

−∞
(y(s)− v(s))e−(t−s)αds|,

∫ t

−∞
(z(s)−w(s))e−(t−s)β ds,

∫ t

−∞
(ϕ(s)−φ(s))e−

∫ t
s ψ(u)duds

)

|.

Case 1.

‖T X −TV‖Λ = sup
t

∫ t

−∞
|y(s)− v(s)|e−(t−s)αds

≤ ‖X −V‖Λ sup
t

∫ t

−∞
e−(t−s)α ds

≤ 1

α
‖X −V‖Λ .

Consequently,

‖TX −TV‖Λ ≤ 1

α
‖X −V‖Λ .

Case 2.

‖T X −TV‖Λ = sup
t

∫ t

−∞
|z(s)−w(s)|e−(t−s)β ds.

Similarly of case 1, we obtain

‖TX −TV‖Λ ≤ 1

β
‖X −V‖Λ .

Case 3.

‖T X −TV‖Λ = sup
t

∫ t

−∞
e−

∫ t
s ψ(u)du

∣

∣

∣

∣

ϕ(s)−φ(s)

∣

∣

∣

∣

ds

≤ ‖X −V‖Λ (sup
ξ

∣

∣

∣

∣

(α +β )(a(ξ )−α)

−β 2 − b(ξ )(1+α)

+α2(a(ξ )−α)− nLg

∣

∣

∣

∣

)

∫ t

−∞
e−(t−s)ψds

≤ µ‖X −V‖Λ .

Which proves that T is a contraction. Consequently, T has
a unique fixed point X∗ ∈ Λ .

4.2 Schauder’s, Leray Schauder’s fixed point

Theorem

Now we introduce the Theorem of Schauder and Leray-
Schauder fixed point which are used to prove the existence
of a pseudo almost periodic solution.

Let us recall the Schauder’s second Theorem.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
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Theorem 3.[23] Let M be a non-empty convex subset of

a normed space B. Let T be a continuous mapping of M

into a compact set H ⊂ M . Then T has a fixed point.

Let us denote by K = max( 1
α ,

1
β ,µ).

Theorem 4. Suppose that (H1)-(H3) hold and if the

operator T : B → B, where B = {X ∈ Λ : ‖X‖Λ ≤ M} is

continuous and compact operator. Then the equation (2)

has a fixed pseudo almost periodic solution.

Proof.Let B = {X ∈ Λ : ‖X‖Λ ≤ M}, clearly that B is a
closed convex subset of Λ . For all (x,y,z) ∈ Λ , t ∈ R

T (x,y,z)(t) = (

∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
ϕ(s)e−

∫ t
s ψ(u)du).

It is clear that, by Lemma (2) and (3) the operator T is a
pseudo almost periodic function.

Now, we have to prove that T is continuous. Let (Xn)n

be a sequence of Λ , such that Xn → X in Λ as n → ∞, i.e.
xn → x, yn → y and zn → z as n → ∞. Given δ > 0, there
exists N such that, for n ≥ N we have ‖Xn − X‖Λ < δ .
Hence, for t ∈ R;

|(T Xn)(t)− (TX)(t)| = |(
∫ t

−∞
(yn(s)− y(s))e−(t−s)αds,

∫ t

−∞
(zn(s)− z(s))e−(t−s)β ds,

∫ t

−∞
(ϕn(s)−ϕ(s))e−

∫ t
s ψ(u)du)|

we have
∫ t

−∞
|yn(s)− y(s)|e−(t−s)α ds ≤ 1

α
≤ K‖Xn −X‖Λ ,

∫ t

−∞
|zn(s)− z(s)|e−(t−s)β ds ≤ 1

β
≤ K‖Xn −X‖Λ ,

∫ t

−∞
|ϕn(s)−ϕ(s)|e−

∫ t
s ψ(u)du ≤ µ ≤ K‖Xn −X‖Λ .

Clearly, that |(T Xn)(t) − (T X)(t)| ≤ K‖Xn − X‖Λ .

Consequently, T Xn → T X as n → ∞ which follows that T

is continuous.
Now, we have to show that T (B) ⊂ B. For X ∈ B and

t ∈ R,

(T X)(t) = (
∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
ϕ(s)e−

∫ t
s ψ(u)du).

On the other hand, we have
∫ t

−∞
|y(s)|e−(t−s)α ds ≤ 1

α
‖X‖Λ ≤ ‖X‖Λ

∫ t

−∞
|z(s)|e−(t−s)β ds ≤ 1

β
‖X‖Λ ≤ ‖X‖Λ ,

and
∫ t

−∞
|ϕ(s)|e−

∫ t
s ψ(u)du

=
∫ t

−∞
|− p(s)− [(α +β )(a(s)−α)−β 2− b(s)]y(s)

+[α2(a(s)−α)−αb(s)]x(s)

+
n

∑
i=1

gi(s,x(s− ri(s)))|e−
∫ t

s ψ(u)duds

≤
∫ t

−∞
|− [(α +β )(a(s)−α)−β 2− b(s)]y(s)

+[α2(a(s)−α)−αb(s)]x(s)

+
n

∑
i=1

gi(s,x(s− ri(s)))|e−
∫ t

s ψ(u)duds

≤
∫ t

−∞
|[(α +β )(a(s)−α)−β 2− b(s)](−y(s))

+[α2(a(s)−α)−αb(s)]x(s)

+
n

∑
i=1

gi(s,x(s− ri(s)))− gi(0,0)|e−
∫ t

s ψ(u)duds

≤
∫ t

−∞
|[(α +β )(a(s)−α)−β 2− b(s)](−y(s))

+[α2(a(s)−α)−αb(s)]x(s)

+
n

∑
i=1

Lg|x(s− ri(s))|e−
∫ t

s ψ(u)duds

≤
∫ t

−∞
|[(α +β )(a(s)−α)−β 2− b(s)]y(s)

+[α2(a(s)−α)−αb(s)](−x(s))

−nLg‖X‖Λ |e−
∫ t

s ψ(u)duds

≤ ‖X‖Λ sup
ξ

∣

∣[(α +β )(a(ξ )−α)−β 2− b(ξ )]

+α2(a(ξ )−α)−αb(ξ )− nLg|
∫ t

−∞
|e−

∫ t
s ψ(u)duds

≤ µ‖X‖Λ ≤ ‖X‖Λ .

Therefore

|(T X)(t)| ≤ ‖X‖Λ .

Consequently, |(T X)(t)| ≤ M. Then T is a self mapping.
Now we have to prove the following

1.{(T X)(t) : X ∈ B} is a relatively compact subset of Λ
for each t ∈ R.

2.{TX : X ∈ B} is equi-continuous.

1.Let Yn(t) = (T Xn)(t) be a sequence of
{(T X)(t) : X ∈ B}. Xn ∈ B, i.e. Xn ∈ Λ and
‖Xn‖Λ ≤ M. Therefore (Xn)n is a bounded sequence,
then there exists a subsequence (Xnk

) of (Xn) in B,
such that Xnk

→ X as nk → ∞ in B. Since T is
continuous, then T Xnk

→ TX as nk → ∞ in B, i.e.
supt max1≤i≤3 |(T Xnk

)(t)− (T X)(t)| < ε . Then there
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exists a subsequence Ynk
(t) of Yn(t) such that

Ynk
(t) → Y (t) as nk → ∞. Consequently,

{(T X)(t) : X ∈ B} is relatively compact in Λ .
2.For X ∈ B, such that t1 < t2 and |t2 − t1|< δ . Let

(T X)(t2)− (TX)(t1)

= ((e−(t2−t1)α − 1)

∫ t1

−∞
y(s)e−(t1−s)αds

+e−(t2−t1)α
∫ t2

t1

y(s)e−(t1−s)αds,

(e−(t2−t1)β − 1)

∫ t1

−∞
z(s)e−(t1−s)β ds

+e−(t2−t1)β
∫ t2

t1

z(s)e−(t1−s)β ds

(e−
∫ t2
t1

ψ(u)du − 1)

∫ t1

−∞
ϕ(s)e−

∫ t1
s ψ(u)du

+

∫ t2

t1

ϕ(s)e−
∫ t1

s ψ(u)du)

We have to show the result by term:

∣

∣

∣

∣

( e−(t2−t1)α − 1)

∫ t1

−∞
y(s)e−(t1−s)αds

+e−(t2−t1)α
∫ t2

t1

y(s)e−(t1−s)α ds

∣

∣

∣

∣

≤ 2‖X‖Λ
|1− e−(t2−t1)α |

α
.

Similarly

∣

∣

∣

∣

( e−(t2−t1)β − 1)

∫ t1

−∞
z(s)e−(t1−s)β ds

+e−(t2−t1)β
∫ t2

t1

z(s)e−(t1−s)β ds

∣

∣

∣

∣

≤ 2‖X‖Λ
|1− e−(t2−t1)β |

β
.

Moreover

∣

∣

∣

∣

(e−
∫ t2

t1
ψ(u)du − 1)

∫ t1

−∞
ϕ(s)e−

∫ t1
s ψ(u)du

+

∫ t2

t1

ϕ(s)e−
∫ t2

s ψ(u)du

∣

∣

∣

∣

≤ |1− e−(t2−t1)ψ |
ψ

‖ϕ‖Λ

∫ t1

−∞
e−(t1−s)ψ

+‖ϕ‖Λ |
∫ t2

t1

e−(t2−s)ψ |

≤ 2|1− e−(t2−t1)ψ

| ψ‖ϕ‖Λ .

For |t2 − t1|< δ , we have the following estimates

|1− e−(t2−t1)α |
α

<
ε

2‖X‖Λ
,

|1− e−(t2−t1)β |
β

<
ε

2‖X‖Λ
,

1− e−(t2−t1)ψ

ψ
<

ε

2‖ϕ‖Λ
.

Hence, |(T X)(t2)− (T X)(t1)| < ε which shows that
{T X : X ∈ B} is equicontinuous.

Consequently, T : B → B is relatively compact.
Next, we have to prove that T is compact. Denote by

c̄oT (B) the closed convex of T (B). Since T (B)⊂ B and B

is closed convex, c̄oT (B) ⊂ B. Further
T (c̄oT (B))⊂ T (B)⊂ c̄oT (B).
Clearly that {(TX)(t) : X ∈ c̄oT (B)} is relatively compact
in Λ for every t ∈ R, and c̄oT (B) is uniformly bounded
and equicontinuous. By the Arzela Ascoli theorem the
restriction of c̄oT (B) to every compact subset K of R, i.e.
{(TX)(t) : X ∈ c̄oT (B)}t∈K is relatively compact in Λ .
Then T : c̄oT (B) → c̄oT (B) is a compact operator, by
Schauder’s fixed point Theorem T has a fixed point X .

Lemma 4.(Leray-Schauder Alternative Theorem,[20])

Let D be a closed convex subset of a Banach space X such

that 0 ∈ D. Let F : D → D be a completely continuous

map. Then the set {x ∈ D : x = λF(x),0 < λ < 1} is

unbounded or the map F has a fixed point in D.

Theorem 5. Suppose that (H1)-(H3) hold and if the

operator T : Λ → Λ is completely continuous. Then the

equation (2) has a fixed pseudo almost periodic solution.

Proof.For all (x,y,z) ∈ Λ , t ∈ R the operator T is defined
as follows

T (x,y,z)(t) = (
∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
ϕ(s)e−

∫ t
s ψ(u)du).

It is clear that, by Lemma (2) and (3) the operator T is a
mapping of Λ into itself. Then T is a mapping of
(BC(R,R))3 into itself.

Now, we have to prove that T is continuous. Let (Xn)n

be a sequence of Λ , such that Xn → X in Λ as n → ∞, i.e.
xn → x, yn → y and zn → z as n → ∞. Given δ > 0, there
exists N such that, for n ≥ N we have ‖Xn − X‖Λ < δ .
Hence, for t ∈ R;

|(T Xn)(t)− (TX)(t)| ≤ K‖Xn −X‖Λ .

Consequently, T Xn → T X as n → ∞ which follows that T

is continuous. Next, let us prove that T is completely
continuous. Let B(0,r) be the closed ball with center 0
and radius r in the space (BC(R,R))3. Let V = T (B(0,r))
and v = T X for X ∈ B(0,r). We have to prove that V is
relatively compact, and we prove this in two steps.
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Step1:V (t) is relatively compact subset of (BC(R,R))3 for
each t ∈ R.

|v(t)| = |(T X)(t)|=
∣

∣

∣

∣

(

∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
ϕ(s)e−

∫ t
s ψ(u)duds

)∣

∣

∣

∣

.

Similarly, by the proof of theorem (4), we have

|v(t)| ≤ K‖X‖Λ < ‖X‖Λ ,

then, |v(t)| ≤ r. Consequently, v(t) ∈ B(0,r). Hence,
V (t) is relatively compact.

Step2:V is equi-continuous. In fact, for each ε > 0, h > 0
‖X(t + h)−X(t)‖< ε

K

v(t + h)− v(t) = (

∫ t

−∞
(y(s+ h)− y(s))e−(t−s)αds,

∫ t

−∞
(z(s+ h)− z(s))e−(t−s)β ds,

∫ t

−∞
(ϕ(s+ h)−ϕ(s))e−

∫ t
s ψ(u)duds),

hence,

|v(t + h)− v(t)| ≤ K‖X(t + h)−X(t)‖
< ε.

(i)Now, we have to prove that, the set E = {uλ : uλ =

λ Tuλ ,λ ∈ (0,1)} is bounded. If uλ is a solution of the

equation uλ = λ Tuλ for some 0 < λ < 1, then

|uλ (t)| = |λ Tuλ |
≤ λ |Tuλ |
< |Tuλ |
≤ K‖X‖Λ

≤ Kr.

Hence ‖uλ‖ ≤ Kr, we conclude that the set E = {uλ :

uλ = λ Tuλ ,λ ∈ (0,1)} is bounded.

T is a mapping of Λ into itself, and T : Λ̄ → Λ̄ is
completely continuous. By the above Lemma and (i), T

has a fixed point X ∈ Λ̄ . Let (Xn) be a sequence in Λ such
that it converge to X ∈ (BC(R,R))3. For ε > 0, let η > 0 ,
there exists n0 ∈ N such that ‖Xn −X‖ ≤ η for all n ≥ n0.
For n ≥ n0;

‖TXn −TX‖Λ ≤ K‖Xn −X‖.
Consequently (T Xn)n converge to T X = X uniformly,
which implies that X ∈ Λ .

4.3 Krasnoselskii’s fixed point Theorem

Theorem 6.[21] Let Ω be a closed convex nonempty

subset of a Banach space (S,‖.‖), Suppose that A and B

map Ω into S such that

–Ax+By ∈ Ω (∀x,y ∈ Ω ).

–A is continuous on Ω and A(Ω) is a relatively compact

subset of S.

–B is a contraction mapping.

Then there exists y ∈ Ω such that Ay+By = y.

Theorem 7. Suppose that (H1)-(H3) are satisfied, then

the operator T : Ω → Ω has a fixed pseudo almost

periodic solution, where Ω = {X ∈ Λ ;‖X‖Λ ≤ M}.

Proof.Clearly, that Ω is a convex subset of Λ . For all
(x,y,z) ∈ Λ , t ∈ R the operator T is defined as follows

T (x,y,z)(t) = (
∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
ϕ(s)e−

∫ t
s ψ(u)du).

It is clear that, by Lemma (2) and (3) the operator T is a
pseudo almost periodic function. Besides, one can write T

as follows, for X ∈ Ω , and for t ∈ R

(T X)(t) = (AX)(t)+ (BX)(t),

where

A(x,y,z)(t) = (

∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,0)

B(x,y,z)(t) = (0,0,

∫ t

−∞
e−

∫ t
s ψ(u)du

[

((α +β )(a(s)−α)

−β 2 − b(s))y(s)

−(α2(a(s)−α)−αb(s))x(s)

−
n

∑
i=1

gi(s,x(s− ri(s)))+ p(s)

]

ds).

Let us prove that AX +BY ∈ Ω ,∀X ,Y ∈ Ω . For t ≥ 0,

Z(t) = (AX)(t)+ (BY)(t).

Hence,

‖Z‖Λ = sup
t

max |(
∫ t

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds,

∫ t

−∞
e−

∫ t
s ψ(u)du

[

((α +β )(a(s)−α)

−β 2 − b(s))v(s)− (α2(a(s)−α)−αb(s))u(s)

−
n

∑
i=1

gi(s,u(s− ri(s)))+ p(s)

]

ds)|

Since

∫ t

−∞
|y(s)|e−(t−s)α ds ≤ ‖X‖Λ

α
,

∫ t

−∞
|z(s)|e−(t−s)β ds ≤ ‖X‖Λ

β
,
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and
∫ t

−∞
e−

∫ t
s ψ(u)du

∣

∣

∣

∣

((α +β )(a(s)−α)−β 2− b(s))v(s)

−(α2(a(s)−α)−αb(s))u(s)

−
n

∑
i=1

gi(s,u(s− ri(s)))+ p(s)

∣

∣

∣

∣

ds

≤ ‖Y‖Λ µ ,

hence, we need to prove the inequality desired in three
steps.

–If max( ‖X‖Λ
α ,

‖X‖Λ
β ,‖Y‖Λ µ) = ‖X‖Λ

α , then

|Z(t)| ≤ ‖X‖Λ

α
< ‖X‖Λ ≤ M.

–If max( ‖X‖Λ
α ,

‖X‖Λ
β ,‖Y‖Λ µ) = ‖X‖Λ

β , we give

|Z(t)| ≤ ‖X‖Λ

β
< ‖X‖Λ ≤ M.

–If max( ‖X‖Λ
α ,

‖X‖Λ
β ,‖Y‖Λ µ) = ‖Y‖Λ µ , we obtain

|Z(t)| ≤ ‖Y‖Λ µ < ‖Y‖Λ ≤ M

Consequently, ‖Z‖Λ ≤ M.
Now we have to prove that Z ∈ Λ . For t ≥ 0,

Z(t) = (AX)(t)+ (BY)(t), from Lemma (2), the function

t → (
∫ t
−∞ y(s)e−(t−s)α ds,

∫ t
−∞ z(s)e−(t−s)β ds) belongs to

PAP(R,R), then (AX)(.) belongs to Λ , and from Lemma

(3) the function t → ∫ t
−∞ e−

∫ t
s ψ(u)du

[

((α + β )(a(s) −

α) − β 2 − b(s))v(s) − (α2(a(s) − α) − αb(s))u(s) −
∑n

i=1 gi(s,u(s − ri(s))) + p(s)

]

ds belongs to PAP(R,R),

hence (BY )(.) belongs to Λ . Besides, Z ∈ Ω .
Now, we have to prove B is a contraction mapping. Let

X = (x,y,z),U = (u,v,w) ∈ Ω

(BX)(t)− (BU)(t) = (0,0,

∫ t

−∞
e−

∫ t
s ψ(u)du(ϕ(s)−φ(s))ds).

Since

|(BX)(t)− (BU)(t)‖ = sup
t

max |(0,0,
∫ t

−∞
e−

∫ t
s ψ(u)du(ϕ(s)−φ(s))ds)|,

then

‖(BX)(t)−(BU)(t)‖= sup
t
|
∫ t

−∞
e−

∫ t
s ψ(u)du(ϕ(s)−φ(s))ds|.

Consequently,

| (BX)(t)− (BU)(t)|
≤ ‖X −U‖Ω [sup

ξ

|((α +β )(a(ξ )−α)−β 2− b(ξ ))

+(α2(a(ξ )−α)−αb(ξ ))− nLg|]
∫ t

−∞
e−(t−s)ψds.

By hypothesis (P4.2), we have

|(BX)(t)− (BU)(t)| < ‖X −U‖Ω .

Then B is a contraction mapping.
Now, we have to see that A is continuous. Fix

X = (x,y,z),U = (u,v,w) ∈ Ω with ‖X − U‖Ω < η ,
‖X‖Ω ≤ M. Then, for t ≥ 0 we have

| (AX)(t)− (AU)(t)|

= |(
∫ t

−∞
y(s)e−(t−s)α ds−

∫ t

−∞
v(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds−

∫ t

−∞
w(s)e−(t−s)β ds,0))|

= |(
∫ t

−∞
(y(s)− v(s))e−(t−s)α ds,

∫ t

−∞
(z(s)−w(s))e−(t−s)β ds,0)|.

Since ‖(AX)(t) − (AU)(t)‖ = supt max |(
∫ t

−∞
(y(s) −

v(s))e−(t−s)α ds,

∫ t

−∞
(z(s)−w(s))e−(t−s)β ds,0)|, and

∫ t

−∞
|y(s)− v(s)|e−(t−s)αds ≤ 1

α
‖X −U‖Λ < ‖X −U‖Λ

∫ t

−∞
(z(s)−w(s))e−(t−s)β ds ≤ 1

β
‖X −U‖Λ < ‖X −U‖Λ ,

then

‖(AX)(t)− (AU)(t)‖< ‖X −U‖Λ .

Next we show that the operator AΩ is relatively compact.
We prove this in two steps

Step1:{AX : X ∈ Ω} is equi-continuous. Note that if s < t,
we have

| (AX)(t)− (AX)(s)|

= |(
∫ t

−∞
y(s)e−(t−s)α ds−

∫ s

−∞
y(s)e−(t−s)α ds,

∫ t

−∞
z(s)e−(t−s)β ds−

∫ s

−∞
z(s)e−(t−s)β ds,0))|

= (

∫ t1

−∞
y(s)e−(t2−s)αds+

∫ t2

t1

y(s)e−(t2−s)α ds

−
∫ t1

−∞
y(s)e−(t1−s)α ds,

∫ t1

−∞
z(s)e−(t2−s)α ds+

∫ t2

t1

z(s)e−(t2−s)αds

−
∫ t1

−∞
z(s)e−(t1−s)αds,0)

= |((e−(t2−t1)α − 1)

∫ t1

−∞
y(s)e−(t1−s)αds

+e−(t2−t1)α
∫ t2

t1

y(s)e−(t1−s)αds,

(e−(t2−t1)β − 1)

∫ t1

−∞
z(s)e−(t1−s)β ds

+e−(t2−t1)β
∫ t2

t1

z(s)e−(t1−s)β ds,0)|.
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Since

| ((e−(t2−t1)α − 1)

∫ t1

−∞
y(s)e−(t1−s)α ds

+e−(t2−t1)α
∫ t2

t1

y(s)e−(t1−s)α ds|

≤ 2‖X‖Λ
|1− e−(t2−t1)α |

α

| (e−(t2−t1)β − 1)

∫ t1

−∞
z(s)e−(t1−s)β ds

+e−(t2−t1)β
∫ t2

t1

z(s)e−(t1−s)β ds|

≤ 2‖X‖Λ
|1− e−(t2−t1)β |

β
.

then, we have to prove |(AX)(t)− (AX)(s)| → 0 as t → s

in two cases.

1.If max(2‖X‖Λ
|1−e−(t2−t1)α |

α ,2‖X‖Λ
|1−e−(t2−t1)β |

β ) =

2‖X‖Λ
|1−e−(t2−t1)β |

β , then

|(AX)(t)− (AX)(s)| ≤ 2‖X‖Λ
|1− e−(t2−t1)β |

β
,

letting s→ t, we obtain 1−eβ (s−t)→ 0, and |(AX)(t)−
(AX)(s)| → 0.

2.If max(2‖X‖Λ
|1−e−(t2−t1)α |

α ,2‖X‖Λ
|1−e−(t2−t1)β |

β ) =

2‖X‖Λ
|1−e−(t2−t1)α |

α , then

|(AX)(t)− (AX)(s)| ≤ 2‖X‖Λ
|1− e−(t2−t1)α |

α
,

letting s → t , we obtain 1− eα(s−t), 1− eβ (s−t) → 0,
and |(AX)(t)− (AX)(s)| → 0.

Step2:{AX(t) : X ∈ Ω} is relatively compact subset of Λ for
each t ∈ R.
let Yn(t) = (AXn)(t) be a sequence of
{(AX)(t) : X ∈ Ω}. Xn ∈ Ω , i.e. Xn ∈ Λ and
‖Xn‖Λ ≤ M. Therefore (Xn)n is a bounded sequence,
then there exists a subsequence (Xnk

) of (Xn) in Ω ,
such that Xnk

→ X as nk → ∞ in Ω . Since A is
continuous, then AXnk

→ AX as nk → ∞ in Ω , i.e.
supt max1≤i≤3 |(AXnk

)(t)− (AX)(t)| < ε . Then there
exists a subsequence Ynk

(t) of Yn(t) such that
Ynk

(t) → Y (t) as nk → ∞. Consequently,
{(AX)(t) : X ∈ Ω} is relatively compact in Λ .

This completes the proof of Theorem. Hence, by
Krasnoselskii’s Theorem T X∗ = X∗ and the equation (2)
has a fixed pseudo almost periodic solution in Ω .

5 Stability of the pseudo almost periodic

solution

Theorem 8. Suppose that assumptions (H1)−(H3) hold.

Then the unique pseudo almost periodic solution X∗(t) of

equation (2) in Theorem (2) is globally attractive.

Proof.Let X(t) be a solution of system (2). We need to
prove limt→∞ |X(t)− X∗(t)| = 0. By contradiction, we
pose limsup |X∗(t)−X(t)|= σ > 0.

Case1.limsup |X∗(t)−X(t)|= limsup |x∗(t)−x(t)|= σ >

0. Then

|x∗(t)− x(t)| =
∣

∣

∣

∣

∫ t

−∞
|y∗(s)− y(s)|e−(t−s)α ds

∣

∣

∣

∣

≤ 1

α
‖y∗− y‖∞ ≤ σ

α
,

then σ ≤ σ
α , which is a contradiction, then

limsup |x∗(t)− x(t)|= 0.
Case 2.limsup |X∗(t)−X(t)|= limsup |y∗(t)− y(t)|= σ .

The same of case 1, σ = limsup |y∗(t)− y(t)| ≤ σ
β .

Then limsup |y∗(t)− y(t)|= 0.

Case 3.limsup |X∗(t)−X(t)| = limsup |z∗(t)− z(t)| = σ .
Then

|z∗(t)− z(t)| ≤ sup
ξ

∣

∣

∣

∣

(α +β )(a(ξ )−α)−β 2− b(ξ )

+α2(a(ξ )−α)−αb(ξ )

−
n

∑
i=1

Lgi
]

∣

∣

∣

∣

∫ t

−∞
‖X∗−X‖Λ e−

∫ t
s ψ(u)duds

≤ ‖X∗−X‖Λ µ .

Besides,

σ = limsup |z∗(t)− z(t)| ≤ σ µ ,

which is a contradiction. Hence limsup |z∗(t)− z(t)| = 0.
Consequently, limsup |X∗(t)−X(t)|= 0.

6 Example

In this section we give an example in order to illustrate
the validity of Theorem (2). Let us consider the following
pseudo almost periodic Third-order differential equation

x(3) + (10− 6

1+ 1
2
(cos(πt)2 + cos(

√
2t)2)

)x(2)

+(13− 6

1+ 1
2
(cos(πt)2 + cos(

√
2t)2)

)x(1)

+ e|cos(
√

2t)| sin(x(t − 0.2))

= cos(πt)+ cos(
√

2t)+ e−(t cost)2

. (3)

For

a(t) = 10− 6

1+ 1
2
(cos(πt)2 + cos(

√
2t)2)

,

b(t) = 13− 6

1+ 1
2
(cos(πt)2 + cos(

√
2t)2)

,

n = 1,
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Fig. 1: Curves of the pseudo almost periodic solution of equation

(3) above with multiple delays.

and

g(t,x(t − r(t))) = e|cos(
√

2t)| sin(x(t − 0.2)),

p(t) = cos(πt)+ cos(
√

2t)+ e−(t cost)2

.

in addition to that α = β = 1.02, the equation (3) satisfies
(H1)− (H2) and

supt

(

|(α+β)(a(t)−α)−β2+α2(a(t)−α)−b(t)(1+α)−Lg |

)

inft{a(t)−α−β} ≤0.168<1.

Then the equation (3) has a unique pseudo almost periodic
solution.

7 Conclusion

Nonlinear differential differential equations of higher
order have been extensively studied with high degree of
generality. In particular, boundedness, uniform
boundedness, ultimate boundedness, uniform ultimate
boundedness and asymptotic behaviour of solutions have
been recently discussed by many authors (one can see
[5],[7],[8],[9],[10],[11],[13]). In this paper a third-order
differential equation with multiple delays is studied. By
new and sufficient conditions we prove the
uniformly-bounded solutions. In addition, we establish
the existence, uniqueness of the pseudo almost periodic
solutions, which is done by the use of different fixed point
theorems (Banach, Schauder, Leray-Schauder and
Krasnoselskii). Furthermore, the global attractivity of the
pseudo almost periodic solutions is proved. Finally, we
show the validity of our result by an example.

0 100 200 300 400 500 600 700 800 900 1000
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-1
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0
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Fig. 2: Curve of the x(t) with initial time t=0.
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Fig. 3: Curve of the y(t) with initial time t=1.5.
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Fig. 4: Curve of the z(t) with initial time t=2.

References

[1] A.T. Ali, M.M.A. Khater, R. A.M. Attia, A. Abdel-Aty and

Dianchen Lu, Abundant numerical and analytical solutions

of the generalized formula of Hirota-Satsuma coupled KdV

system, Chaos, Solitons & Fractals, 131,(109473),2020.

[2] A.T. Elgendy, A. Abdel-Aty, Amr A. Youssef, M. A.

A. Khder, Kh. Lotfy and S. Owyed, Exact solution

of Arrhenius equation for non-isothermal kinetics at

constant heating rate and n-th order of reaction, Journal

of Mathematical Chemistry, https://doi.org/10.1007/s10910-

019-01056-7, 2019.

[3] G.M. Ismail, H.R. Abdl-Rahim, A. Abdel-Aty, R.

Kharabsheh, W.Alharbi and M. Abdel-Aty, An analytical

solution for fractional oscillator in a resisting medium,

Chaos, Solitons & Fractals, 130, ( 109395), 2020.

[4] S. Owyed, M.A. Abdou, A. Abdel-Aty and S. Saha Ray,

New Optical Soliton Solutions of Nonlinear Evolution

Equation Describing Nonlinear Dispersion, Communications

in Theoretical Physics, 71, (1063-1068), 2019.

[5] A.I. Sadek, Stability and Boundedness of a Kind of

Third-Order Delay Differential System,Applied Mathematics

Letters, 16, (657–662), 2003.

[6] A. S. C. Sinha, On Stability of Solutions of Some Third and

Fourth Order Delay-Differential Equations,Information and

Control, 23, (165–172), 1973.

[7] A. T. Ademola, Existence and uniqueness of a periodic

solution to certain third order nonlinear delay differential

equation with multiple deviating arguments, Acta Univ.

Sapientiae Mathematica, 5, (113–131), 2013.
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