
Appl. Math. Inf. Sci. 14, No. 2, 215-222 (2020) 215

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/140205

The Qualitative Property of Numerical Solution of Third

Order Sublinear Neutral-Delay Generalized Difference

Equation

P. Venkata Mohan Reddy1,∗, M. Maria Susai Manuel1 and Adem Kılıçman2,∗∗
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Abstract: Here, we discuss adequate oscillatory conditions for third-order sub linear neutral-delay ℓ-difference equation

∆ℓ (α2(k)∆ℓ (α1(k)∆ℓ(x(k)+ p(k)x(k− τℓ))))+q(k)xβ (k−σℓ) = 0,

we apply Riccati transformation technique in deriving enough considerations to make sure that every result of this equation is oscillatory.

We provide suitable examples to validate our results.
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1 Introduction

Recently, many researchers focused their study on the
oscillatory, rotatory as well as the asymptotic properties
of numerical and exact solutions of certain type of
neutral, delay and neutral-delay difference equations, see
[1,2,3]. This area of study witnessed the publication of
hundreds of research articles and many monographs, see
for example [4,5,6,7]. Researchers showed greater
involvement on the work of the oscillatory properties of
solutions of higher order, particularly linear and nonlinear
second order delay, neutral and neutral difference
equations. Even though some applications of certain type
of third-order delay, neutral delay difference equations are
very evident in the study of mathematical biology,
economics and many other areas in mathematics [8,9,10,
11,12,13,14,15,16,17,18,19], it received only less
importance in the literature.

All these authors have handled various types of
difference equations taking into consideration the

conventional forward difference operator ∆ defined as

∆x(t) = x(t + 1)− x(t), t ∈ N.

Even though many authors [4,6,7,20] suggested an
alternative definition for ∆ as

∆x(t) = x(t+ h)− x(t), t ∈ R, ℓ ∈ R−{0}, (1)

for decades together, no significant contribution is
available in the literature of difference equation based on
the definition of ∆ given in (1). As of late, Thandapani et.
al., [21], studied the operator ∆ which is expressed in (1)
and generalized theory of difference equations in a new
dimension. To make it suitable, the operator ∆ given in
(1) is renamed as ∆ℓ by replacing h by ℓ and t by k and by
obtaining its inverse ∆−1

ℓ , numerous elating outcomes and
applications were obtained in number theory. In order to
increase the scope of the study of complex solutions of
the difference equations ∆ℓx(k) = y(k), certain behavior
of the numerical and exact solutions having the nature
say, spiral, rotation, shrinking, expand and web-like have
been developed for the equations containing ∆ℓ [22], an
application of difference equations in maneuvering target
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tracking, see [23].

We present here some of the results already available
relevant to our study which may serve the readers and
motivate the contents of this paper. Tang et. al., [24],
studied the first-order non-linear delay difference
equation of the form

xn+1 − xn + pnxα
n−k = 0.

Oscillation criteria for non-linear delay homogeneous
equation

∆
(

un (∆(xn + qnxn−τ))
γ)+ f (n,xn−σ ) = 0,

have been discussed by Later Saker [17] and obtained
oscillation criteria for the above mentioned equations.
One can refer to the oscillatory behavior of superlinear,
quasilinear, sub-linear, and halflinear difference equations
[18,25,26,27]. Recently Chandrasekar and Jaison [28]
studied the oscillation of second kind generalized
sub-linear neutral-delay difference equation as shown

∆ℓ (α(k)(∆ℓ(q(k)v(k− τℓ)+ v(k))))+ p(k)vγ (k−σℓ)= 0.

This paper aims to get Riccati type transformation to arrive
at certain criteria of oscillatory and asymptotic behavior
for the generalized third order difference equation

∆ℓ (α2(k)∆ℓ (α1(k)∆ℓz(k)))+ q(k)xβ (k−σℓ) = 0, (2)

where z(k) = x(k) + p(k)x(k − τℓ), β ∈ (0,1) is the odd
positive quotient, σ and τ are constant non-negative
integers, with the following condition

∞

∑
s=k

1

ai(s)
= ∞, for i = 1,2,

p(k) ∈ [0,1),∀k ∈ (0,∞),q(k)≥ 0. (3)

This paper is structured as follows: Few standard
definitions and preliminaries are discussed in section 2.
Section 3 deals with new oscillation results for (2) and in
Section 4, we provide suitable examples to demonstrate
the main findings.

2 Preliminaries

The following notations are used throughout this paper.
(a) Nℓ(b) = {b,b+ ℓ,b+ 2ℓ, . . .}.
(b) ⌈y⌉ represents the upper integer and [y] represents the
integer part of y.
(c) n = max{τℓ,σℓ}.
(d) j = k− k0 − [(k− k0)/ℓ]ℓ. k̄i = ki + j.

Definition 1.[1] Consider a real valued function y(k)
with real variable k. The operator
∆ℓy(k) = y(k + ℓ)− y(k), k ∈ [0,∞), ℓ ∈ (0,∞), and if

∆ℓx(k) = y(k), then x(n) = ∆−1
ℓ y(k) + c j. where the real

number c j can be obtained by substituting lower limit j,

for all k ∈ { j, j+ ℓ, j+ 2ℓ, · · ·}.

Definition 2.[21] For any positive interger λ , the
ℓ-polynomial factorial function can be given as

k
(λ )
ℓ =

λ−1

∏
i=0

(k− iℓ). (4)

Lemma 1.[21] Let ℓ ∈ [0,∞). then ∆ℓ(k
(λ )
ℓ ) = (λ ℓ)k

(λ−1)
ℓ

Lemma 2.[21] For the given two functions u(k) and v(k),
we have

∆ℓ{u(k)v(k)}= u(k+ ℓ)∆ℓu(k)+ v(k)∆ℓv(k)

= v(k+ ℓ)∆ℓu(k)+ u(k)∆ℓv(k).

Definition 3.[26] Let f (k,x1,x2, ...,xm) be a real-valued
function. This function can be called as strongly sub-linear
if ∃ a real number β ∈ (0,1), β is an odd positive quotient

and d > 0 with |x|−β | f (k,x1,x2, · · · ,xm)| is non-increasing
in |x| for |x| ∈ [0,d).

Definition 4.[21] Let y(k) be a real valued function, Then
for k ∈ [k0,∞),

x(k) = x(k0 + j)+

[

k−k0− j−ℓ
ℓ

]

∑
r=0

y(k0 + j+ rℓ),

for k ∈ Nℓ( j), where j = k− k0 −
[

k−k0
ℓ

]

ℓ.

3 Riccati transformation in generalized

third-order sublinear neutral delay

difference equation

For this particular work, the following notations are
introduced.

E0(k) = z(k), Ei(k) = ai(k)∆ℓEi−1(k), i = 1,2

Rn(k) =
1

a1(k)

[

k−n−ℓ− j
ℓ

]

∑
s=0

1

a2(n+ j+ sℓ)
and

Rn(k) =

[

k−n−ℓ− j
ℓ

]

∑
s=0

Rn(n+ j+ sℓ).

Theorem 1.Let ρ(k) be a positive function which satisfies

the condition (3) and such that for every M ≥ ℓ,

limsup
k→∞

[

k−k̄0−ℓ
ℓ

]

∑
s=0

[

ρ(k̄0 + sℓ)φ(k̄0 + sℓ)

−

(

∆ℓρ(k̄0 + sℓ)
)2

4ψ(k̄0 + sℓ)

]

= ∞, (5)

where φ(k) = p(k)(1 − q(k − σℓ))β . Then

ψ(k) =
β ρ(k)Rn(k−σℓ)

(M(k−σℓ+ ℓ))1−β
, satisfies equation (2).
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Proof.Let {y(k)} be a positive solution of (2) ∀k ≥ k0.
Since y(k) = E0(k), we obtain z(k) ≥ y(k) > 0 and
y(k− τℓ)> 0 ∀k ≥ k1 ≥ k0, and also from (2), we have

∆ℓE2(k) =−q(k)yβ (k−σℓ)≤ 0.

We know that E2(k) is a decreasing function on [k1,∞)
and it is eventually positive or negative. We can find that
E2(k) > 0 for k ≥ k1. If not, ∃ a positive real N1 > 0 with
the condition

∆ℓE1(k)<−
N1

a2(k)
< 0, for k ≥ k2 ≥ k1.

Hence, by Definition 4

E1(k)≤ E1(k̄2)−N1

[

k−k̄2−ℓ
ℓ

]

∑
s=0

1

a2(k̄2 + sℓ)
.

Letting k → ∞ and using (3) we have lim
k→∞

E1(k) = −∞.

Then there exists k3 ≥ k2 also, constant N2 > 0 such that

a1(k)∆ℓz(k)<−N2, for k ≥ k3.

If we divide the above expression by α1(k) and adding
from k3 to k, we get

z(k)< z(k̄3)−N2

[

k−k̄3−ℓ
ℓ

]

∑
s=0

1

α2(k̄3 + sℓ)
,

Allowing k → ∞ and using (3) , we see that z(k) → −∞.
That is z(k) < 0 eventually which is contradictory with
z(k)> 0. Hence, we find

z(k) > 0,E1(k)> 0 and ∆ℓE1(k)> 0 for k ≥ k0 (6)

and then from z(k) and (6) we have x(k) = z(k)− x(k −
τℓ)p(k) ≥ z(k)(1− p(k)) which yields, for k ≥ k1 = k0 +
σℓ,

x(k−σℓ)≥ z(k−σℓ)(1− p(k−σℓ)).

Thus, by (2), we arrive

∆ℓE2(k)≤−q(k)xβ (k−σℓ)

≤−q(k)(1− p(k−σℓ))β zβ (k−σℓ)< 0. (7)

Now, from (6), there exists n ≥ k1 such that

E1(k) = E1(n+ j)+

[

k−n−ℓ− j
ℓ

]

∑
s=0

E2(n+ j+ sℓ)

a2(n+ j+ sℓ)
.

Since ∆ℓE2(k) < 0, we obtain

E1(k)≤ E2(k)

[

k−n−ℓ− j
ℓ

]

∑
s=0

1

a2(n+ j+ sℓ)
.

This implies that

∆ℓz(k)≥ E2(k)Rn(k). (8)

The above equation can be written as

∆ℓz(k−σℓ)≥ E2(k)Rn(k−σℓ). (9)

Define ω(k) by the Riccati substitution

ω(k) = ρ(k)
E2(k)

zβ (k−σℓ)
. (10)

We see that ω(k)> 0 and satisfies

∆ℓω(k) = E2(k+ ℓ)∆ℓ

(

ρ(k)

zβ (k−σℓ)

)

+
ρ(k)∆ℓE2(k)

zβ (k−σℓ)
.

Thus, from (7) and (9), we derive

∆ℓω(k)≤−ρ(k)q(k)(1− p(k−σℓ))β +
∆ℓρ(k)

ρ(k+ ℓ)
ω(k+ ℓ)

−
ρ(k)E2(k+ ℓ)∆ℓz

β (k−σℓ)

zβ (k−σℓ+ ℓ)zβ(k−σℓ)
. (11)

Since z(k) = E0(k) and 0 < z(k−σℓ)≤ z(k−σℓ+ ℓ), this
implies that

∆ℓω(k)≤−ρ(k)φ(k)+
∆ℓρ(k)

ρ(ℓ+ k)
ω(ℓ+ k)

−
E2(ℓ+ k)∆ℓz

β (k−σℓ)ρ(k)
(

zβ (k−σℓ+ ℓ)
)2

. (12)

With the inequality given in ([5]),

(uβ − vβ )< β vβ−1(u− v)

for all 0 < v ≤ u and 0 < β ≤ 1, we find that

∆ℓz
β (k−σℓ)< β

(

zβ−1(k−σℓ+ ℓ)
)

∆ℓz(k−σℓ). (13)

Substituting (13) in (12), we arrive

∆ℓω(k)≤−ρ(k)φ(k)+
∆ℓρ(k)

ρ(k+ ℓ)
ω(k+ ℓ)

−
ρ(k)E2(k+ ℓ)β

(

zβ−1(k−σℓ+ ℓ)
)

∆ℓz(k−σℓ)
(

zβ (k−σℓ+ ℓ)
)2

.

(14)

Using (9) in (14), we derive

∆ℓω(k)≤−φ(k)ρ(k)+
∆ℓρ(k)

ρ(k+ ℓ)
ω(k+ ℓ)

−
ρ(k)E2

2 (k+ ℓ)β
(

zβ−1(k−σℓ+ ℓ)
)

Rn(k−σℓ)
(

zβ (k−σℓ+ ℓ)
)2

. (15)
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By (10) in (14) becomes

∆ℓω(k)≤−φ(k)ρ(k)+
∆ℓρ(k)

ρ(ℓ+ k)
ω(ℓ+ k)

−β
ρ(k)ω2(ℓ+ k)Rn(k−σℓ)

(ρ(ℓ+ k))2
(

z1−β (k−σℓ+ ℓ)
) . (16)

Hence, form (6), it is easy to obtain

z(k)≤ z(k0)+∆ℓz(k0)(k− k0), k ≥ k0

and consequently ∃, k1 ≥ k0 and an suitable constant M ≥ ℓ
with the condition z(k)≤M ∀k1 ≤ k, and yields z(k−σℓ+
ℓ)≤ M(k−σℓ+ ℓ) ∀k ≥ k2 = k1 −σℓ+ ℓ, which yields

1

z1−β (k−σℓ+ ℓ)
≥

1

(M(k−σℓ+ ℓ))1−β

Using the above inequality in (16),

∆ℓω(k)≤−φ(k)ρ(k)+
∆ℓρ(k)ω(ℓ+ k)

ρ(ℓ+ k)

−
β ρ(k)Rn(k−σℓ)ω2(ℓ+ k)

ρ2(ℓ+ k)(M(k−σℓ+ ℓ))1−β
(17)

The above equation can also be written as

∆ℓω(k)≤−φ(k)ρ(k)+
(∆ℓρ(k))

2

4ψ(k)

−

[

√

ψ(k) ω(ℓ+ k)

ρ(k+ ℓ)
−

∆ℓ(ρ(k))

2
√

ψ(k)

]2

(18)

Then, we arrive

∆ℓω(k)≤−

[

φ(k)ρ(k)−
(∆ℓρ(k))

2

4ψ(k)

]

. (19)

Summing (19) for k = k2,k2 + ℓ,k2 + 2ℓ, · · · we derive

−ω(k̄2)< ω(k+ ℓ)−ω(k̄2)

<−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

ρ(k̄2 + sℓ)φ(k̄2 + sℓ)−

(

∆ℓρ(k̄2 + sℓ)
)2

4ψ(k̄2 + sℓ)

]

which yields

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

ρ(k̄2 + sℓ)φ(k̄2 + sℓ)−

(

∆ℓρ(k̄2 + sℓ)
)2

4ψ(k̄2 + sℓ)

]

<C,

which contradicts (5), when k is large k. Thus we hence
the proof.

Remark.Let ρ(k) = kλ , where k is greater than k0, λ > 1.
Theorem 1 gives different conditions for oscillatary
solution of (2) if (3) holds for different options of ρ(k).

Corollary 1.Assume that Theorem 1 holds with all
conditions and we replace condition (3) with

limsup
k→∞

[

k−k̄0−ℓ
ℓ

]

∑
s=0

[

(k̄0 + sℓ)λ φ(k̄0 + sℓ)

−

(

∆ℓ(k̄0 + sℓ)λ
)2

4ψ(k̄0 + sℓ)

]

= ∞, (20)

where φ(k) = q(k)(1 − p(k − σℓ))β and

ψ(k) =
β ρ(k)Rn(k−σℓ)

(M(k−σℓ+ ℓ))1−β
. Then each and every

solution of (2) is oscillatory.

Theorem 2.Let y(k) be a solution of (2). Assume that (3)
holds, and ∃ a real valued function {G(n,k) : n ≥ k ≥ 0}
with the condition

(i) G(n,n) = 0 for n ≥ 0,

(ii) G(n,k)> 0 for n > k ≥ 0,
(iii) ∆ℓ2G(n,k) = G(n,k+ ℓ)−G(n,k)≤ 0.

If

limsup
n→∞

1

G(n,0)

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

G(n, k̄2 + sℓ)ρ(k̄2 + sℓ)φ(k̄2 + sℓ)

−
ρ2(k̄2 + sℓ+ ℓ)

4ψ(k̄2 + sℓ)

(

g(n, k̄2 + sℓ)

−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)

√

G(n, k̄2 + sℓ)

)2
]

= ∞ (21)

where ∆ℓ2G(n,k) =−g(n,k)
√

G(n,k), for n > k ≥ 0, then

every solution of (2) oscillates.

Proof.If a non-oscillatory solution exists for the difference
equation (2), as in the of Theorem 1, we arrive (17) ∀k ≥
k2. From (17) and the condition ∆ℓρ(k) ≤ 0, we have for
k ≥ k2

∆ℓω(k)≤−ρ(k)φ(k)+
∆ℓρ(k)

ρ(k+ ℓ)
ω(k+ ℓ)

−
ψ(k)

ρ2(k+ ℓ)
ω2(k+ ℓ). (22)

The above equation will take the form

ρ(k)φ(k) ≤−∆ℓω(k)+
∆ℓρ(k)

ρ(k+ ℓ)
ω(k+ ℓ)

−
ψ(k)

ρ2(k+ ℓ)
ω2(k+ ℓ). (23)
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Multiplying (23) by G(n,k) and summing from k2 to k− ℓ,
we obtain
[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)ρ(k̄2 + sℓ)φ(k̄2 + sℓ)

≤−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)∆ℓω(k̄2 + sℓ)

+

[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)
ω(k̄2 + sℓ+ ℓ)

−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)ψ(k̄2 + sℓ)

ρ2(k̄2 + sℓ+ ℓ)
ω2(k̄2 + sℓ+ ℓ), (24)

which yields, after summing by parts,
[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)ρ(k̄2 + sℓ)φ(k̄2 + sℓ)

≤ G(n, k̄2)w(k̄2)

+

[

k−k̄2−ℓ
ℓ

]

∑
s=0

ω(k̄2 + sℓ+ ℓ)∆ℓG(n, k̄2 + sℓ)

+

[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)
ω(k̄2 + sℓ+ ℓ)

−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

G(n, k̄2 + sℓ)ψ(k̄2 + sℓ)

ρ2(k̄2 + sℓ+ ℓ)
ω2(k̄2 + sℓ+ ℓ)

= G(n, k̄2)w(k̄2)

−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

g(m, k̄2 + sℓ)

√

G(n, k̄2 + sℓ)ω(k̄2 + sℓ+ ℓ)

+

[

k−k̄2−ℓ
ℓ

]

∑
s=0

∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)
G(n, k̄2 + sℓ)ω(k̄2 + sℓ+ ℓ)

−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

ψ(k̄2 + sℓ)

ρ2(k̄2 + sℓ+ ℓ)
G(n, k̄2 + sℓ)ω2(k̄2 + sℓ+ ℓ)

= G(n, k̄2)w(k̄2)

+

[

k−k̄2−ℓ
ℓ

]

∑
s=0

ρ2(k̄2 + sℓ+ ℓ)

4ψ(k̄2 + sℓ)

(

g(n, k̄2 + sℓ)

−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)

√

G(n, k̄2 + sℓ)

)2

−

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

√

G(n, k̄2 + sℓ)ψ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)
ω(k̄2 + sℓ+ ℓ)

+
ρ(k̄2 + sℓ+ ℓ)

2
√

G(n, k̄2 + sℓ)ψ(k̄2 + sℓ)

(

g(n, k̄2 + sℓ)

√

G(n, k̄2 + sℓ)−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)
G(n, k̄2 + sℓ)

)]2

Then,

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

G(n, k̄2 + sℓ)ρ(k̄2 + sℓ)φ(k̄2 + sℓ)

−
ρ2(k̄2 + sℓ+ ℓ)

4ψ(k̄2 + sℓ)

(

g(n, k̄2 + sℓ)

−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)

√

G(n, k̄2 + sℓ)

)2
]

< G(n, k̄2)w(k̄2)≤ G(n,0)w(k̄2)

Hence

limsup
n→∞

1

G(n,0)

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

G(n, k̄2 + sℓ)ρ(k̄2 + sℓ)

φ(k̄2 + sℓ)−
ρ2(k̄2 + sℓ+ ℓ)

4ψ(k̄2 + sℓ)

(

g(n, k̄2 + sℓ)

−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)

√

G(n, k̄2 + sℓ)

)2
]

< ∞

which is a contradiction to the expression (21). Hence the
proof.

Remark.Several oscillation criteria for the equation (2)
can be obtained by the choice of G(n,k). The identity
G(n,n) = 0 for n ≥ 0 and G(n,k) > 0 and ∆ℓ2G(n,k) ≤ 0
for n > k > 0 follows by the choice of

G(n,k) = (n − k)
(λ )
ℓ or

(

log n+ℓ
k+ℓ

)λ
, where λ ≥ 1 and

n ≥ k ≥ 0.

Corollary 2.Assume the conditions given in Theorem 2
and (21) is replaced by

limsup
m→∞

1

(m)
(λ )
ℓ

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

(m− k̄2− sℓ)
(λ )
ℓ ρ(k̄2 + sℓ)φ(k̄2 + sℓ)

−
ρ2(k̄2 + sℓ+ ℓ)

4ψ(k̄2 + sℓ)

(

λ ℓ(m− k̄2− sℓ)
( λ

2 −1)

ℓ

−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)

√

(m− k̄2 + sℓ)
(λ )
ℓ

)2
]

= ∞ (25)
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where φ(k) = q(k)(1 − p(k − σℓ))β and

ψ(k) =
β ρ(k)Rn(k−σℓ)

(M(k−σℓ+ ℓ))1−β
, then every solution of (2)

oscillates.

Corollary 3.Assume the hypothesis given in Theorem 2,
(21) is replaced by

limsup
t→∞

1

(log(m+ ℓ))λ

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

(

log

(

m+ ℓ

k̄2 + sℓ+ ℓ

))λ

ρ(k̄2 + sℓ)φ(k̄2 + sℓ)

−
ρ2(k̄2 + sℓ+ ℓ)

4ψ(k̄2 + sℓ)

(

ℓ

k̄2 + sℓ+ ℓ

(

log

(

m+ ℓ

k̄2 + sℓ+ ℓ

))( λ
2 −1)

−
∆ℓρ(k̄2 + sℓ)

ρ(k̄2 + sℓ+ ℓ)

√

(

log

(

m+ ℓ

k̄2 + sℓ+ ℓ

))λ




2





= ∞

(26)

where φ(k) = q(k)(1 − p(k − σℓ))β and

ψ(k) =
β ρ(k)Rn(k−σℓ)

(M(k−σℓ+ ℓ))1−β
, then every solution of (2)

oscillates.

4 Examples

Example 1.Consider the third-order generalized sublinear
neutral delay difference equation

∆ℓ

(

1

k
∆ℓ

(

1

k
∆ℓ

(

x(k)+
1

2
x(k− 2ℓ)

)))

+
3(4k3 + 10k2ℓ+ 7kℓ2+ 2ℓ3)

k2(k+ ℓ)2(k+ 2ℓ)
x

1
3 (k− 2ℓ) = 0, k ≥ 2ℓ

(27)

Here a1(k) = a2(k) =
1

k
, p(k) =

1

2
,

q(k) =
3(4k3 + 10k2ℓ+ 7kℓ2+ 2ℓ3)

k2(k+ ℓ)2(k+ 2ℓ)
, β =

1

3
and

τ = σ = 2. By taking ρ(k) = k2(k+ ℓ)2(k+ 2ℓ), it is easy
to see that condition (5) is satisfied. Hence by Theorem 1,
the equation (27) is oscillatory.

Example 2.Consider the third-order generalized sublinear
neutral delay difference equation

∆ 2
ℓ

(

1

k
∆ℓ

(

x(k)+
1

3
x(k− 4ℓ)

))

+
16(2k2 + 4kℓ+ ℓ2)

3k(k+ ℓ)(k+ 2ℓ)
x

1
5 (k− 2ℓ) = 0, k ≥ 4ℓ (28)

Here a1(k) =
1

k
, a2(k) = 1, p(k) =

1

3
,

q(k) =
16(2k2 + 4kℓ+ ℓ2)

3k(k+ ℓ)(k+ 2ℓ)
, τ = 4, σ = 2 and β = 1

5
. By

taking ρ(k) = k2 for k = 1,2,3, · · · and M = 10. Then,

Rn(k) =
k− n

ℓ
,

Rn(k) =
(k− n− ℓ)(k− n)(2k− n− ℓ)

6ℓ2
.

φ(k) =
16(2k2 + 4kℓ+ ℓ2)

3k(k+ ℓ)(k+ 2ℓ)

(

2

3

) 1
5

,

ψ(k) =
k2(k− n− 2ℓ)(k− n−3ℓ)(2k+n−5ℓ)

300ℓ2(k− ℓ)
1
5

,

which implies

limsup
k→∞

[

k− ¯k0−ℓ
ℓ

]

∑
s=0





16(k̄0 + sℓ)(2(k̄0 + sℓ)2 +4(k̄0 + sℓ)ℓ+ ℓ2)

3(k̄0 + sℓ+ ℓ)(k̄0 + sℓ+2ℓ)

(

2

3

) 1
5

−
75ℓ4(2(k̄0 + sℓ)+ ℓ)2(k̄0 + sℓ− ℓ)

1
5

(k̄0 + sℓ)2(k̄0 +(s−2)ℓ− k)(k̄0 +(s−3)ℓ−n)(2k̄0 +(2s−5)ℓ+n)

]

= ∞.

It follows from Corollary 1 that every solution of equation

(28) is oscillatory. In fact {x(k)}= {(−1)[
5k
ℓ ]} is one such

oscillatory solution of equation (28).

Example 3.Here, we discuss the following equation

∆ 3
ℓ

(

x(k)+
1

3
x(k− ℓ)

)

+
16

3
x

1
3 (k− 2ℓ) = 0. (29)

Here a1(k) = a2(k) = 1, p(k) =
1

3
, q(k) = 16

3
, τ = 1, σ = 2

and β = 1
3
. By taking λ = 2, ρ(k) = 1 for k = 1,2,3, · · ·

and M > ℓ. Then,

Rn(k) =
k− n

ℓ
,

Rn(k) =
(k− n)(k− n− ℓ)

2ℓ2
.

φ(k) =
16

3

(

2

3

) 1
3

,

ψ(k) =
(k− n− 2ℓ)(k− n−3ℓ)

6Mℓ2(k− ℓ)
1
3

,

which implies

limsup
k→∞

1

(m)
(2)
ℓ

[

k−k̄2−ℓ
ℓ

]

∑
s=0

[

(m− k̄2 − sℓ)
(2)
ℓ

16

3

(

2

3

) 1
3

]

= ∞.

It follows from Corollary 2 that all the solution of (29)
is oscillatory. One such oscillatory solution is {x(k)} =

{(−1)[
3k
ℓ ]}.
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[23] M. Sumathy, Adem Kılıçman, M. Maria Susai Manuel

and Jesintha Mary, Qualitative study of Riccati difference

equation on maneuvering target tracking and fault diagnosis

of wind turbine gearbox, Cogent Engineering, 6(1),

1621423, 2019.

[24] X.H. Tang and Y. J. Liu, Oscillation for nonlinear delay

difference equations, Tamkang J. Math., 32(4), 275-280,

2001.

[25] J. C. Jiang, Oscillatory criteria for second-order quasilinear

neutral delay difference equations, Appl. Math. and

Computing, 125, 287–293, 2002.

[26] Q. Li, C. Wang, F. Li, H. Liang and Z. Zhang, Oscillation of

Sublinear Difference Equation with Positive Neutral Term,

J. Appl. Math. and Computing, 20(1-2), 305–314, 2006.

[27] Xiaoyan Lin, Oscillation for higher-order neutral

superlinear delay difference equations with unstable

type, Comp. and Maths. with Applications, 50(5), 683–691,

2005.

[28] V. Chandrasekar and A. Benevatho Jaison, Oscillation

of Generalized Second Order Sublinear Neutral Delay

Difference Equations, Mathematical Sciences International

Research Journal, 3(2), 546–552, 2014.

P. Venkata Mohan
Reddy is full time Associate
Professor in the Department
of Mathematics at R.M.D.
Engineering College,
Tamil Nadu, India. He has
obtained his graduation, post
graduation and M. Phil from
Loyola College, Chennai,
University of Madras in 1997,

1999 and 2000 respectively, Chennai. His research area is
Differential and Difference Equations.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
DOI:10.3233/JIFS-179571
DOI: 10.3233/JIFS-179547


222 P. Reddy et al.: The Qualitative property of numerical solution of...

M. Maria Susai
Manuel is full Professor
of Mathematics and Head
of the department of
Science and Humanities
at R.M.D. Engineering
college, Chennai, India. He
has completed his graduation
from Pioneer Kumaraswamy
College, Nagarcoil, Madurai

University in 1972, post graduation from Loyola College,
Chennai under Madras University in 1974, M.Phil in
Mathematics from Madras University in 1987 and Ph.D
in Mathematics from Madras University in 1997. His
Research areas include Differential Equations, and
Difference Equations. He has rich experience in teaching
and research.
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