Bipolar Intuitionistic Fuzzy Graphs and its Matrices

Asad M. A. Alnaser ${ }^{1}$, Wael A. AlZoubi ${ }^{1}$ and Mourad O. Massadeh ${ }^{1,2, *}$
${ }^{1}$ Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun, Jordan
${ }^{2}$ Department of Mathematics, Science College, Taibah University, Madinah, Saudi Arabia

Received: 2 Jul. 2019, Revised: 2 Aug. 2019, Accepted: 1 Nov. 2019.
Published online: 1 Mar. 2020.

Abstract

In this paper the notions of subdivisions intuitionistic bipolar fuzzy graph, matrix of bipolar intuitionistic fuzzy graph, and line intuitionistic bipolar fuzzy graph are introduced and studied.

Keywords: Intuitionistic bipolar fuzzy set, Intuitionistic bipolar fuzzy graph, Incidence intuitionistic bipolar fuzzy matrix, Line intuitionistic bipolar fuzzy graph.

1 Introduction

Zadeh [1] in 1965 introduced the concept of a fuzzy subset. Fuzzy sets theory becomes a vigorous research area in different disciplines including mathematics, engineering, computer science, signal processing and graph theory. Atanassove [2] studied intuitionistic fuzzy set concept as a generalization of fuzzy sets. Various authors have studied and concluded some results for intuitionistic fuzzy graph [3-6]. In 1994, Zhang [7] introduced bipolar fuzzy set's notion as a generalization of fuzzy sets, Massa'deh et al [820] introduced many new concepts, including fuzzy, bipolar fuzzy and intuitionistic fuzzy groups, rings and graphs. In 2011, Akram [21] studied a bipolar fuzzy set in graph theory and among the subjects he studied regular, irregular, totally neighborly irregular graph. Many authors introduced and discussed some properties of graph theory in bipolar fuzzy sets [22-25]. In 2015, Ezhilmaran and Sankar [26, 27] defined intuitionistic bipolar fuzzy graph. They introduced some concepts such as neighborly irregular intuitionistic fuzzy graph, totally irregular intuitionistic fuzzy graph, highly irregular intuitionistic fuzzy graph. In this paper, we study more results of intuitionistic bipolar fuzzy graph, incident matrix for intuitionistic bipolar fuzzy graph, line intuitionistic bipolar fuzzy graph, subdivision intuitionistic bipolar fuzzy graph. These concepts are useful in information analysis of computer networks.

2 Preliminaries

The following definitions will be used in the sequel.

Definition2.1: [22] A graph is an ordered pair $G=(V, E)$, where V is the set of vertices of G^{*} and E is the set of edges of G^{*}. Two vertices \mathbf{x}, \mathbf{y} in an unordered graph G^{*} are said to be adjacent in the graph if (x, y) is an edge in G^{*}. A simple graph is an unordered graph that has no loops and no more than one edge between any two different vertices.
Definition2.2: [26] A subgraph of a graph $G^{*}=(V, E)$ is a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$, where $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$.
Definition2.3: [26] A crisp graph $\mathrm{G}^{*}=(\mathrm{V}, \mathrm{E})$ is an unordered triple $\left(\mathrm{V}\left(\mathrm{G}^{*}\right), \mathrm{E}\left(\mathrm{G}^{*}\right), \Psi_{\mathrm{G}^{*}}\right)$ consisting of a nonempty $V\left(G^{*}\right)$ of vertices, a set of edges $\mathrm{E}\left(\mathrm{G}^{*}\right)$ disjoint from $\mathrm{V}\left(\mathrm{G}^{*}\right)$, and an incidence function $\Psi_{\mathrm{G}^{*}}$ that associates with each edge of G^{*} an unordered pair of vertices of G^{*}.
Definition2.4: [26] let $G^{*}=(V, E)$ be a crisp graph, the length of a path $P=V_{1} V_{2} \ldots . V_{n+1}$ in G is n.

Definition2.5: [25] let $\mathrm{G}^{*}=(\mathrm{V}, \mathrm{E})$ be a crisp graph, the distance between any two vertices V_{i} and V_{j} in G^{*} is denoted by $\mathrm{d}_{\mathrm{G}^{*}}\left(\mathrm{~V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ and is defined as the minimum length of the path connecting the vertices $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}$.

Definition2.6: [25] An $m \times n$ matrix is a rectangular array of $\mathrm{m} \times \mathrm{n}$ numbers arranged in n rows and m columns, $\mathrm{m} \times \mathrm{n}$ is called the size on the order of the matrix.
Definition2.7: Two matrices A and B are said to be equal if they have the same order and the corresponding entries in both matrices are equal.

3 Main Results

Definition 3.1:[27] Let X be a non-empty set, the intuitionistic bipolar fuzzy set $\delta=\left\{x, \mu^{+}(x), \mu^{-}(x), \lambda^{+}(x), \lambda^{-}\right.$ $(\mathrm{x}): \mathrm{x} \in \mathrm{X}\}$ Where: $\mu^{+}(\mathrm{x}): \mathrm{x} \rightarrow[0,1]$ and $\mu^{-}(\mathrm{x}): \mathrm{x} \rightarrow[-1$, $0], \lambda^{+}(x): x \rightarrow[0,1], \lambda^{-}(x): x \rightarrow \quad[-1,0]$, are the mappings such that: $0 \leq \mu^{+}(x)+\lambda^{+}(x) \leq 1,-1 \leq \mu^{-}(x)+\lambda^{-}(x) \leq 0$. We use the position membership degree $\mu^{+}(x)$ to denote the satisfaction degree to an intuitionistic bipolar fuzzy set δ, and the negative of an element x some implicit counter property corresponding to an intuitionistic bipolar fuzzy set. Similarly, we use the positive non-membership degree $\left(\lambda^{+}(x)\right)$ to denote the satisfaction degree of an element \mathbf{x} to the property corresponding to an intuitionistic bipolar fuzzy set and the negative non-membership degree $\left(\lambda^{-}(\mathrm{x})\right)$ to denote the satisfaction degree of an element x to some implicit counter property corresponding to an intuitionistic bipolar fuzzy set. If $\mu^{+}(x) \neq 0, \mu^{-}(x)=0, \lambda^{+}(x)=0$ and $\lambda^{-}(x)$ $=0$ then we have a situation that x is regarded as having only the positive membership property of an intuitionistic bipolar fuzzy set. If $\mu^{+}(x)=0, \mu^{-}(x) \neq 0, \lambda^{+}(x)=0$ and $\lambda^{-}(x)$ $=0$ then we have a situation that x is regarded as having only the negative membership property of an intuitionistic bipolar fuzzy set. If $\mu^{+}(x)=0, \mu^{-}(x)=0, \lambda^{+}(x) \neq 0$ and $\lambda^{-}(x)$ $=0$ then we have a situation that x regarded as having only the positive non-membership property of an intuitionistic bipolar fuzzy set. It is possible for an element x to be such that $\mu^{+}(x) \neq 0, \mu^{-}(x) \neq 0, \lambda^{+}(x) \neq 0$ and $\lambda^{-}(x) \neq 0$ when the membership and non-membership function of the property overlaps with its counter properties over some portion of x .
Definition 3.2: if δ and γ are two intuitionistic bipolar fuzzy sets, such that:
$\delta=\left(\mu^{+} \delta(x), \mu^{-} \delta(x), \lambda^{+} \delta(x)\right.$ and $\left.\lambda^{-} \delta(x)\right)$
$\gamma=\left(\mu^{+}{ }_{\gamma}(\mathrm{x}), \mu_{\gamma}^{-}(\mathrm{x}), \lambda^{+}{ }_{\gamma}(\mathrm{x})\right.$ and $\left.\lambda_{\gamma}^{-}(\mathrm{x})\right)$, then:
$(\delta \cap \gamma)(x)=\left(\mu^{+} \delta(x) \wedge \mu^{+}{ }_{\gamma}(x), \mu_{\delta}^{-}(x) \wedge \mu_{\gamma}^{-}(x)\right)$
$(\delta \cup \gamma)(x)=\left(\mu^{+} \delta(x) \vee \mu_{\gamma}^{+}(x), \mu_{\delta}^{-}(x) \vee \mu_{\gamma}^{-}(x)\right)$
$(\delta \cap \gamma)(x)=\left(\lambda^{+} \delta(x) \wedge \lambda^{+}{ }_{\gamma}(x), \lambda^{-} \delta(x) \wedge \lambda_{\gamma}^{-}(x)\right)$
$(\delta \cup \gamma)(\mathrm{x})=\left(\lambda^{+} \delta(\mathrm{x}) \vee \lambda^{+}{ }_{\gamma}(\mathrm{x}), \lambda_{\delta}^{-}(\mathrm{x}) \vee \lambda_{\gamma}^{-}(\mathrm{x})\right)$
Definition3.3: An intuitionistic bipolar fuzzy graph $G=$ (V, E) is said to be a strong intuitionistic bipolar fuzzy graph if
$\mu_{\delta i j}^{+}=\min \left(\mu_{\delta i}^{+}, \mu_{\delta j}^{+}\right)$and $\lambda_{\delta i j}^{+}=\max \left(a_{i}, a_{j}\right)$
$\mu_{\delta i j}^{-}=\max \left(\mu_{\delta i}^{-}, \mu_{\delta j}^{-}\right)$and $\lambda_{\delta i j}^{+}=\min \left(a_{i}, a_{j}\right)$
$\forall\left(a_{i}, a_{j}\right) \in E$
Definition3.4: An intuitionistic bipolar fuzzy graph $G=$ (V, E) is said to be a complete intuitionistic bipolar fuzzy graph if
$\mu_{\mathrm{y} i j}^{+}=\min \left(\mu_{\mathrm{y} i}^{+}, \mu_{\gamma j}^{+}\right)$and $\lambda_{\delta i j}^{+}=\max \left(a_{i}, a_{j}\right)$
$\mu_{\mathrm{y} i j}^{-}=\max \left(\mu_{\mathrm{y} i}^{-}, \mu_{\mathrm{y} j}^{-}\right)$and $\lambda_{\delta i j}^{+}=\min \left(a_{i}, a_{j}\right)$
For all $\left(a_{i}, a_{j}\right) \in V$.
Definition3.5: If $G=(V, E)$ is an intuitionistic bipolar fuzzy graph, then the order of G is defined and denoted by
$O(G)=\left(O_{\mu}(G), O_{\lambda}(G)\right)$ where $\quad O_{\mu \delta}(G)=$
$\left(\sum_{a_{i} \epsilon v} \mu_{\delta i}^{+}, \sum_{a_{i} \epsilon v} \mu_{\delta i}^{-}\right)$and $O_{\lambda \delta}(G)=\left(\sum_{a_{i} \epsilon v} \lambda_{\delta i}^{+}, \sum_{a_{i} \epsilon v} \lambda_{\delta i}^{-}\right)$
Definition3.6: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph, then the size is defined as $S(G)=$ $\left(S_{\mu}(G), S_{\lambda}(G)\right)$
$S_{\mu}(G)=\sum_{a_{i j} \epsilon E} \mu_{\mathrm{y} i j}^{+}, \sum_{a_{i j} \epsilon E} \mu_{\mathrm{y} i j}^{-}$and
$S_{\lambda}(G)=\sum_{a_{i j} \epsilon E} \lambda_{\gamma i j}^{+}, \sum_{a_{i j} \epsilon E} \lambda_{\gamma i j}^{-}$
Definition3.7: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph. A path P in G is a sequence of distinct vertices $a_{1}, a_{2}, \cdots \cdots, a_{n}$ such that either one of the following conditions is held

1) $\quad \mu_{\delta i j}^{+}>0,\left|\mu_{\delta i j}^{-}\right|>0$

$$
\text { And } \lambda_{\delta i j}^{+}=1 \quad \lambda_{\delta i j}^{-}=0 \text { for some } i \text { and } j
$$

2)

$$
\begin{aligned}
& \mu_{\delta i j}^{+}>0,\left|\mu_{\delta i j}^{-}\right|>0 \\
& \lambda_{\delta i j}^{+}>0,\left|\lambda_{\delta i j}^{-}\right|>0
\end{aligned}
$$

Definition3.8: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph. The length of a path $P=a_{1}, a_{2}, \cdots \cdots, a_{n+1}$ $(n>0)$ in G is n
Definition3.9: An intuitionistic bipolar fuzzy graph. $G=$ (V, E) is connected if any two vertices are joined by a path.
Definition3.10: If G is an intuitionistic bipolar fuzzy graph. The μ - strength (λ - strength) of a path $P=a_{1}, a_{2}, \cdots \cdots$ \cdot, a_{n} in an intuitionistic bipolar fuzzy graph G is denoted
by.
$S P_{\mu(G)}\left(S P_{\lambda(G)}\right) \&$ is defined as
$\max \left(\min \left\{\mu_{\delta i j}^{+}\right\}, \max \left\{\left|\mu_{\delta i j}^{-}\right|\right\}\right)$,
$\max \left(\max \left\{\lambda_{\delta i j}^{+}\right\}, \min \left\{\left|\lambda_{\delta i j}^{-}\right|\right\}\right)$
Respectively for all $i, j=1,2, \cdots \cdots, n$
Definition3.11: If $a_{i}, a_{j} \in V \leq G$, the connectedness $\mu-$ strength ($\lambda-$ strength) between the vertices a_{i} and a_{j} in G is
$\operatorname{CoN} N_{\mu(G)}\left(a_{i}, a_{j}\right)=\max \left\{S P_{\mu(c)}\right\}$
$\operatorname{CoN} N_{\lambda(G)}\left(a_{i}, a_{j}\right)=\min \left\{S P_{\lambda(c)}\right\}$
For all possible path between a_{i} and a_{j}.
Definition3.12: Let G be an intuitionistic bipolar fuzzy graph. A walk is a sequence of vertices and edge. Where the end points of each edge are the preceding and following vertices in the sequence such that either one of the following conditions is held

1) $\quad \mu_{\delta i j}^{+}>0,\left|\mu_{\delta i j}^{-}\right|>0$

$$
\lambda_{\delta i j}^{+}=0, \lambda_{\delta i j}^{-}=0 \text { for some } i \text { and } j
$$

2) $\quad \mu_{\delta i j}^{+}>0,\left|\mu_{\delta i j}^{-}\right|>0$

$$
\lambda_{\delta i j}^{+}>0,\left|\lambda_{\delta i j}^{-}\right|>0
$$

If a walk begins at a_{i} and ends at a_{j}.then it is an $a_{i}-a_{j}$ walk.
A walk is closed if it begins and ends at the same vertex.
Theorem3.13: if $G=(V, E)$ is an intuitionistic bipolar fuzzy graph. G Contains a $\mathrm{x}-\mathrm{y}$ walk of length r, then G contains a x - y path of length r.

Definition3.14: An intuitionistic bipolar fuzzy graph $\mathrm{G}^{*}=$ (V, E) is a pair (δ, γ) where $\delta=\left\langle^{+}{ }_{\delta}, \mu_{\delta}^{-}, \lambda^{+}{ }_{\delta}, \lambda^{-}{ }_{\delta}>\right.$ is an
intuitionistic bipolar fuzzy set in V and $\gamma=<\mu_{\gamma}^{+}, \mu_{\gamma}^{-}, \lambda_{\gamma}^{+}$, $\lambda_{-} \gg$ is an intuitionistic bipolar fuzzy set in $\mathrm{V} \times \mathrm{V}$ such that (V, E) is an intuitionistic bipolar fuzzy graph. The neighborhood of a vertex a in G is defined by $\mathrm{N}(\mathrm{a})=\left(\mathrm{N}_{\mu}{ }^{+}(\mathrm{a}), \mathrm{N}_{\mu}{ }^{-}(\mathrm{a}), \mathrm{N}^{+}{ }^{+}(\mathrm{a}), \mathrm{N}_{\lambda^{-}}(\mathrm{a})\right)$, where:

1) $\mathrm{N}_{\mu}{ }^{+}(\mathrm{a})=\left\{\mathrm{b} \in \mathrm{V}: \mu^{+}{ }_{\gamma}(\mathrm{ab}) \leq \min \left(\mu^{+} \delta(\mathrm{a}), \mu^{+}{ }_{\delta}(\mathrm{b})\right)\right\}$
2) $\mathrm{N}_{\mu}-(\mathrm{a})=\left\{\mathrm{b} \in \mathrm{V}: \mu_{\gamma}(\mathrm{ab}) \geq \max \left(\mu_{\delta}^{-}(\mathrm{a}), \mu_{\delta}^{-}(\mathrm{b})\right)\right\}$
3) $\mathrm{N}^{+}(\mathrm{a})=\left\{\mathrm{b} \in \mathrm{V}: \lambda^{+} \gamma_{\gamma}(\mathrm{ab}) \geq \max \left(\lambda^{+} \delta(\mathrm{a}), \lambda^{+} \delta(\mathrm{b})\right)\right\}$
4) $\mathrm{N}^{-}-(\mathrm{a})=\left\{\mathrm{b} \in \mathrm{V}^{-} \lambda^{+}{ }_{\gamma}(\mathrm{ab}) \leq \min \left(\lambda_{\delta}^{-}(\mathrm{a}), \lambda^{-}(\mathrm{b})\right)\right\}$

Example 3.15:

(0.2, -0.4, 0.5, -0.1)

Fig.1: Intuitionistic bipolar fuzzy graph
Fig.1: A display of an intuitionistic bipolar fuzzy graph $G=(V, E)$, such that: $V=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $E=\left\{e_{1}, e_{2}, e_{3}\right.$, e4\}.

Fig.2: Intuitionistic bipolar fuzzy graph

Definition 3.16: The dimension or the order of an intuitionistic bipolar fuzzy matrix A is the number of rows and columns, the dimension of intuitionistic bipolar fuzzy matrix with m -rows and n -columns is $\mathrm{m} \times \mathrm{n}$

Definition 3.17:

Let $A=\left\{\left\langle a \mu_{i j}^{+}, a \mu_{i j}^{-}, a \chi_{i j}^{+}, a \lambda_{i j}^{-}\right\rangle\right\} m x n$ be an intuitionistic fuzzy matrix. The transpose of the matrix A is denoted by A^{T} and is defined as $A^{T}=\{<$ $\left.a \mu_{\delta i j}^{+}, a \bar{\mu}_{\delta i j}^{-}, a \lambda_{\delta i j}^{+}, a \lambda_{\bar{\delta} i j}^{-}>\right\}$

Definition 3.18: Two intuitionistic bipolar fuzzy matrices $A=\left\{\left\langle a \mu_{\delta i j}^{+}, a \mu_{\delta i j}^{-}, a \chi_{\delta i j}^{+}, a \chi_{\delta i j}^{-}\right\rangle\right\}$, $B=\left\{\left\langle b \mu_{i j}^{+}, b \mu_{i j}^{-}, b \lambda_{i j}^{+}, b \lambda_{i j}^{-}\right\rangle\right\}$
are said to be equal if they have the same order mxn and corresponding entries in both matrices are equal, this means that
$a \mu_{\delta i j}^{+}=b \mu_{\delta i j}^{+}, a \lambda_{\delta i j}^{+}=b \lambda_{\delta i j}^{+}, a \lambda_{\delta i j}^{-}=b \lambda_{\delta i j}^{-}$for $i=1, \cdots \cdots$,m and $j=1, \cdots \cdots, n$ and it's denoted by $\mathrm{A}=\mathrm{B}$
Definition 3.19:
If $A=\left\{\left\langle a \mu_{\delta i j}^{+}, a \mu_{\delta i j}^{-}, a \lambda_{\delta i j}^{+}, a \lambda_{\overline{\delta i j}}^{-}\right\rangle\right\} m x n, B=$
$\left\{\left\langle b \mu_{\delta i j}^{+}, b \mu_{\delta i j}^{-}, b \lambda_{\delta i j}^{+}, b \lambda_{\delta i j}^{-}\right\rangle\right\} m x n$ are two intuitionistic
bipolar fuzzy matrices, then the sum of A and B which is denoted by $A_{\text {max-min }}^{+} B$, is defined as
$A_{\text {max }-\min }^{+} B=\left\{<C \mu_{\delta i j}^{+}, C \mu_{\delta i j}^{-}, C \lambda_{\delta i j}^{+}, C \lambda_{\delta i j}^{-}\right\}=$ $\left[<\max <a \mu_{\delta i j}^{+}, b \mu_{\delta i j}^{+}>, \min <a \mu_{\delta i j}^{-}, b \mu_{\delta i j}^{-}>\right.$, $\left.\max <a \lambda_{\delta i j}^{+}, b \lambda_{\delta i j}^{+}>, \min <a \lambda_{\delta i j}^{-}, b \lambda_{\delta i j}^{-}\right]$
$1 \leq i \leq m, 1 \leq j \leq n$
Example3.20: Consider an intuitionistic bipolar fuzzy graph $G=(V, E)$ such that

$$
\begin{aligned}
& V=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}, \\
& E=\left\{\begin{array}{c}
\left(a_{1}, a_{2}\right),\left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right), \\
\left(a_{2}, a_{4}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right)
\end{array}\right\}
\end{aligned}
$$

Fig.3: Intuitionistic bipolar fuzzy graph

The intuitionistic bipolar fuzzy matrix for G_{1} is given by
$a_{1}\left[\begin{array}{c}(0,0,0,0) \\ (0.3,-0.1,0.5,-0.6)(0.3,-0.1,0.7,-0.9) \\ (0.2,-0.1,0.4,-0.6)(0,0,0,0)\end{array}\right]$
$a_{2}\left[\begin{array}{c}(0.3,-0.1,0.5,-0.6)(0,0,0,0)(0.4,-0.2,0.3,-0.5) \\ (0.2,-0.1,0.5,-0.6)(0,0,0,0)\end{array}\right]$
$a_{3}\left[\begin{array}{c}(0.3,-0.1,0.7,-0.9)(0.4,-0.2,0.3,-0.5)(0,0,0,0) \\ (0.2,-0.1,0.7,-0.9)(0,0,0,0)\end{array}\right]$
$a_{4}\left[\begin{array}{c}(0.2,-0.1,0.7,-0.6)(0.2,-0.1,0.5,-0.6) \\ (0.2,-0.1,0.7,-0.9)(0,0,0,0)(0.2,-0.1,0.6,-0.9)\end{array}\right]$
$a_{5}\left[\begin{array}{c}(0,0,0,0)(0,0,0,0)(0,0,0,0) \\ (0.2,-0.1,0.6,-0.9)(0,0,0,0)\end{array}\right]$

Definition 3.21:

Let $A=\left\{\left\langle a \mu_{\delta i j}^{+}, a \mu_{\delta i j}^{-}, a \lambda_{\delta i j}^{+}, a \lambda_{\delta i j}^{-}\right\rangle\right\} m x n$ be an intuitionistic bipolar fuzzy matrix and r be a positive integer than the $r^{\text {th }}$ power of an intuitionistic bipolar fuzzy matrix is denoted by A^{r} and is defined as max-min product of r-copies of an intuitionistic bipolar fuzzy matrix A.

Definition 3.22:

Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph. The index of matrix representation of intuitionistic bipolar fuzzy graph is of the form $\mathrm{V}_{1} \in \mathrm{~V} \times \mathrm{V}$ where $V=$ $\left\{a_{1}, a_{2}, \ldots \ldots, a_{n}\right\}$ and

$$
E=\left\{<\mu_{\delta i j}^{+}, \mu_{\delta i j}^{-}, \lambda_{\delta i j}^{+}, \lambda_{\delta i j}^{-}>\right\} m \times n=
$$

$\left[\begin{array}{l}<\mu_{\delta 11}^{+}, \mu_{\delta 11}^{-}, \lambda_{\delta 11}^{+}, \lambda_{\delta 11}^{-}>\cdots<\mu_{\delta 1 n}^{+}, \mu_{\delta 1 n}^{-}, \lambda_{\delta 1 n}^{+}, \lambda_{\delta 1 n}^{-}> \\ <\mu_{\delta 21}^{+}, \mu_{\delta 21}^{-}, \lambda_{\delta 21}^{+}, \lambda_{\delta 21}^{-}>\cdots \cdots<\mu_{\delta 2 n}^{+}, \mu_{\delta 2 n}^{-}, \lambda_{\delta 2 n}^{+}, \lambda_{\delta 2 n}^{-}> \\ \vdots \\ \cdot \\ <\mu_{\delta n 1}^{+}, \mu_{\delta n 1}^{-}, \lambda_{\delta n 1}^{+}, \lambda_{\delta n 1}^{-}>\cdots<\mu_{\delta n n}^{+}, \mu_{\delta n n}^{-}, \lambda_{\delta n n}^{+}, \lambda_{\delta n n}^{-}>\end{array}\right]$
where $<\mu_{\delta i j}^{+}, \mu_{\delta i j}^{-}, \lambda_{\delta i j}^{+}, \lambda_{\delta i j}^{-}>\in[0,1] X[0,1]$
($1 \leq i, j \geq n$), the edge between two vertices a_{i} and a_{j} is indexed by $<\mu_{\delta i j}^{+}, \mu_{\delta i j}^{-}, \lambda_{\delta i j}^{+}, \lambda_{\delta i j}^{-}>$.
Remark 3.23: For any intuitionistic bipolar fuzzy graph, the index matrix representation is an intuitionistic bipolar fuzzy graph.
Definition3.24: If $G=(V, E)$ is an intuitionistic bipolar fuzzy graph where $V=\left\{a_{1}, a_{2}, \ldots \ldots, a_{n}\right\}$ The incident G matrix of m intuitionistic bipolar fuzzy graph G is
$B=\left\{<b \mu_{\delta i j}^{+}, b \mu_{\delta i j}^{-}, b \lambda_{\delta i j}^{+}, b \lambda_{\delta i j}^{-}>\right\} n x m$ where n and m represent the number of vertices and number of edges of G respectively, whose entries of B are as following $B=\left\{<b \mu_{\delta i j}^{+}, b \mu_{\delta i j}^{-}, b \lambda_{\delta i j}^{+}, b \lambda_{\delta i j}^{-}>\right\} n x m=$
$\left\{\begin{array}{c}<\mu_{\delta}^{+}\left(e_{j}\right), \mu_{\delta}^{-}\left(e_{j}\right), \lambda_{\delta}^{+}\left(e_{j}\right), \lambda_{\delta}^{-}\left(e_{j}\right)> \\ \text { if an edge } e_{j} \text { is incident on the vertex } a_{i} \\ <-1,0,1>, 0 \text { otherwise }\end{array}\right\}$

It can also be represented in the matrix form

$$
\begin{aligned}
& \left.B=\left\{<b \mu_{\delta i j}^{+}, b \mu_{\delta i j}^{-}, b \lambda_{\delta i j}^{+}, b \lambda_{\delta i j}^{-}\right\rangle\right\} n x m= \\
& \begin{array}{r}
a_{1} \\
a_{2} \\
: \cdot \\
\cdot \\
a_{n}
\end{array}\left[\begin{array}{l}
<\mu_{\delta}^{+}\left(e_{1}\right), \mu_{\delta}^{-}\left(e_{1}\right), \lambda_{\delta}^{+}\left(e_{1}\right), \lambda_{\delta}^{-}\left(e_{1}\right)><\mu_{\delta}^{+}\left(e_{2}\right), \mu_{\delta}^{-}\left(e_{2}\right), \lambda_{\delta}^{+}\left(e_{2}\right), \lambda_{\delta}^{-}\left(e_{2}\right)><\mu_{\delta}^{+}\left(e_{n}\right), \mu_{\delta}^{-}\left(e_{\delta}^{+}\right), \lambda_{\delta}^{+}\left(e_{1}\right), \lambda_{\delta}^{-}\left(e_{1}\right), \lambda_{\delta}^{-}\left(e_{n}\right)><\mu_{\delta}^{+}\left(e_{2}\right), \mu_{\delta}^{-}\left(e_{2}\right), \lambda_{\delta}^{+}\left(e_{2}\right), \lambda_{\delta}^{-}\left(e_{2}\right), e_{\delta}^{-}\left(e_{1}\right)><\mu_{\delta}^{+}\left(e_{n}\right), \mu_{\delta}^{-}\left(e_{n}\right), \lambda_{\delta}^{+}\left(e_{n}\right), \lambda_{\delta}^{-}\left(e_{n}\right)> \\
\left.<e_{2}\right), \mu_{\delta}^{-}\left(e_{2}\right), \lambda_{\delta}^{+}\left(e_{2}\right), \lambda_{\delta}^{-}\left(e_{2}\right)><\mu_{\delta}^{+}\left(e_{n}\right), \mu_{\delta}^{-}\left(e_{n}\right), \lambda_{\delta}^{+}\left(e_{n}\right), \lambda_{\delta}^{-}\left(e_{n}\right)>
\end{array}\right]
\end{aligned}
$$

Where $<\mu_{\delta}^{+}\left(e_{i}\right), \mu_{\delta}^{-}\left(e_{i}\right), \lambda_{\delta}^{+}\left(e_{i}\right), \lambda_{\delta}^{-}\left(e_{i}\right)>\epsilon[0,1] x[-1,0] x[0,1] x[-1,0]$
Definition3.25: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph, where $V=\left\{a_{1}, a_{2}, \ldots \ldots, a_{n}\right\}$ and $E=$ $\left\{e_{1}, e_{2}, \ldots \ldots, e_{k}\right\}$ Then the line intuitionistic bipolar fuzzy graph is denoted by $G_{l}=\left(V_{l}, E_{l}\right)$ when the vertices of G_{l} are in abjection with the edges of G and there exits an edge between the vertices of G_{l} if the corresponding edges of G are adjacent. The membership and non membership value of V_{l} and E_{l} are defined as following

$$
\begin{array}{cc}
\mu_{\delta}^{+}\left(a_{i}\right)=\mu_{\delta}^{+}\left(e_{i}\right) \text { and } & \lambda_{\delta L}^{+}\left(a_{i}\right)=\lambda_{\delta}^{+}\left(e_{i}\right) \\
\forall e_{i} \in E \\
\mu_{\delta}^{-}\left(a_{i}\right)=\mu_{\delta}^{-}\left(e_{i}\right) & \text { and } \lambda_{\delta L}^{-}\left(a_{i}\right)=\lambda_{\delta}^{-}\left(e_{i}\right)
\end{array}
$$

$$
\begin{aligned}
& \mu_{\delta l}^{+}\left(a_{i}, a_{j}\right) \\
& =\left\{\begin{array}{c}
\min \left(\mu_{\delta l}^{+}\left(a_{i}\right), \mu_{\delta l}^{+}\left(a_{j}\right)\right), \text { if } e_{i} \text { and } e_{j} \text { are adjacent in } G \\
\max \left(\mu_{\delta l}^{-}\left(a_{i}\right), \mu_{\delta l}^{-}\left(a_{j}\right)\right), \text { if } e_{i} \text { and } e_{j} \text { areadjacent in } G \\
(-1,0,1) \text { otherwise }
\end{array}\right\} \\
& \lambda_{\delta l}^{+}\left(a_{i}, a_{j}\right) \\
& =\left\{\begin{array}{c}
\max \left(\lambda_{\delta l}^{+}\left(a_{i}\right), \lambda_{\delta l}^{+}\left(a_{j}\right)\right), \text { if } e_{i} \text { and } e_{j} \text { are adjacent in } G \\
\min \left(\lambda_{\delta l}^{-}\left(a_{i}\right), \lambda_{\delta l}^{-}\left(a_{j}\right)\right), \text { if } e_{i} \text { and } e_{j} \text { are adjacent in } G \\
(-1,0,1) \text { otherwise }
\end{array}\right\}
\end{aligned}
$$

Example3.26: Consider an intuitionistic bipolar fuzzy graph $G=<V, E>$, such that $V=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, E=$ $\left\{a_{1} a_{2}, a_{1} a_{3}, a_{1} a_{4}, a_{2} a_{3}, a_{2} a_{4}, a_{3} a_{4}\right\}$ such that

Fig. 4: Intuitionistic bipolar fuzzy graph
Then the line intuitionistic bipolar fuzzy graph G is given as

Fig. 5: Line intuitionistic bipolar fuzzy graph
$V_{l}=\left\{a_{12}, a_{13}, a_{24}, a_{14}, a_{34}, a_{23}\right\}$ And
$E_{l}=\left\{\begin{array}{l}\left(a_{12} a_{13}\right),\left(a_{13} a_{34}\right),\left(a_{34} a_{24}\right),\left(a_{12} a_{24}\right), \\ \left(a_{12} a_{34}\right),\left(a_{13} a_{24}\right),\left(a_{34} a_{23}\right),\left(a_{24} a_{23}\right), \\ \left(a_{23} a_{14}\right),\left(a_{34} a_{14}\right),\left(a_{12} a_{14}\right),\left(a_{14} a_{24}\right), \\ \left(a_{13} a_{14}\right)\end{array}\right\}$
Definition 3.27: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph with underlying crisp graph $G=(V, E)$ then the subdivision of an intuitionistic bipolar fuzzy graph G is denoted by $S D_{G}=\left(S D_{v}, S D_{e}\right)$ and it is obtained by adding a vertex C_{r} into every edge $e_{i j}=\left(a_{i}, a_{j}\right) \epsilon E$ of G such that the membership and the non-membership of vertex a_{r}
and the edges $c_{r} a_{j}$ and $a_{r} a_{j}$ are defined as following

$$
\begin{array}{ll}
S D \mu_{\delta}^{+}\left(C_{r}\right)=\mu_{\delta i j}^{+} \& \quad S D \lambda_{\delta}^{+}\left(C_{r}\right)=\lambda_{\delta i j}^{+} \\
S D \mu_{\delta}^{-}\left(C_{r}\right)=\mu_{\delta i j} \& \quad S D \lambda_{\delta}^{-}\left(C_{r}\right)=\lambda_{\overline{-} i j} \\
\text { For all } C_{r} \in S D_{v}^{+} \\
\text {1) } & S D \mu_{\delta}^{+}\left(a_{i}, C_{r}\right) \leq \min \left\{S D \mu_{\delta}^{+}\left(a_{i}\right), S D \mu_{\delta}^{+}\left(C_{r}\right)\right\} \\
& S D \mu_{\delta}^{-}\left(a_{i}, C_{r}\right) \geq \max \left\{S D \mu_{\delta}^{-}\left(a_{i}\right), S D \mu_{\delta}^{-}\left(C_{r}\right)\right\} \\
\text { 2) } & S D \lambda_{\delta}^{+}\left(a_{i}, C_{r}\right) \geq \max \left\{S D \lambda_{\delta}^{+}\left(a_{i}\right), S D \lambda_{\delta}^{+}\left(C_{r}\right)\right\} \\
& S D \lambda_{\delta}^{-}\left(a_{i}, C_{r}\right) \leq \min \left\{S D \lambda_{\delta}^{-}\left(a_{i}\right), S D \lambda_{\delta}^{-}\left(C_{r}\right)\right\} \\
\text { 3) } & S D \mu_{\delta}^{+}\left(C_{r}, a_{j}\right) \leq \min \left\{S \mu_{\delta}^{+}\left(C_{r}\right), S D \mu_{\delta}^{+}\left(a_{j}\right)\right\} \\
& S D \mu_{\delta}^{-}\left(C_{r}, a_{j}\right) \geq \max \left\{S D \mu_{\delta}^{-}\left(C_{r}\right), S D \mu_{\delta}^{-}\left(a_{j}\right)\right\} \\
\text { 4) } & S D \lambda_{\delta}^{+}\left(C_{r}, a_{j}\right) \geq \max \left\{S D \lambda_{\delta}^{+}\left(C_{r}\right), S D \lambda_{\delta}^{+}\left(a_{j}\right)\right\} \\
& S D \lambda_{\delta}^{-}\left(C_{r}, a_{j}\right) \leq \min \left\{S D \lambda_{\delta}^{-}\left(C_{r}\right), S D \lambda_{\delta}^{-}\left(a_{j}\right)\right\} \\
& \forall a_{i}, a_{j}, C_{r} \in S D_{r}
\end{array}
$$

Example 3.28: Consider an intuitionistic bipolar fuzzy graph $G=(V, E)$, such that

$$
v=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \text { and } E=\left\{a_{1} a_{2}, a_{1} a_{4}, a_{2} a_{3}, a_{3} a_{4}\right\} \text { Such as }
$$

(0.7, -0.4, 0.3, -0.5)

Fig 6.a: Intuitionistic bipolar fuzzy graph

Then the subdivision intuitionistic bipolar fuzzy graph G is

Fig 6.b: Subdivision intuitionistic bipolar fuzzy graph

With $S D_{v}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, C_{1}, C_{2}, C_{3}, C_{4}\right\}$ and $S D_{E}=\left\{a_{1} c_{4}, a_{1} c_{1}, c_{1} a_{2}, a_{2} c_{2}, c_{2} a_{3}, a_{3} c_{3}, c_{3} a_{4}, a_{4} c_{4}\right\}$
Definition3.29: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph with the underlying crisp graph $G^{r}=(V, E)$. Thus the power of an intuitionistic bipolar fuzzy graph G is denoted by $G^{r}=\left(V^{r}, E^{r}\right)$ where $V^{r}=V$ and the vertices a_{i} and a_{j} are adjacent in G^{r} iff $\mathrm{d}_{\mathrm{G}}{ }^{*}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right) \leq \mathrm{r}$. The membership values of the edges of $\mathrm{G}^{\wedge} \mathrm{r}$ are defined as follows

Example 3.30: Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph such $v=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and $E=$ $\left\{a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}, a_{4} a_{5}\right\}$ such that

Fig.7.b: Intuitionistic bipolar fuzzy graph of G^{2}

Fig.7.c: Intuitionistic bipolar fuzzy graph of G^{3}

And intuitionistic bipolar fuzzy matrices representing G^{2} and G^{3} are

$$
\begin{array}{r}
a_{1} \\
a_{2}=\begin{array}{l}
a_{3} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\left[\begin{array}{ccc}
(0,0,0,0) & (0.2,-0.2,0.9,-0.9) & (0.2,-0.4,0.8,-0.7)(0,0,0,0) \\
(0.2,-0.2,0.9,-0.9)(0,0,0,0) & (0.2,-0.1,0.7,-0.9)(0.2,-0.3,0.6,-0.9)(0,0,0,0) \\
(0.2,-0.4,0.8,-0.7)(0.2,-0.1,0.7,-0.9)(0,0,0,0) & (0.1,-0.2,0.9,-0.8)(0.2,-0.1,0.5,-0.9) \\
(0,0,0,0) & (0.2,-0.2,0.6,-0.9)(0.1,-0.4,0.5,-0.7)(0,0,0,0) & (0.8,-0.2,0.9,-0.9) \\
(0,0,0,0) & (0,0,0,0) & (0.2,-0.9,0.5,-0.9)(0.3,-0.2,0.9,-0.9)(0,0,0,0)
\end{array}\right] \\
\begin{array}{l}
\text { (0.0) } \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\left[\begin{array}{cccc}
(0,0,0,0) & (0.2,-0.2,0.9,-0.9) & (0.2,-0.4,0.8,-0.7)(0,0,0,0) & (0.2,-0.4,0.8,-0.9) \\
(0.2,-0.2,0.9,-0.9) & (0,0,0,0) & (0.2,-0.1,0.7,-0.9)(0.2,-0.2,0.9,-0.9)(0.2,-0.1,0.7,-0.9) \\
(0.2,-0.9,0.8,-0.7) & (0.2,-0.1,0.7,-0.9) & (0,0,0,0) & (0.1,-0.2,0.9,-0.8)(0.2,-0.9,0.5,-0.9) \\
(0,0,0,0) & (0.2,-0.2,0.6,-0.9) & (0.1,-0.4,0.5,-0.7)(0,0,0,0) & (0.8,-0.2,0.9,-0.9) \\
(0.2,-0.4,0.8,-0.9)(0.2,-0.1,0.7,-0.9)(0.2,-0.9,0.5,-0.9)(0.8,-0.2,0.9,-0.9)(0,0,0,0)
\end{array}\right]
\end{array}
$$

Theorem 3.31: if $G=(V, E)$ strong intuitionistic bipolar fuzzy graph and $S D_{G}=\left(S D_{V}, S D_{E}\right)$ are the subdivision and an intuitionistic bipolar fuzzy graph G. Then $S_{\mu}\left(S D_{G}\right) \leq 2 S_{\mu}(G)$ and $S_{\lambda}\left(S D_{G}\right) \leq 2 S_{\lambda}(G)$

Proof: Consider

$$
\begin{aligned}
S_{\mu}\left(S D_{G}\right) & =\sum_{e_{i k}, e_{k} j \in S D_{E}}\left(S D_{\mu_{v}^{+}}\left(e_{i k}\right)+S D_{\mu_{\gamma}^{+}}\left(e_{k j}\right)\right) \\
& \leq \sum S D_{\mu_{\delta}^{+}}\left(a_{k}\right)+\sum S D_{\mu_{\delta}^{+}}\left(a_{k}\right)
\end{aligned}
$$

\&

$$
\begin{aligned}
& S_{\lambda}\left(S D_{G}\right)=\sum_{e_{i k,}, e_{k j} \in S D_{E}}\left|S D_{\lambda_{\bar{y}}}\left(e_{i k}\right)+S D_{\lambda_{\bar{y}}}\left(e_{k j}\right)\right| \\
& \leq \sum S D_{\lambda_{\delta}^{+}}\left(a_{k}\right)+\sum S D_{\lambda_{\delta}^{+}}\left(a_{k}\right) \\
& \leq \sum \lambda_{y i j}^{+}+\sum \lambda_{y i j}^{+} \\
& \leq 2 \sum \lambda_{y i j}^{+}
\end{aligned}
$$

$$
\leq \sum \mu_{y i j}^{+}+\sum \mu_{\gamma i j}^{+}
$$

$$
\leq 2 \sum \mu_{y i j}^{+}
$$

Also

$$
\leq 2 S_{\mu}(G)
$$

$S_{\lambda}\left(S D_{G}\right)=\sum_{e_{i k}, e_{k j} \in S D_{E}}\left|S D_{\lambda_{\bar{\gamma}}}\left(e_{i k}\right)+S D_{\lambda_{\overline{\bar{\gamma}}}}\left(e_{k j}\right)\right|$
Also

$$
\begin{aligned}
& S_{\mu}\left(S D_{G}\right)=\sum_{e_{i k}, e_{k j} \in S D_{E}}\left|S D_{\mu_{\bar{\gamma}}}\left(e_{i k}\right)+S D_{\mu_{\bar{\gamma}}}\left(e_{k j}\right)\right| \\
& \leq \sum\left|S D_{\mu_{\bar{\delta}}^{-}}\left(a_{k}\right)\right| \sum S D_{\mu_{\delta}^{+}}\left(a_{k}\right) \\
& \leq \sum\left|\mu_{\bar{\gamma} i j}^{-}\right|+\sum\left|\mu_{\bar{y} i j}^{-}\right| \\
& \leq 2 \sum\left|\mu_{\bar{y} i j}^{-}\right| \\
& \leq 2 S_{\mu}(G)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum\left|S D_{\lambda_{\bar{\delta}}}\left(a_{k}\right)\right|+\sum\left|S D_{\lambda_{\delta}^{+}}\left(a_{k}\right)\right| \\
& \leq \sum\left|\lambda_{\bar{y} i j}^{-}\right|+\sum\left|\lambda_{\bar{y} i}^{-}\right| \\
& \leq 2 \sum\left|\lambda_{\bar{y} i}^{-}\right| \\
& \leq 2 S_{\lambda}(G)
\end{aligned}
$$

Theorem3.32 Let $G=(V, E)$ be an intuitionistic bipolar fuzzy graph and $\mathrm{A}=\left[<\mu_{\delta i j}^{+}, \mu_{\delta i j}^{-}, \lambda_{\delta i j}^{+}, \lambda_{\delta i j}^{-}>\right]$be the index matrix of G. Then for each positive integer r then $A^{r}=$ Connectedness strength of $a_{j}-a_{j}$ is a walk of length r....*

Proof: Suppose that $\mathrm{A}^{\mathrm{r}}=\left[<a_{\mu \delta i j}^{+}, a_{\mu \delta i j}^{-}, a_{\lambda \delta i j}^{+}, a_{\lambda \delta i j}^{-}>\right]$ is the $\mathrm{r}^{\text {th }}$ power of the intuitionistic bipolar fuzzy matrix A , we prove $\left({ }^{*}\right)$ by mathematical induction such that:

Step 1: for $\mathrm{r}=1$ then $\mathrm{A}^{\mathrm{r}}=\mathrm{A}$. Then $\mathrm{A}=\left[\left\langle\boldsymbol{\mu}_{\boldsymbol{\delta i j}}^{+}, \boldsymbol{\mu}_{\boldsymbol{\delta i j}}^{-}, \lambda_{\boldsymbol{\delta i j}}^{+}\right.\right.$, $\lambda_{\boldsymbol{\delta i j}}^{-}>$], where $\boldsymbol{\mu}_{\boldsymbol{\delta i j}}^{+}$is the connectedness strength of $\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right)$ where the walk's length is one and $\lambda_{i j}^{+}$is the connectedness strength of $\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right)$ length walk is one $=\left(\boldsymbol{C o n n}_{\mu_{\boldsymbol{\delta}}^{+}}(\boldsymbol{G})\right.$ $\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right), \quad \operatorname{Conn}_{\mu_{\delta}^{-}}(\boldsymbol{G}) \quad\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right), \quad \operatorname{Conn}_{\lambda_{\delta}^{+}}(\boldsymbol{G}) \quad\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right)$, $\left.\operatorname{Conn}_{\lambda_{\delta}^{-}}(\boldsymbol{G})\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right)\right)$ such that: $\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{j}}\right)$ is $\boldsymbol{a}_{\boldsymbol{i}}-\boldsymbol{a}_{\boldsymbol{j}}$ length of walk is one.

Step 2: suppose that it is true for $r=k$, where \mathbf{k} is any integer.
By the inductive hypothesis, $(i, j)^{t h}$ entry of $\mathrm{A}^{\mathrm{r}}=$ $\left(\operatorname{Conn}_{\mu_{\delta}^{+}}(G), \operatorname{Conn}_{\mu_{\delta}^{-}}(G), \operatorname{Conn}_{\lambda_{\delta}^{+}}(G), \operatorname{Conn}_{\lambda_{\delta}^{-}}(G)\right)$, where $\left(a_{i}, a_{j}\right)$ is $a_{i}-a_{j}$ length of walk is k . Now we need to show that it is true for $\mathrm{r}=\mathrm{k}+1 .(i, j)^{\text {th }}$ entry of $A^{k+1}=$ $(i, j)^{t h}$ entry of $A^{k} \max ^{-} \min (i, j)$ entry of $\mathrm{A}=$ $\left(\operatorname{Sup}_{L=1 \ldots n}\left(\min \left\{a_{\mu \delta i L}^{+}, \quad b_{\mu \delta L j}^{+}\right\}, \quad \operatorname{Inf} f_{L=1 \ldots n}\left(\max \left\{a_{\mu \delta i L}^{-}\right.\right.\right.\right.$, $\left.b_{\mu \delta L j}^{-}\right\}, \operatorname{Inf}_{L=1 \ldots n}\left(\max \left\{a_{\lambda \delta i L}^{+}, b_{\delta L j}^{+}\right\}, \operatorname{Sup}_{L=1 \ldots n}\left(\min \left\{a_{\lambda \delta i L}^{-}\right.\right.\right.$, $\left.\left.b_{\lambda \delta L j}^{-}\right\}\right)=\left(\max \left(\min \left(\operatorname{Conn}_{\mu_{\delta}^{+}}(G)\left(a_{i}, a_{L}\right), \min (\max \right.\right.\right.$ $\left(\operatorname{Conn}_{\mu_{\delta}^{-}}(G)\left(a_{L}, a_{i}\right), \min \left(\max \left(\operatorname{Conn}_{\lambda_{\delta}^{+}}(G)\left(a_{i}, a_{L}\right), \max \right.\right.\right.$ $\left(\min \left(\operatorname{Conn}_{\lambda_{\delta}^{-}}(G)\left(a_{i}, a_{L}\right)\right)\right.$, where $\left(a_{i}, a_{L}\right)$ is $a_{i}-a_{L}$ length walk is k and $\left(a_{L}, a_{i}\right)$ is $a_{L}-a_{i}$ length walk is one $=$ Conn $_{\mu_{\delta}^{+}}(G)\left(a_{i}, a_{j}\right)$, Conn $_{\mu_{\delta}^{-}}(G)\left(a_{i}, a_{j}\right)$, Conn $_{\lambda_{\delta}^{+}}(G)\left(a_{i}, a_{j}\right)$, $\left.\operatorname{Conn}_{\lambda_{\delta}^{-}}(G)\left(a_{i}, a_{j}\right)\right)$ where $\left(a_{i}, a_{j}\right)$ is $a_{i}-a_{j}$ length walk is $k+1 \forall a_{i} \in \mathbf{V}$. Therefore, it is true for every r that is $(i, j)^{t h}$ entry of $\mathrm{A}^{\mathrm{r}}=$ connectedness strength of $a_{i}-a_{j}$ length walk in r .

4 Conclusions

The concept of bipolar intuitionistic fuzzy sets introduced by Sankar and Ezhilmaran can be used in many problems of real life, Where we have applied this concept to the topics listed in [28-30], on the other hand we will apply a bipolar intuitionistic fuzzy sets to generalize the idea of these papers [31-33]. In this paper, we have studied notions of subdivisions intuitionistic bipolar fuzzy graph, matrix of bipolar intuitionistic fuzzy graph, and line intuitionistic bipolar fuzzy graph.

References

[1] L. A. Zadeh, Fuzzy Sets, Information and Control, 8, 338 353 (1965).
[2] Atanassov, T. Krassimir, Intuitionistic Fuzzy Sets, Theory and Applications, New York (1999).
[3] R. Jahir Hussain, S. Yahya Mohamed, Properties of Irregular Intuitionistic Fuzzy Graphs, Applied Mathematical Sciences, 8, 379 - 389 (2014).
[4] A. Nagoor Gani, S. Shajitha Begum, Degree Order and Size in Intuitionistic Fuzzy Graphs, International Journal of Algorithms, Computing and Mathematics, 3, 11-16 (2010).
[5] A. Nagoor Gani, R. Jahir Hussain, S. Yahya Mohamed, Irregular Intuitionistic Fuzzy Graphs, IOSR Journal of Mathematics (IOSR-JM), 9, 47-51 (Jan. 2014).
[6] R. Parvathi and M. G. Karunambigia, Intuitionistic Fuzzy Graphs, Computation Intelligence, Theory and Applications. International Conference 9th Fuzzy Days in Dortmund, Germany, 18-20 (2006).
[7] W. R. Zhang and Yen Yang. Bipolar Fuzzy Sets. In proceedings of Fuzzy IEEE, 835 - 840 (1998).
[8] M. O. Massa'deh, Y. Al wadi and F. Ismail, the Fuzzy Index and its types, Far East Journal of Mathematics Sciences, 25, 83-92 (2007).
[9] M. O. Massa'deh, P and P* Upper Fuzzy subgroups, Far East Journal of Mathematics Sciences, 5, 97-104 (2010).
[10] M. O. Massa'deh, A Note on Upper Fuzzy Subrings and Upper Fuzzy Ideals, South East Asian J.Math and Math.Sc, 9, 41-49 (2010).
[11] M. O. Massa'deh, N. K. Gharaibeh, Some Properties on Fuzzy Graphs, Advances in Fuzzy Mathematics, 6, 245-252 (2011).
[12] F. Ismail, M. O. Massa'deh, A New Structure and Constructions of L-Fuzzy Maps, International Journal of Computational and Applied Mathematics, 8, 1-10 (2013).
[13] M. O. Massa'deh, A. Ba'arah, Some Contribution on Isomorphic Fuzzy Graphs, Advances and Applications in Discrete Mathematics, 11,199-206 (2013).
[14] [14] M. O. Massa'deh, Structure Properties of an Intuitionistic Anti Fuzzy M- Subgroups, Journal of Applied Computer Science \& Mathematics, 7, 42-44 (2013)
[15] M. O. Massa'deh, A Study on Intuitionistic Fuzzy and Normal Fuzzy M-Subgroup, M-Homomorphism and Isomorphism. Int. J. Industrial Mathematics, 8, 185 - 188 (2015).
[16] M. O. Massa'deh, A New Structure and Construction of L Fuzzy M - Cosets of M - HX Groups, J. Math. Comput. Sci , 6, 254-261 (2016).
[17] M. O. Massa'deh, Tariq Al-Hawary, Homomorphism in t-QIntuitionistic L-Fuzzy Sub Rings, International Journal of Pure and Applied Mathematics, 106, 1115-1126 (2016).
[18] M. O. Massa'deh, Ali Ahmad Fora, Bipolar - Valued Q Fuzzy Hx Subgroup on an Hx Group, Journal of Applied Computer Science \& Mathematics, 11, 20 - 24 (2017).
[19] M. O. Massa'deh, On Bipolar Fuzzy Cosets, Bipolar Fuzzy Ideals and Isomorphism of Γ-Near Rings, Far East Journal of Mathematical Sciences (FJMS), 102, 731 - 747 (2017).
[20] M. O. Massa'deh, A Study on Anti Bipolar Q - Fuzzy Normal Semi Groups, Journal of Mathematical Sciences and Applications, 6, 1-5 (2018).
[21] M. Akram, Bipolar Fuzzy Graphs, Information Sciences, 181, 5548 - 5564 (2011).
[22] M. Akram, Bipolar Fuzzy Graph with Applications, Knowledge Base Systems, 39, 1-8 (2013).
[23] H. A. Hatamleh, New Structure of Constructions in a Bipolar Fuzzy Graphs and Its Isomorphic, Far East Journal of Electronics and Communications, 18, 967 - 979 (2018).
[24] S. N. Mishra, Anita Pal. Bipolar Interval Valued Fuzzy Graphs, International Science Press. IJCTA, 9, 1022-1028 (2016).
[25] S. Samanta, M. Pal, Irregular Bipolar Fuzzy Graphs, International Journal of Applications of Fuzzy Sets (ISSN 2241-1240), 2, 91-102 (2012).
[26] K. Sankar, D. Ezhilmaran, Bipolar Intuitionistic Fuzzy Graphs with Applications, International Journal of Research and Scientific Innovation (IJRSI), 3, 44-52 (2016)
[27] D. Ezhilmaran, K. Sankar, Morphism of Bipolar Intuitionistic Fuzzy Graphs, Journal of Discrete Mathematical Sciences and Cryptography, 18, 605 - 621 (2015).
[28] A. M. Alnaser, A Method of Forming the Optimal Set of Disjoint Path in Computer Networks, Journal of Applied Computer Science and Mathematics, 11, 9-12 (2017).
[29] A. M. Alnaser, A Method of Multipath Routing in SDN Networks, Advances in Computer Science and Engineering, 17, 11 - 17 (2016).
[30] A. M. Alnaser, A Certain Contributions in Traffic Engineering Based on Software-Defined Networking Technology, Journal of Computer Science, 15, 944-953 (2019).
[31] A. M. Alnaser, Y. O. Kulakov, Reliable Multipath Secure Routing In Mobile Computer Networks, Computer Engineering and Intelligent Systems, 4, 8-15 (2013)
[32] A. M. Alnaser, Set-theoretic Foundations of the Modern Relational Databases: Representations of Table Algebras Operations, British Journal of Mathematics \& Computer Science, 4, 3286-3293 (2014).
[33] A. M. Alnaser, Streaming Algorithm For Multi-path Secure Routing in Mobile Networks, IJCSI International Journal of Computer Science Issues, 11, 112-114 (2014)

As'ad Mahmoud As'ad Alnaser received a Ph.D in computer engineering from National Technical University of Ukraine "Kyiv Polytechnic Institute". I am currently an associate professor in the Department of applied science at Al - Balqa Applied University, Ajlun University College. My research areas include wireless and mobile networks, Internet protocols, Image processing, in addition to Graph theory and it's application's.

Wael Ahmad AlZoubi is Assistant professor at computer science department, Ajloun University College, Balqa Applied University, Jordan, since middle of 2013. My research interests are in image processing, pattern recognition, and natural language processing.

Mourad Oqla Massa'deh received a Ph.D in Pure mathematics from Damascus University. I am currently an associate professor of applied science department at Al Balqa University, Ajloun University College. My research interest areas include graph theory, ring and group theory, bipolar fuzzy set, intuitionistic fuzzy sets, hyper fuzzy set, tripolar fuzzy soft set and its applications in graph, groups and rings

