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Abstract: The paper presents modelling of uncertainty in extreme return levels of the flood heights of the Limpopo river at the

Beitbridge in which the delta and profile likelihood approaches are used in the estimation of the confidence intervals. The modelling

approach discussed in this study is a hybrid modelling framework blending a variety of statistical models, techniques and approaches.

Monthly flood height data for the years 1992 to 2014 are used. The method is based on a joint generalised extreme value distribution of

the r-largest order statistics. The method is more efficient in its use of data than the traditional single maximum observation per block.

Estimation of parameters is done using the maximum likelihood method. Using the r-largest order statistics approach, the paper shows

that the flood height data can suitably be modelled by the Gumbel class distribution. The 100-year return level is estimated to be 4.981

metres with a confidence interval estimate of (4.886,5.083) using the profile likelihood method. This study is important as it enables

accurate estimation of return levels and periods of extreme flood heights. Such analysis helps in risk mitigation, for example, the design

of bridges by civil engineers.

Keywords: Generalised extreme value distribution, maximum flood height, r-largest order statistics, Fréchet class distribution, Return

period, Return level

1 Introduction

Floods are not an uncommon natural disaster in Southern
Africa. In the 1999-2000 rainfall season, Cyclone Eline
hit the region and widespread floods devastated large
parts of the Limpopo basin (southern and central
Mozambique, south eastern Mozambique, parts of South
Africa and Botswana) [1]. Some parts of the region also
experienced excessively heavy rain episodes in the
2001-2002, 2005-2006 and 2007-2008 rainfall seasons
[1]. Also, in March 2019, Malawi, Mozambique and
Zimbabwe were hit by Tropical Cyclone IDAI, the
devastating effects of which led to these countries
declaring states of emergency [2]-[3].

Flooding causes displacement of people, destruction of

crops, crop lands and infrastructure, loss of lives and
disruption of basic services such as transport,
telecommunication and supply of water and electricity
[2]-[4]. The disruption of basic services in Mozambique
by Tropical Cyclone IDAI plunged South Africa into
phase 4 electricity load shedding [3]. It is reported that
Tropical Cyclone IDAI affected over 3 million people in
Malawi, Mozambique and Zimbabwe leaving to over 839
people dead, over 201,476 people displaced, over 2,347
people injured and over 300 people reported missing [2].
Several cases of cholera and diarrhoea were also reported
in the post cyclone period [2]-[3]. In future, Southern
Africa is likely to experience more extreme and/or rare
weather events such as draughts and floods due to the
impact of climate change.
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The Beitbridge (coordinates 22.2244oS 29.9865oE)
across the Limpopo river is an example of infrastructure
that has previously been affected by floods and is likely to
suffer the same fate in future. In January 2013 both
human and vehicle traffic could not cross the Beitbridge
because it was flooded [5]. The bridge is the major
rail-road gateway into Zimbabwe from South Africa. It is
part of a very important trade route which links South
Africa with several landlocked countries on the Southern
tip of Africa. It is therefore crucial that mitigatory steps
are taken in order to lessen the disruptive impact of floods
on this important structure.

Flood modelling can be considered as the basis for
effective flood mitigation [6]. Extreme value theory
(EVT) gives the stochastic framework for such modelling
[6]. One of the main outcomes of extreme value analysis
is the estimation of return levels for specified periods of
time. For example, one could estimate the flood height
that occurs on average once every 100 years. Return level
information can be used in the design of structures such
as bridges, dam walls, sea barriers and nuclear facilities
[7]-[9]. Extreme value analysis also aims to identify
covariates that drive extremes and to determine if the
probability of extremes is increasing over time as a result
of climate change.

The most common approach for describing the extreme
events of stationary data is the block maximum approach,
which models the maxima/minima of a set of adjacent
blocks of observations using the generalised extreme
value distribution (GEVD). The cornerstone of that
approach is the Fisher-Tippett theorem (see [10]) which
asserts that the block maxima of a sequence of
independently and identically distributed random
variables in the limit follows a GEVD. Application of this
method is discussed in [11]-[16], among others.

Extremes, as their name suggests, are rare and so in any
extreme value analysis, a limited amount of data is
available. This makes model estimation difficult [17] with
estimates of extreme return levels having large variances
[18]. This has necessitated the search for alternatives and
improvements to the block maxima approach.

One such alternative is the peak over threshold (POT)
approach. This approach involves identification of
observations of the time series which are above a
predetermined threshold and fitting of the generalised
Pareto distribution to those observations. A theorem by
[19] states that excesses over a sufficiently high threshold
are generalised Pareto distributed. The POT approach is
assumed to be more precise than the block maxima
method because it utilizes more data and because maxima
are not always extremes [6]. This approach is applied in
[6], [9], [14], [17], [20], among many others.

Another method which uses more values than the block

maxima approach is based on the r-largest observations
within a block for small values of r. The pioneer of the
use of this method is [21]. Reference [22] presents a
detailed discussion of the extension of the EVT to fitting
distributions to annual maxima when fitting a distribution
to r-largest observations per year and also applies the
method to real-life data. Two specification tests which
assist in the automation of the process of selecting r are
proposed in [23]. The first is a score test for which the
p-values are determined through a multiplier procedure.
The second test uses the difference in estimated entropy
between the GEVDr and GEVDr−1 models, applied to the
r-largest order statistics and the r − 1 largest order
statistics, respectively. The later test was used in this
work.

Applications of the r-largest order statistics can be found
in the papers of [6], [24], [25] and many others. A
comparative study by [8] concluded that the r-largest
order statistics and POT methods had lower uncertainty
on the distribution of parameter and return level estimates
compared to the block maxima method.

This paper uses the generalised extreme value distribution
(GEVD) based on the r-largest order statistics to model
the flood heights of the Limpopo river at the Beitbridge.
The focus is on uncertainty quantification of extreme
flood heights through the use of the delta and profile
likelihood methods in estimating the confidence intervals
of extreme floods. The r-largest order statistics approach
is used. This approach uses more data compared to using
a single maximum in a block and hence is more efficient.
To the best of our knowledge, there is no previous study
that has focused on modelling the flood height of the
Limpopo river at the Beitbridge.

The rest of the paper is organised as follows: Section 2
presents the models. The empirical results are presented
in Section 3 and the discussions in Section 4. Section 5
presents some of the contributions of this paper while
Section 6 concludes.

2 Methodology

The methodology used in the study is briefly discussed in
this section.

2.1 The r-largest order statistics

The use of r-largest order statistics is usually used if there
is limited data. This study is motivated by the desire to
search for characterisation of extreme value behaviour
other than the use of one observation in a block that
would enable modelling observations in the upper tails of
distributions. Such an approach is more efficient in its use
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of data.

Let X1,X2, ...,Xn, be a sequence of independent and
identically distributed (i.i.d.) random variables. Define

M
(k)
n = kth largest of {X1, ...,Xn}. If there exists a

sequence of constants {an > 0} and {bn > 0} such that:

P

{

M
(r)
n −bn

an
≤ z

}

→ G(z) as n → ∞ for some non

degenerate distribution G, then, for fixed r, the limiting

distribution as n → ∞ of M̃
(r)
n =

(

M
(1)
n −bn

an
, ..., M

(r)
n −bn

an

)

falls within the family having joint probability density
function (for ξ 6= 0) [26]
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(1)
where −∞ < µ < ∞,σ > 0 and

−∞ < ξ < ∞;x(r) ≤ x(r−1) ≤ ... ≤ x(1); and

x(k) : 1 + ξ
(

x(k)−µ
σ

)

> 0 for k = 1,2, ...,r. For the case

r = 1, we have the GEVD model. When ξ −→ 0 usually
written as ξ = 0, the joint density is given as:
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Equation 2 reduces to the Gumbel class distribution when
r = 1.

2.2 Estimation of parameters

The MLE method is used to estimate the parameters of
the GEVDr. Due to the fact that the support of the
GEVDr depends on the unknown parameter values, the
usual regularity conditions that underline the asymptotic
properties of the MLEs are not satisfied. This problem
was studied by [27]. In the case ξ > −0.5, the usual
asymptotic properties of consistency, asymptotic
efficiency, and asymptotic normality hold. When these
conditions are violated, the Bayesian estimates are then
preferred since they do not necessarily depend on these
conditions.

Likelihood-based methods of estimating parameters of
the EVT models are more reliable compared to other
methods for various reasons that include the adaptability
to model change, [26]. The likelihood function for the

GEVDr for the case ξ 6= 0 is given in equation (3).
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(3)

for 1 + ξ
(

x(k)−µ
σ

)

> 0 and k = 1,2, ...,ri; i = 1, ...,n.

Similarly for the case ξ = 0 the likelihood is given as:
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(4)

2.3 Entropy difference test

One of the tests used to determine a suitable value of r is
the entropy difference test. This specification test for the
GEVDr model is based on the difference in entropy for
the GEVDr and GEVDr−1 models. The entropy for a
continuous random variable with density f is (e.g., [28]).

E[− ln f (x)] =−

∫ ∞

−∞
f (x) ln f (x)dx. (5)

It is an expectation of the negative log likelihood.
Assuming r − 1 top order statistics fit the GEVDr−1, the
difference in the log likelihood between GEVDr−1 and
GEVDr provides a measure of deviation from the null

hypothesis H
(r)
0 , that the specified value of r provides a

good fit to the data . Large deviations from the expected

difference under H
(r)
0 suggest that there may be some

misspecification of H
(r)
0 . From the log likelihood in

equation (4) the difference in log likelihood for the ith

block, is given in equation 6.

Yir(θ ) =− logσ − (1+ ξ xir)
− 1

ξ +(xir−1)
− 1

ξ

−(
1

ξ
+ 1) log(1+ xir).

(6)

2.4 Uncertainty analysis and return level

estimation

The quantile functions for the unified GEVDr are used to
estimate high quantiles and predicting the probability of
exceedance levels of flood heights. These are given as:

x̂p =

{

µ̂ − σ̂

ξ̂

[

1− y
−ξ̂
p

]

, if ξ 6= 0

µ̂ − σ̂ logyp if ξ = 0,
(7)
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where yp = −log(1 − p). In order to model the
uncertainty in the extreme quantile estimates we will use
the delta and profile likelihood methods. These are
discussed in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 The delta method

Using the delta method the variance of xp is given as [24]:

Var(x̂p)≈ ∇xT
pV∇xp, (8)

where V is the covariance matrix of
(

µ̂, σ̂ , ξ̂
)

and

∇xT
p =

[
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,
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,
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]
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[
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(
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p

)

,σξ−2
(

1− y−ξ
p

)

−σξ−1y−ξ
p logyp

]

, (9)

which is evaluated at
(

µ̂ , σ̂ , ξ̂
)

. The approximate

confidence interval of the flood heights xp is then given by
(

x̂p − zα/2

√

Var(x̂p), x̂p + zα/2

√

Var(x̂p)

)

. (10)

2.4.2 The profile likelihood method

The profile likelihood for some parameter θi is defined as
[26]:

ℓ(θi) = maxℓ(θi,θ−i), (11)

where θ−i represents components of θ excluding θi [26].
To obtain the confidence interval for xp a
re-parametrisation is required in which xp is one of the
parameters in the GEVDr model, given as follows:

µ =

{

xp −
σ̂

ξ̂

[

1− y
−ξ̂
p

]

, if ξ 6= 0

xp − σ̂ logyp if ξ = 0,
(12)

with yp = −log(1 − p). Now substituting for µ in
equation (3) for ξ 6= 0 and in equation (4) for ξ = 0
results in the log-likelihood function of the GEVDr with
parameters xp,σ ,ξ .

2.5 Forecast verification

Various verification methods including goodness of fit
tests for extreme value distributions are discussed in
literature. In this paper we are using graphical plots and
some verification tests. A detailed discussion of
verification statistics is given in [29]. The verification
methods used in this study are discussed in the following
sections.

2.5.1 Graphical plots

To assess the goodness of fit of a proposed extreme value
distribution to the given data, the Quantile-Quantile (QQ)
plot is normally used. A good fit to the data is when the
QQ-plot follows a 450 line.

2.5.2 Verification statistics

Scoring rules are used in this paper to assess the
predictive performance of the developed GEVDr models.
The use of the continuous ranked probability score
(CRPS) in assessing the predictive performance of the
GEVDr in probabilistic peak wind prediction is proposed
in [30]. The authors carried out a comparative analysis
with other scoring functions and the CRPS gave the best
performance for high quantiles. The expression of the
CRPS for the GEVDr (ξ 6= 0) is given as [30]:

SCRP(FGEVDξ 6=0
) =

[

µ − yt −
σ

ξ

]

[

1− 2FGEVDξ 6=0

]

(13)

−
σ

ξ

[

2ξ Γ (1− ξ )− 2Γl(1− ξ ,−logFGEVDξ 6=0
)

]

,

where Γ represents the gamma function and Γl denotes the
lower incomplete gamma function. For the case ξ = 0 we
have

SCRP(FGEVDξ=0
) = µ − yt +σ [C− log2]

−2σEi(logFGEVDξ=0
), (14)

where C is the Euler-Mascheroni constant (C ≈ 0.5772).
Usually the CRPS is difficult to calculate for some
complex forecast distributions [29]. Alternatives to the
use of the CRPS are the logarithmic score (LogS) and
Dawid-Sebastiani score (DSS). The LogS is given as:

LogS(y,F) =−log( f (y)), (15)

where y is the density and F is the forecast distribution
function. The DSS is given by

DSS(y,F) =
(y− µF)

2

σ2
F

+ 2log(σF). (16)

For a detailed discussion of these scoring rules see [29].

3 Empirical results

3.1 Exploratory data analysis

In this study, historical monthly flood height data for
Limpopo river from Beitbridge are used. The data span
over the period 1992 to 2014. Annual maxima from the
Beitbridge are derived from the monthly observations.
Table 1 shows the descriptive statistics of annual
maximum flood heights for the Limpopo river at the
Beitbridge. The maximum flood height is 6.71 metres
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Table 1: Table showing descriptive statistics for flood height.

n Min Max Median Mean Std Dev Skewnes Kurtosis

Floodheight 23 0.54 6.71 1.64 2.05 1.28 2.18 8.78

which is experienced in the year 2013 and the minimum
flood height is 0.54 metres witnessed in the drought year
1992. The mean flood height is 2.05 metres with a
standard deviation of 1.28 metres. The distribution of the
flood heights is right-skewed as evidenced from the last
three panels in Figure 1 and also as shown by the
skewness value given in Table 1. A formal stationarity
test is carried out for the yearly flood heights using the
Kwiatkowski- Phillips-Schmidt-Shin (KPSS) test under
the null hypothesis that the data is stationary. The critical
values for the 10%, 5%, 2.5% and 1% levels of
significance are 0.347, 0.463, 0.574 and 0.739,
respectively. Using the maxima data, the KPSS test
statistic is 0.2678. Since the test statistic is smaller than
the critical values at the given levels of significance we
fail to reject the null hypothesis and conclude that the data
is stationary.

As shown in Table 2 we fail to reject the null hypothesis
that the data follows a GEVDr for any value of r from 1
to 9. However, attention is limited to r ≤ 6 order statistics
as a result of the reasonable doubt on the validity of the
model for all values of r ≥ 7. For r ≤ 6, the standard
errors of the estimates (µ̂ , σ̂ and ξ̂ ) decrease as the values
of r increase, implying an increase in precision of the
model. See [18], [26], [30] for details.
The standard errors associated with the shape parameters
ξ for various values of r are shown in Figure 2. The
variability decreases with an increase in r up to 2, but
there is no appreciable change in standard errors for r

between 2 and 6. More so, a decreasing trend in standard
errors is seen with the modest increase in r. Therefore an
optimum choice of r is expected to be between 2 and 6.
We choose a fixed value of r to be 6 based on the standard
errors in Figure 2 and the plots in Figure 5 in our
subsequent analysis.

3.2 MLE results

Table 3 gives the maximum likelihood (ML) estimates,
standard errors and the 95% confidence intervals. Using
the r-largest order statistics method, the analysis is done
for r = 1 to r = 6. ML estimates of the three GEVDr

parameters and the associated standard errors (SEs) are
calculated as shown in Table 3. Four stationary models
are considered, M1 GEVDr=1 in which the shape
parameter is positive (Fréchet class distribution), M2

GEVDr=1 shape parameter is zero (Gumbel class
distribution), M3 GEVDr=6 shape parameter is positive
and M4 GEVDr=6 shape parameter is zero. Table 4 gives
a summary of the AIC values of the four models. We put

the models into two groups, i.e. the first group with
models M1 and M2 and the second group with M3 and M4.
Likelihood ratio tests are then carried out. The null
hypothesis is that the data follows a Gumbel class in each
of the two groups. For the first group and second group
the p− values are 0.25 and 0.145, respectively. In both
cases we fail to reject the null hypothesis and conclude
that the Gumbel class provides a better fit of the data from
each group. The models M2 and M3 (see Table 4) are
therefore used in the estimation of high quantiles
(extreme return levels).

ML parameter estimates with standard errors in
parentheses of r-largest order statistics model fitted to the
Limpopo river data at Beitbridge border post with
different values of r are given in Table 5 Figure 3 shows
the goodness of fit plots. The probability and QQ plots
support the model as a good fit.

The corresponding density estimate seems consistent with
the histogram of the data. In fact, all four plots do lend
support to the fit of the Gumbel model with r = 1. The
plots in Figure 4 show that the Gumbel model with r = 6
also provides a good fit to the data.

3.3 Predictive performance

We also use the CPRS, LogS and the DSS in an attempt to
assess the goodness of fit of the models. Using a sample
size of 400, the R software is used for the simulations
which are based on 1000 Monte Carlo runs. In the
simulation study, data is simulated from the parameter
estimates of the GEVDr=1 and GEVDr=6 models. The
performance of the estimates are determined through the
empirical bias, mean square error (MSE), including the
standard error (SE) of the estimates. The coverage
probabilities are also calculated and are very close to the
specified probabilities which are 0.9 and 0.95 respectively
as shown in Table 6. The simulated data was then used to
calculate the CPRS, LogS and the DSS, and the results
are presented in Table 7. As shown in Table 7 model
GEVDr=6 has smaller values for all the three skills
scores, i.e. CPRS, LogS and the DSS, meaning that it is a
better fitting model for probabilistic forecasting of flood
heights for the Limpopo river at the Beitbridge border
post. The model with r = 6 will therefore be used for
estimating extreme quantiles (return levels).
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Fig. 1: Flood height for r = 1.

Table 2: Entropy difference test for diagnosing generalised extreme value distribution for r-largest order statistics.

r p Forwardstop Strongstop Statistic µ̂ σ̂ ξ̂
2 0.2314 0.9751 0.8499 1.1966 1.7231 0.8619 -0.0186

3 0.8964 1.0641 0.9432 -0.1302 1.6748 0.8431 0.0019

4 0.1277 0.8922 0.8034 1.5232 1.6953 0.7669 0.0332

5 0.1844 1.0181 0.7071 -1.3273 1.6403 0.8089 0.0591

6 0.6320 1.1809 0.7741 0.4790 1.5988 0.8222 0.1212

7 0.5988 1.2263 0.8512 0.5261 1.5619 0.9066 0.2675

8 0.8342 1.3306 1.0684 0.2093 1.9279 2.0890 1.0017

9 0.7610 1.0975 1.3980 0.3042 3.7113 6.8490 1.8391

10 0.5341 0.7638 1.4934 -0.6217 1.5847 1.1578 0.5248

Table 3: Maximum log-likelihood parameter estimates, confidence intervals and standard errors in parentheses of the r-largest order

statistics model fitted to the Limpopo river data at Beitbridge border with different values of r.

r ℓ µ̂ σ̂ ξ̂ 95%Confidence Interval for ξ
1 32.09 1.49(0.16) 0.72(0.12) 0.14(0.14) (-0.13;0.13)

2 41.63 1.68(0.16) 0.85(0.09) -0.01(0.07) (-0.16;0.13)

3 39.32 1.65(0.15) 0.83(0.09) 0.01(0.07) (-0.14;0.14)

4 21.98 1.68(0.14) 0.8(0.08) 0.04(0.07) (-0.13;0.15)

5 7.37 1.63(0.14) 0.81(0.09) 0.04(0.08) (-0.11;0.20)

6 -22.94 1.58(0.14) 0.82(0.11) 0.12(0.10) (-0.08;0.32)
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Fig. 2: The GEVDr shape parameter estimates with 95% confidence interval.

Table 4: Comparative analysis of the proposed models.

M1 M2 M3 M4

AIC 68.6561 67.9822 -36.5380 -36.4191

Log Lik -31.3281 -31.9911 21.2690 20.2096

Table 5: ML parameter estimates with standard errors in parentheses of r-largest order statistics model fitted to the Limpopo river data

at Beitbridge border with different values of r.

r ℓ µ̂ σ̂
1 -31.99 1.5531(0.1738) 0.7917(0.1287)

6 21.27 1.6068(0.1263) 0.7383(0.0585)

Table 6: Simulated monthly flood heights parameter estimates, bias, mean square error (MSE), standard error (SE) and coverage

probabilities (CP)

GEVDr=1 (Gumbel class) GEVDr=6 (Gumbel class)

µ̂ σ̂ µ̂ σ̂
Parameter 1.5538 0.7902 1.6077 0.7369

Bias 0.0007 -0.0014 0.0008 -0.0013

MSE 0.0018 0.0010 0.0015 0.0008

SE 0.0416 0.0308 0.0388 0.0288

90% CP 0.8997 0.8944 0.9000 0.9031

95% CP 0.9493 0.9429 0.9496 0.9483
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Fig. 3: Diagnostic plots illustrating the fit of the data (Annual flood heights of Limpopo river at Beitbridge border post) to the GEVDr

for r-largest order statistics model with r = 1.
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Fig. 4: Diagnostic plots illustrating the fit of the data (Limpopo flood height data at Beitbridge border post) to the GEVDr for r-largest

order statistics model with r = 6.
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Table 7: Comparison of predictive performance of the models.

Model CRPS LogS DSS

GEVDr=1 2.468 4.131 9.481

GEVDr=6 2.313 4.077 9.416

2 4 6 8 10

4
5

6
7

8
9

Profile likelihood method

r

1
0

0
0

 y
e

a
r 

re
tu

rn
 l
e
v
e

l

●

● ● ●

●

●

●

2 4 6 8 10

2
4

6
8

1
0

Delta method

r

1
0

0
0

 y
e

a
r 

re
tu

rn
 l
e
v
e

l

●

● ● ●
●

●

●

Fig. 5: Return level plot using the profile likelihood and delta methods for determining best value of r.
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c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 2, 191-204 (2020) / www.naturalspublishing.com/Journals.asp 201

3.4 Uncertainty analysis and extreme quantile

estimation of flood heights

Table 8 summarises the return periods together with the
95% prediction intervals using the delta and the profile
likelihood methods, respectively. The 100-year return
level is estimated to be 4.981 metres with 95% prediction
intervals of (4.886, 5.076) and (4.886, 5.083) from the
delta and profile likelihood methods, respectively. The
interval widths from the profile likelihood method are
wider than those from the delta method. This indicates the
uncertainty in the return levels from the profile likelihood
method is better than that from the delta method. This
finding is in agreement with other researchers (see for
example [31]-[33] who found the Gumbel distribution
being suitable for modelling flood height data. Other
researchers (see for example [12]) have found contrasting
results. The 100-year return level using the GEVDr is
comparable with the flood height for 2013 when the flow
reached 6.707 metres. The results reveal that the year
2013 flood height was well above the 100-year flood
height at the site and also lies outside the prediction
intervals of both the delta and profile likelihood methods.
These findings indicate that the year 2013 flood height
was indeed a very rare event and also explains the
deleterious impact of the flood event at the site.

4 Return level plots

Figure 5 summarises various return levels with their
corresponding return periods using the profile likelihood
and delta methods together with 95% confidence
intervals. At large return levels, the profile likelihood
allows for asymmetric intervals compared to the delta
method [24].

The profile likelihood for the GEVDr=6 (Gumbel class
distribution) for both the location and the scale parameters
are given in the appendix, Figure 6.

5 Summary of results and discussion

The highlights of this study are summarised as follows:

1.Initially the best value of r is determined based on the
entropy difference test.

2.This is then followed by plotting the standard errors for
the estimated shape parameters for each of the models
for different values of r from r = 1 to r = 10.

3.Results from (a) and (b) show that the best value of r

is 6.
4.Various models belonging to the Fréchet and Gumbel

class distributions are fitted for both r = 1 and r = 6.
5.Empirical results from (d) show that the Gumbel class

fits better than the Fréchet class distribution.

6.One of the contributions of this study is in the use of
proper scoring rules, Continuous Rank Probability
Score (CPRS), Dawid-Sebastiani Score (DSS) and the
Logarithmic Score (LogS). These scores were
estimated based on Monte Carlo simulations of
GEVDr=1 and GEVDr=6.

7.Another contribution is in uncertainty modelling of
the extreme return levels of the flood heights of the
Limpopo river at Beitbridge in which the delta and
profile likelihood approaches are used in the
estimation of the confidence intervals.

8.The modelling approach discussed in this study is a
hybrid modelling framework blending a variety of of
statistical models, techniques and approaches which
to the best of our knowledge is not discussed in
literature in the context of quantifying uncertainty
associated with flood heights over bridges.

6 Conclusion

In this paper, we have presented and analysed the flood
heights data for the Limpopo river at Beitbridge border
post using the generalised extreme value distributions.
Modelling of flood heights is quite important in the field
of hydrology for decision making. The Gumbel class
distribution is found to be the best fit for the data in all the
modelling frameworks in this paper. From this work, we
can conclude that the distribution of extreme flood heights
for the Limpopo river at Beitbridge border post is
heavy-tailed and are more likely than predicted with a
normal distribution model. Return periods are estimated
using the profile likelihood and delta methods. Using the
GEVDr=6, the 100-year return level is estimated to be
4.981 metres with a 95% confidence interval estimate of
(4.886,5.083) based on the profile likelihood method. The
delta method gives an estimate of 4.981 metres with a
95% confidence interval estimate of (4.886,5.076). This
information could be useful in any future reconstruction
of the bridge. The developed models established in this
study are consistent with cumulative (or moving sums)
annual maximum series flood height and therefore appear
reliable to use for flood frequency analysis.

Future research from this paper will involve a
probabilistic description and modelling of flood heights.
The other area will include a multi-site regional analysis.

Appendix

The following R statistical packages are used in this paper:

1.“eva” developed by [34].
2.“ScoringRules” developed by [35].
3.“urca” developed by [36].
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Table 8: Estimating return levels delta and profile 95% CI.

Delta method Profile likelihood method

Year x̂p (m) (GEVDr=6) x̂p (m) (GEVDr=6)

10 (3.217,3.253,3.288) (3.218,3.253,3.288)

20 (3.732,3.782,3.831) (3.734,3.782,3.832)

30 (4.027,4.086,4.145) (4.028,4.086,4.147)

40 (4.234,4.301,4.368) (4.235,4.301,4.371)

50 (4.394,4.467,4.540) (4.395,4.467,4.544)

60 (4.524,4.603,4.681) (4.525,4.603,4.685)

70 (4.634,4.717,4.800) (4.634,4.717,4.805)

80 (4.728,4.816,4.904) (4.729,4.816,4.909)

90 (4.812,4.903,4.995) (4.812,4.903,5.001)

100 (4.886,4.981,5.076) (4.886,4.981,5.083)

150 (5.171,5.281,5.391) (5.171,5.281,5.399)

200 (5.372,5.494,5.614) (5.372,5.494,5.624)

500 (6.009,6.170,6.331) (6.008,6.170,6.345)

1000 (6.486,6.682,6.878) (6.485,6.682,6.895)
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