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Abstract: In this paper, the analytic-approximate solution for a class of quadratic Riccati differential equation under uncertainty is

obtained using a modified residual power series (RPS) expansion algorithm. The proposed method is a well-known efficient precise

algorithm to address numerous issues in physics and engineering. The RPS is a systematic tool based on the use of the Taylor approach

and residual error concept by minimizing error functions to determine the values of the coefficients of the PS according to given initial

data of symmetric triangular fuzzy numbers. To interpret the solutions of fuzzy quadratic Riccati equations, the strongly-generalized

differentiability sense is implemented. This algorithm provides an approximate series of solutions within a radius suitable for the

desired domain. Numerical applications are introduced to clarify the compatibility and reliability of the RPS algorithm. The gained

results confirm that the suggested simulated is highly reliable, simple and can be implemented to other classes of nonlinear uncertain

natural problems.

Keywords: Fuzzy differential equations, Riccati initial value problems, power series expansion, strongly generalized differentiability

1 Introduction

Differential equations under uncertainty have attracted
much attention due to the fundamental and critical role
for modeling different real-world fuzzy problems arising
in sciences with many physical applications, including
civil engineering, population models, acoustics, modeling
hydraulic, and quantum optics [1,2,3,4,5,6]. Particular
interest is utilized in electronic mechanisms including air
conditioners, vacuum cleaners, washing machines, and
electronic-controlled pattern systems, with further
applications to transmission systems. The fuzzy topic has
been investigated since the 1920s, Zadeh, however,
introduced the term fuzzy derivative within 1972 [7].
Following, the concept of the fuzzy differential calculus
has been presented using Zadeh’s extension principle by
Dubois and Prade in [8]. Furthermore, during the recent
years, several scholars have shown other notations and

results for fuzzy mappings over a crisp interval [9,10,11,
12]. On the other hand, the strongly-generalized
differentiability (SGD) for fuzzy-valued function is
discussed perfectly by Bede in [13]. Anyhow, it’s difficult
generally to get exact solution, in most cases, to these
uncertainties because of the complexities involved, so we
need to apply reliable numerical and approximate
techniques to deal with those situations. For example, the
finite element, residual power series, fuzzy Picard, and
reproducing kernel are some of these techniques [14,15,
16].

Quadratic Riccati differential equations (QRDEs)
constitute a particular nonlinear model for describing
specific class of physical systems with applications in
optimal control, diffusion process, artificial intelligence
and optical networks. Nowadays, numerous analytical
and numerical methods are implemented to obtain the
solution of the QRDEs, for instance, the solution for such
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QRDEs has been studied in [17] by using the homotopy
analysis method. While the homotopy perpetuation
method (HPM) has been proposed in [18], as well as the
method of differential transformation has been applied in
[19]. Also, a solution to QRDEs has been discussed in
[20] by utilizing Adomian decomposition method. These
mentioned studies dealt with the crisp sense of the
variables and parameters. In this regard, uncertainties
make the issue more provocative and challenging.
However, numerical investigations for fuzzy QRDEs are
rare in literature. In [21], the HPM has been applied for
solving fuzzy QRDEs with various types of fuzzy
environment. The Euler method has been used for solving
fuzzy QRDEs under SGD [22]. Meanwhile, the fuzzy
Picard technique is investigated for solving fuzzy QRDEs
and PainleveI equation [14]. However, other categories of
advanced numerical methods for different topics can be
found in [23]-[32].

The target of this paper is to extend the application of
the RPS algorithm for determining the PS solution of
fuzzy QRDEs along with suitable fuzzy constraint under
strongly-generalized differentiability. More precisely, we
consider the following nonlinear fuzzy QRDE:

f̂ ′(t) = p(t)+ q(t) f̂ + r(t) f̂ 2(t), t > 0 (1)

with the fuzzy initial condition

f̂ (0) = ĉ0, (2)

where p(t), q(t) and r(t) are given functions, ĉ0 is arbitrary

fuzzy number, and f̂ (t) is unknown fuzzy function of the
crisp variable t. Anyhow, assuming that the IVPs (1) and
(2) has a unique fuzzy solution at each t > 0. During this
article, RF stands to the set of all fuzzy numbers defined
on R.

The RPS algorithm is a novel numeric scheme that
developed to study and interpret the series solution of
first- and second-order uncertain IVPs. This method is
used effectively to provide the power series and fractional
power series solutions to several problems which arise in
engineering and science area. The proposed approach
aims at building a solution of a PS expansion as well as
minimizing residual error functions for computing the
unknown coefficients of PS by applying a certain
differential operator without linearization or limitation on
the problem structure [33]-[37]. On the other hand, we
refer to [38]-[45] to see many characteristics of modeling
and simulation of some advanced methods to deal with
different issues that occur in natural phenomena.

This paper is structured as follows. In Section 2,
fundamental concepts and definitions for the theory of
fuzzy calculus are given briefly. In Section 3, formulation
of quadratic fuzzy Riccati differential equation (QFRDE)
is presented under the concept of SGD. The RPS
algorithm is described in Section 4 for handling the
quadratic fuzzy Riccati problem. Some examples are also
presented in Section 5 to clarify the proposed method. In
the end, some conclusions are presented.

2 Preliminaries

The necessary definitions and properties concerning the
theory of fuzzy calculus are briefly recalled in this
section. In general, a fuzzy number ω is a fuzzy subset of
R with normal, convex, and upper semi-continuous
membership function of bounded support [10,11,12].
Definition 2.1 [10] The fuzzy number ω is a mapping ω :
R→ [0,1] such that:

1.ω(λ s + (1− λ )t) ≥ min{ω(s),ω(t)} for all s, t ∈ R

and 0 ≤ λ ≤ 1, i.e. ω is fuzzy convex.
2.If ∃s ∈ R, with ω(s) = 1 then ω is normal.
3.ω is upper semi continues.
4.The closure of supp(ω) = {s ∈ R : ω(s)> 0} is

compact, where supp(ω) is called the support of ω .

For each γ ∈ (0,1], set [ω ]γ = {s ∈ R\ω(s) ≥ γ} and

[ω ]0 = {s ∈R\ω(s)> 0}, whereas {.} denote to the
closure of {.}. Thus, clearly that ω is a fuzzy number
whenever [ω ]γ is convex compact set of R at each

γ ∈ [0,1] and [ω ]1 6= φ . Consequently, if ω is a fuzzy
number, then [ω ]γ = [ω1(γ),ω2(γ)], where
ω1(γ) = min{s : s ∈ [ω ]γ} and ω2(γ) = max{s : s ∈ [ω ]γ}
for each γ ∈ [0,1]. Here, [ω ]γ is called the γ-level
representation of ω . Furthermore, the parametric form or
the γ-level can be given by [ω ]γ = {s ∈ R \ω(s) ≥ γ} as

soon as γ ∈ (0,1], and [ω ]γ = supp(ω) when γ = 0.
Obviously, ω in its parametric form is closed and
bounded interval [ω1(γ),ω2(γ)] where ω1 and ω2 are the
lower and upper γ-level representations, respectively, for
the fuzzy number ω . Anyhow, the following definition is
an equivalent characterization of the parametric form of
ω .
Theorem 2.1 [10] Suppose that ω1,ω2 : [0,1] → R are
bounded functions satisfying the requirements:

1.ω1 and ω2 are increasing and decreasing, respectively,
with ω1(1)≤ ω2(1).

2.ω1 and ω2 are right-hand continuous for γ = 0.
3.ω1 and ω2 are left-hand continuous for γ = i,
∀i ∈ (0,1].

Thus, ω :R→ [0,1] defined as ω(s) = sup{γ : ω1(γ)≤ s≤
ω2(γ)} is a fuzzy number with parametric form [ω1γ ,ω2γ ].
Furthermore, for any fuzzy number ω : R → [0,1] with
parametric form [ω1γ ,ω2γ ], it can say that the functions ω1

and ω2 satisfy the above conditions.
For each 0 ≤ γ ≤ 1, and ω and P are two arbitrary

fuzzy numbers with [ω ]γ = [ω1γ ,ω2γ ] and
[P]γ = [P1γ ,P2γ ] and c ∈R, we have the following:

1.[ω + P]γ = [(ω + P)1γ ,(ω + P)2γ ] =
[ω1γ +P1γ ,ω2γ +P2γ ].

2.[cω ]γ =

{

[cω1γ ,cω2γ ] : c ≥ 0

[cω2γ ,cω1γ ] : c < 0.

3.ω = P if and only if ω1γ = P1γ and ω2γ = P2γ .

Definition 2.2 [11] The complete metric space of RF is
defied by the mapping d : RF ×RF → R

+ ∪ {0} with
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Hausdorff distance such that

d(ω ,P) = sup
0≤γ≤1

max{| ω1γ −P1γ |, | ω2γ −P2γ |}

for arbitrary fuzzy number ω and P .
Definition 2.3 [12] Let ω and P ∈RF , if ∃K ∈RF where
ω = P +K , then K is called Hukuhara difference (H-
difference) of ω and P , indicated by ω ⊖h P .
Definition 2.4 [46] Suppose that f̂ = [a,b]→RF . For fixed

t0 ∈ [a,b], f̂ is called strongly generalized differentiable at

t0, if there exists an element f̂ ′(t0) ∈ RF such that either:

1.The H-difference f̂ (t0 + ε)⊖h f̂ (t0), f̂ (t0)⊖h f̂ (t0 − ε)

exist and f̂ ′(t0) = limε→0+
f̂ (t0+ε)⊖h f̂ (t0)

ε =

limε→0+
f̂ (t0)⊖h f̂ (t0−ε)

ε , for all ε > 0 sufficiently near
to 0, and the limits in a metric d.

2.The H-difference
f̂ (t0) ⊖h f̂ (t0 + ε), f̂ (t0) f̂ (t0 − ε) ⊖h f̂ (t0) exist and

f̂ ′(t0) = limε→0+
f̂ (t0)⊖h f̂ (t0+ε)

−ε =

limε→0+
f̂ (t0−ε)⊖h f̂ (t0)

−ε , for all ε > 0 sufficiently near
to 0, and the limits in a metric d.

Theorem 2.2 [47] If f̂ : [a,b] → RF , set

[ f̂ (t)]
γ
= [ f̂1γ(t), f̂2γ (t)] for each γ ∈ [0,1], then:

1.If f̂ is (1)-differentiable, then f̂1γ and f̂2γ are
differentiable functions and
[ f̂ ′(t)]

γ
= [ f̂ ′1γ(t), f̂ ′2γ(t)].

2.If f̂ is (2)-differentiable, then f̂1γ and f̂2γ are
differentiable functions and
[ f̂ ′(t)]

γ
= [ f̂ ′2γ(t), f̂ ′1γ(t)].

Definition 2.5 [47] Let f̂ : [a,b]→ RF be a fuzzy-valued
function. For fixed t0 ∈ [a,b] and ε > 0 if there exist δ > 0

such that | t − t0 |< δ which implies d( f̂ (t), f̂ (t0)) < ε ,

then we say that f̂ is continuous at t0.

3 Formulation of QFRDE

The purpose of this section is to discuss the formulation of
the QFRDE with fuzzy initial condition in the following
form under the concept of SGD:

f̂ ′(t) = A f̂ 2(t)+B f̂ (t)+C, t > 0, (3)

with the fuzzy initial condition

f̂ (0) = f̂0. (4)

where A,B and C ∈ R, f̂ (t) = [0,T ]→ RF and f̂0 ∈ RF .
To construct the section of the QFRDE (3) based on

the type of differentiability and fuzzy initial condition (4),

we consider the γ-level representation of f̂ ′(t), f̂ (t), f̂ 2(t)

and f̂ (0) as [ f̂ ′1γ (t), f̂ ′2γ(t)], [ f̂1γ (t), f̂2γ (t)],

[ f̂ 2
1γ (t), f̂ 2

2γ (t)] and [ f̂0,1γ(t), f̂0,2γ (t)], respectively.

Consequently, the QFRDEs (3) and (4) should be
rewritten with the parametric form as follows:

[ f̂ ′(t)]
γ
= A[ f̂ 2(t)]

γ
+B[ f̂ (t)]

γ
+C, t > 0 (5)

with the fuzzy initial condition

[ f̂ (0)]
γ
= [ f̂0]

γ
. (6)

Definition 3.1 [47] Let f̂ : [a,b]→ RF where D(1) f̂ (t) or

D(2) f̂ (t) exists. If f̂ and D(1) f̂ (t) satisfy QFRDE (3), then

we say f̂ is (1)-solution for QFRDE (3). Otherwise, if f̂

and D(2) f̂ (t) satisfy QFRDE (3), then we say f̂ is
(2)-solution for QFRDE (3).

Now, the next algorithm presents us the RPS strategy
for solving IVPs (5) and (6) in γ- level representation that
converted to crisp systems of ODEs.
Algorithm 3.1 To obtain the fuzzy solution f̂ (t) for the
IVPs (5) and (6), two cases are considered according to
the kinds of differentiability, where f̂ (t) is either
(1)-differentiable or (2)-differentiable.

Case 1: If f̂ (t) is (1)-differentiable, then IVPs (5) and
(6) can be converted into the following crisp system:

f̂ ′1γ(t) = A f̂ 2
1γ(t)+B f̂1γ(t)+C,

f̂ ′2γ(t) = A f̂ 2
2γ(t)+B f̂2γ(t)+C,

(7)

with the initial condition,

f̂1γ (t) = f̂0,1γ ,

f̂2γ (t) = f̂0,2γ .
(8)

Consequently, the following actions should be taken:

A1: Solve the system (7) and (8) using the procedure of
RPS algorithm.

A2: Ensure that the solution [ f̂1γ (t), f̂2γ (t)] and

[ f̂ ′1γ(t), f̂ ′2γ(t)] are valid γ-level sets, ∀γ ∈ [0,1].

A3: Obtain the (1)-solution f̂ whose γ-level representation
is [ f̂1γ (t), f̂2γ (t)].

Case 2: If f̂ (t) is (2)-differentiable, then IVPs (5) and
(6) can be converted into the following crisp system:

f̂ ′1γ(t) = A f̂ 2
2γ(t)+B f̂2γ(t)+C,

f̂ ′2γ(t) = A f̂ 2
1γ(t)+B f̂1γ(t)+C,

(9)

with the initial condition,

f̂1γ (t) = f̂0,1γ ,

f̂2γ (t) = f̂0,2γ .
(10)

Consequently, the following actions should be taken:

B1: Solve the system (9) and (10) using the procedure of
RPS algorithm.
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B2: Ensure that the solution [ f̂1γ(t), f̂2γ (t)] and

[ f̂ ′1γ(t), f̂ ′2γ (t)] are valid γ-level sets, ∀γ ∈ [0,1].

B3: Obtain the (2)-solution f̂ whose γ-level representation
is [ f̂2γ(t), f̂1γ (t)].

The previous formulation of IVPs (5) and (6) along
with Theorem 2.2 shows us how to deal with numerical
solution of such problem allowing the consideration of
two cases, where f̂ (t) is either (1)-differentiable or
(2)-differentiable. For each case, the original QFRDE can
be switched to an equivalent crisp system of ODEs. As a
result, numerical methods can be used directly to solve
the crisp system obtained without having to be formulated
in an uncertain sense (see [14,15,16]).

4 The RPS method for the fuzzy QRDE

In this section, we seek to obtain the (1)-solution for the
fuzzy QRDE (5) and (6) by employing the procedures of
RPS method. Further, same procedure can be followed,
whenever f̂ (t) is (2)-differentiable, to construct the
(2)-solution for the fuzzy QRDE QRDE (5) and (6). To
perform so, we assume that f̂ (t) is (1)-differentiable,
therefore the solutions of system (7) and (8) at t0 = 0 have
the following forms:

f̂1γ (t) =
∞

∑
n=0

antn
,

f̂2γ (t) =
∞

∑
n=0

bntn
.

(11)

By using the initial conditions f̂1γ (0) = f̂0,1γ = a0 and

f̂2γ (0) = f̂0,2γ = b0 as initial iterative approximations.
Then, the expansion of (11) can be written as:

f̂1γ (t) = f̂0,1γ +
∞

∑
n=1

antn
,

f̂2γ (t) = f̂0,2γ +
∞

∑
n=1

bntn
.

(12)

Consequently, the jth-truncated series solutions of f̂1γ (t)

and f̂2γ(t) can be given by:

f̂ j,1γ(t) = f̂0,1γ +
j

∑
n=1

antn
,

f̂ j,2γ(t) = f̂0,2γ +
j

∑
n=1

bntn
.

(13)

According the the RPS approach, the jth-residual
functions of system (7) and (8) are defined by

Res j,1γ(t) = f̂ ′ j,1γ(t)−A f̂ 2
j,1γ(t)−B f̂ j,1γ(t)−C,

Res j,2γ(t) = f̂ ′ j,2γ(t)−A f̂ 2
j,2γ(t)−B f̂ j,2γ(t)−C.

(14)

where the ∞th- residual functions are given by

Res∞,1γ(t) = lim
j→∞

Res j,1γ(t)

= f̂ ′1γ(t)−A f̂ 2
1γ(t)−B f̂1γ(t)−C,

Res∞,2γ(t) = lim
j→∞

Res j,2γ(t)

= f̂ ′2γ(t)−A f̂ 2
2γ(t)−B f̂2γ(t)−C.

(15)

As in [38,39,48], clearly Res∞,iγ (t) = 0 for each
t ∈ [0,R], R is radius of convergence and i = {1,2}, which
are infinitely differentiable functions at t = 0. Further,
dk−1

dtk−1 Res∞,iγ(0) =
dk−1

dtk−1 Resk,iγ (0) = 0, for k = 1,2,3, ..., j.

Which is considered as a basic fact of RPS algorithm that
helps us to determine the parameters an and bn,n ≥ 1.

In light of RPS algorithm, to find the coefficients a1

and b1, substitute f̂1,1γ (t) = f̂0,1γ + a1t and

f̂1,2γ(t) = f̂0,2γ + b1t into the residual functions ,
Res1,1γ(t) and Res1,2γ(t), at j = 1 of (14) such that:

Res1,1γ(t) = f̂ ′1,1γ(t)−A f̂ 2
1,1γ(t)−B f̂1,1γ(t)−C

= ( f̂0,1γ + a1t)′−A( f̂0,1γ + a1t)
2

−B( f̂0,1γ + a1t)−C

= a1 −A( f̂0,1γ + a1t)
2 −B( f̂0,1γ + a1t)−C,

Res1,2γ(t) = f̂ ′1,2γ(t)−A f̂ 2
1,2γ(t)−B f̂1,2γ(t)−C

= ( f̂0,2γ + b1t)′−A( f̂0,2γ + b1t)
2

−B( f̂0,2γ + b1t)−C

= b1 −A( f̂0,2γ + a1t)
2 −B( f̂0,2γ + b1t)−C.

(16)

Using the facts that Res1,1γ(0) = 0 and Res1,2γ(0) = 0

in (16) it yields that a1 = A f̂ 2
0,1γ + B f̂0,1γ + C and

b1 = A f̂ 2
0,2γ + B f̂0,2γ + C. Therefore, the first RPS

approximations are:

f̂1,1γ (t) = a0 +(Aa2
0 +Ba0+C)t,

f̂1,2γ (t) = b0 +(Ab2
0 +Bb0+C)t.

For j = 2, substitute f̂2,1γ (t) = a0+(Aa2
0+Ba0+C)t+

a2t2 and f̂2,2γ(t) = b0 +(Ab2
0 +Bb0 +C)t + b2t2 into the

residual functions, Res2,1γ(t) and Res2,2γ(t) of (14) such
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that

Res2,1γ(t) = f̂ ′2,1γ(t)−A f̂ 2
2,1γ(t)−B f̂2,1γ(t)−C

= ((Aa2
0 +Ba0 +C)+ 2a2t)

−A(a0 +(Aa2
0 +Ba0 +C)t + a2t2)

2

−B(a0 +(Aa2
0 +Ba0 +C)t + a2t2)−C,

Res2,2γ(t) = f̂ ′2,2γ(t)−A f̂ 2
2,2γ(t)−B f̂2,2γ(t)−C

= ((Ab2
0 +Bb0 +C)+ 2b2t)

−A(b0 +(Ab2
0 +Bb0 +C)t + b2t2)

2

−B(b0 +(Ab2
0 +Bb0 +C)t + b2t2)−C.

(17)

Now, differentiable both sides of (17) such that

d

dt
Res2,1γ(t) =

d

dt

[(

(Aa2
0 +Ba0 + c)+ 2a2t

)

−A
(

a0 +(Aa2
0 +Ba0 +C)t + a2t2

)2

−B
(

a0 +(Aa2
0 +Ba0 +C)t + a2t2

)

−C
]

= 2a2 − 2A
(

(Aa2
0 +Ba0 + c)+ 2a2t

)

(

a0 +(Aa2
0 +Ba0 +C)t + a2t2

)

−B
(

(Aa2
0 +Ba0 +C)+ 2a2t

)

,

d

dt
Res2,2γ(t) =

d

dt

[(

(Ab2
0 +Bb0 + c)+ 2b2t

)

−A
(

b0 +(Ab2
0 +Bb0 +C)t + b2t2

)2

−B
(

b0 +(Ab2
0 +Bb0 +C)t + b2t2

)

−C
]

= 2b2 − 2A
(

(Ab2
0 +Bb0 + c)+ 2b2t

)

+
(

b0(Ab2
0 +Bb0 +C)t + b2t2

)

−B
(

(Ab2
0 +Bb0 +C)+ 2b2t

)

.

Finally by using that facts d
dt

Res2,1γ(0) = 0 and
d
dt

Res2,2γ(0) = 0, it can be deduced that

a2 = Aa0a1 +
1
2
Ba1 and b2 = Ab0b1 +

1
2
Bb1. Therefore,

the second approximations are:

f̂2,1γ(t) = a0 +(Aa2
0+Ba0 +C)t +(Aa0a1 +

1

2
Ba1)t

2
,

f̂2,2γ(t) = b0 +(Ab2
0+Bb0 +C)t +(Ab0b1 +

1

2
Bb1)t

2
.

For j = 3, if we substitute f̂3,1γ (t) and f̂3,2γ(t) into the
residual functions Res3,1γ(t) and Res3,2γ(t) of Eq (14) and

then utilize the facts d2

dt2 Res3,1γ(0) = 0 and d2

dt2 Res3,2γ(0) =
0. Then, the third coefficients a3 and b3 are given by

a3 =
1

3
A(2a0a2 + a2

1)+
1

3
Ba2,

b3 =
1

3
A(2b0b2 + b2

1)+
1

3
Bb2.

Hence, the third RPS approximations can be also
given. By continuing with the same procedures until
arbitrary coefficients order j = n as well as using the facts
d(n−1)

dt(n−1) Resn,1γ(0) = d(n−1)

dt(n−1) Resn,2γ(0) = 0, then the

unknown coefficients an and bn can be obtained. Anyhow,
more iteration leads to more accurate solutions. Similarly,
if f̂ (t) is (2)-differentiable, then the (2)-solution for the
fuzzy QRDE (5) and (6) can be obtained.

5 Illustrative Example

To test the applicability and accuracy of the suggested
algorithm, several examples are tested numerically in this
section. The RPS methodology is directly applied without
using transformation or discretization. For results and
calculations, the numeric computations are implemented
using Mathematics 10.

Example 5.1 Consider the following the fuzzy QRDE:

f̂ ′(t) = 2 f̂ (t)− f̂ 2(t)+ 1, t > 0, (18)

with the fuzzy initial condition

[ f̂ (0)]γ = [γ − 1,1− γ],γ ∈ [0,1]. (19)

In particular, for γ = 1, the exact solution of (18) with
crisp initial condition f (0) = 0 can be found as follows:

f (t) = 1+
√

2tanh
(√

2t +
1

2
log

(

√
2− 1√
2+ 1

)

)

. (20)

Using definition 2.4, the fuzzy IVPs (18) and (19) can
be reduced to the set of ODEs corresponding to their
parametric forms as follows:

f̂ ′1γ(t) = 2 f̂1γ (t)− f̂ 2
1γ(t)+ 1,

f̂ ′2γ(t) = 2 f̂2γ (t)− f̂ 2
2γ(t)+ 1,

(21)

subject to the initial conditions

f̂ ′1γ(0) = γ − 1,

f̂ ′2γ(0) = 1− γ.
(22)

According the producer of the RPS algorithm
presented in the last section and depending on the initial

data f̂ ′0,1γ = f̂ ′1γ(0) = γ −1 and f̂ ′0,2γ = f̂ ′2γ(0) = 1− γ ,

the proposed RPS solutions f̂ ′1γ (t) and f̂ ′2γ (t) of system
(21) can be given by:

f̂ j,1γ(t) = γ − 1+ a1t + a2t2 + ...+ a jt
j + ...,

f̂ j,2γ(t) = 1− γ + b1t + b2t2 + ...+ b jt
j + ....

(23)

By utilizing the facts d( j−1)

dt( j−1) Res j,1γ(0) = 0 and

d( j−1)

dt( j−1) Res j,2γ(0) = 0, for j = 1,2, ...,, the first few terms
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a j and b j are:

a1 = (−2+ 4γ− γ2)t,

a2 = (−4+ 10γ− 6γ2 + γ3)t2
,

a3 =
1

3
(−20+ 64γ− 64γ2+ 24γ3 − 3γ4)t3

,

a4 =
1

3
(−32+ 128γ− 180γ2+ 110γ3− 30γ4 + 3γ5)t4

,

a5 =
1

15
(−256+ 1232γ− 2228γ2+ 1920γ3

− 840γ4+ 180γ5− 15γ6)t5
,

a6 =
1

45
(−1232+ 6920γ− 15288γ2+ 17108γ3

− 10500γ4+ 3570γ5− 630γ6+ 45γ7)t6
,

a7 =
1

315
(−13840+ 88832γ− 231872γ2

+ 319872γ3− 255024γ4+ 120960γ5

− 33600γ6+ 5040γ7− 315γ8)t7
,

...

and

b1 = (2− γ2)t,

b2 = (2γ − γ3)t2
,

b3 =
1

3
(−4+ 8γ2− 3γ4)t3

,

b4 =
1

3
(−8γ + 10γ3− 3γ5)t4

,

b5 =
1

15
(16− 68γ2+ 60γ4− 15γ6)t5

,

b6 =
1

45
(136γ − 308γ3+ 210γ5− 45γ7)t6

,

b7 =
1

315
(−272+ 1984γ2− 3024γ4+ 1680γ6− 315γ8)t7

,

...

and so on. Particularly, if γ = 1, then the RPS solution

f (t)= t+t2+
1

3
t3− 1

3
t4− 7

15
t5− 7

45
t6+

53

315
t7+

71

315
t8+ ...

which matches the Taylor series expansion of the exact
solution of Eq.(20).

In the light of showing the agreement between the
exact solutions and RPS solutions, some numerical results
together with the absolute and relative errors at some
selected grid points ti in [0,1] with step-size 0.1 are listed
in Table 1 for n = 51 and γ = 1. From the table, it can be
noted that the RPS approximate solutions are in good
agreement with the exact solutions over the domain of
interest. Anyhow, more iteration leads to more accurate
solutions. For further analysis, numerical comparison is

(a) Solution plots for t = 0

(b) Solution plots for t = 0.25

(c) Solution plots for t = 0.5

(d) Solution plots for t = 0.75

Fig. 1: Triangular fuzzy solution plots for the 8th-RPS
solutions of Example 5.1.

presented in Table 2 between the 10th RPS solution and
other existing numerical methods including 4th-order
Runge-Kutta method (RK-4), optimal homotopy
asymptotic method (OHA) [49], and multiagent neural
network method (MNN) [50]. It can be concluded from
the numeric comparisons that the gained results by the
RPS method are very well in comparison with those
obtained by other methods.

Figure 1 shows the lower and upper bounds of the
triangular fuzzy RPS solutions at n = 8 with different
values of t such that t ∈ {0.0,0.25,0.5,0.75}. While
Figure 2 depicts the surface plot of the 10th-RPS
approximate solution for all t ∈ [0,1] and γ ∈ [0,1], where
blue and yellow color correspond to the upper and lower
bounds of the 10th-RPS fuzzy solution.
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Table 1: Numerical result of the RPS solutions for Example 5.1 at γ = 1.

ti Exact solution Approximate solution Absolute error Relative error

0.1 0.110295196916 0.110295196917 1.52656×10−16 1.38406×10−15

0.2 0.241976799621 0.241976799621 5.55112×10−17 2.29407×10−16

0.3 0.395104848660 0.395104848660 2.77556×10−16 7.02486×10−16

0.4 0.567812166293 0.567812166293 3.33067×10−16 5.86579×10−16

0.5 0.756014393431 0.756014393431 3.33067×10−16 4.40556×10−11

0.6 0.953566216472 0.953566216472 1.11022×10−16 1.16429×10−16

0.7 1.152948966979 1.152948966980 5.32907×10−14 4.62212×10−14

0.8 1.346363655368 1.346363655422 5.39830×10−11 4.00954×10−11

0.9 1.526911313280 1.526911336846 2.35658×10−8 1.54336×10−8

Table 2: Approximate solutions of Example 5.1 by various methods at γ = 1.

ti Exact 10th RPSM OHAM [47] MNN [48] RK-4

0.1 0.110295 0.110295 0.110328 0.110295 0.100000

0.2 0.241977 0.241977 0.242273 0.241976 0.219000

0.3 0.395105 0.395105 0.396175 0.395089 0.358004

0.4 0.567812 0.567812 0.570231 0.567660 0.516788

0.5 0.756014 0.756014 0.759555 0.755134 0.693439

0.6 0.953566 0.953566 0.955049 0.949964 0.884041

0.7 1.152949 1.152949 1.142444 1.141423 1.082696

0.8 1.346364 1.346358 1.300569 1.315723 1.282012

0.9 1.526911 1.526814 1.400444 1.456545 1.474059

Fig. 2: The 3-dim plot for Example 5.1:blue and yellow
are lower and upper bounds of 10th-RPS fuzzy solution.

Example 5.2 Consider the following quadratic fuzzy
QRDE:

f̂ ′(t) = 2 f̂ (t)− f̂ 2(t)+ 1, t > 0, (24)

with the fuzzy initial condition

[ f̂ (0)]γ = [0.1+ 0.1γ,0.3− 0.1γ],γ ∈ [0,1]. (25)

In particular, for γ = 1, the exact solution of (24) with
crisp initial condition f (0) = 0.2 can be found as follows

f (t) = 1+
√

2tanh
(√

2t +
1

2
log

(5
√

2− 4

5
√

2+ 4

)

)

. (26)

Using definition 2, the fuzzy IVPs (24) and (25) can
be reduced to the set of ODEs corresponding to their
parametric forms as follows:

f̂ ′1γ(t) = 2 f̂1γ (t)− f̂ 2
1γ(t)+ 1,

f̂ ′2γ(t) = 2 f̂2γ (t)− f̂ 2
2γ(t)+ 1,

(27)

which are subject to the initial conditions

f̂ ′1γ(0) = 0.1+ 0.1γ,

f̂ ′2γ(0) = 0.3− 0.1γ.
(28)

Following the RPS algorithm and depending on the
initial data of system (27) and (28), the first few terms an

and bn of the truncated RPS solution described in Eq. (13)
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are given by:

a1 =
1

102
(119+ 18γ− γ2)t,

a2 =
1

103
(1071+ 43γ− 27γ2+ γ3)t2

,

a3 =
1

3× 104
(5117− 5652γ− 658γ2+ 108γ3− 3γ4)t3

,

a4 =
1

3× 105
(−168147− 64585γ+ 5130γ2+ 1430γ3

− 135γ4+ 3γ5)t4
,

a5 =
1

3× 106
(−1537123+ 11682γ+ 151955γ2+ 540γ3

− 2445γ4+ 162γ5− 3γ6)t5
,

a6 =
1

9× 107
(695079+ 18187783γ+ 2825739γ2− 719285γ3

− 40635γ4+ 11109γ5− 567γ6+ 9γ7)t6
,

...

and

b1 =
1

102
(151− 4γ− γ2)t,

b2 =
1

103
(1057+ 53γ− 21γ2− γ3)t2

,

b3 =
1

3× 104
(−8003+ 7084γ− 82γ2− 84γ3− 3γ4)t3

,

b4 =
1

3× 105
(−267421+ 30985γ+ 10710γ2− 470γ3

− 105γ4− 3γ5)t4
,

b5 =
1

3× 106
(−935747− 560126γ+ 108755γ2+ 13020γ3

− 1005γ4− 126γ5− 3γ6)t5
,

b6 =
1

9× 107
(42289513− 20342887γ− 1706523γ2

+ 685685γ3+ 38955γ4− 5061γ5− 441γ6− 9γ7)t6
,

...

and so on. Particularly, if γ = 1, then the RPS solution

f (t) = 1
5
+ 34

25
t + 136

125
t2 − 68

1875
t3 − 7072

9365
t4 − 21488

46875
t5 +

163744
703125

t6 + 11459632
24609375

t7 + 16217728
123046875

t8 + . . . , which matches
the Taylor series expansion about t = 0 of the exact
solution in Eq.(26).

To show the effectiveness of the proposed algorithm,
numerical outcomes of lower and upper bounds of the
fuzzy solutions for system (27) and (28) at some selected
grid points with step size 0.1 are summarized in Tables 3

and 4 for γ = 1 and n = 51. From these tables, it is
interesting to observe that the lower and upper bounds of
the RPS-solutions are the same for γ = 1, which precisely
agree with the crisp solution. Figure 3 shows the lower
and upper bounds of the triangular fuzzy RPS solutions at
n = 8 with different values of t such that
t = 0.25,0.5,0.75 and 1, where the midline represents the
center (crisp) solution for γ = 1. While Figure 4 depicts
the surface plot of the 10th-RPS approximate solution for
all t ∈ [0,1] and γ ∈ [0,1] in which the blue and orange
color correspond to upper and lower bounds of the
10th-RPS fuzzy solution.

(a) Solution plots for t = 0.25

(b) Solution plots for t = 0.5

(c) Solution plots for t = 0.75

(d) Solution plots for t = 1

Fig. 3: Triangular fuzzy solution plots for the 8th-RPS
solutions of Example 5.2.
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Table 3: Numerical result of lower bound RPS-solution of Example 5.2

ti Exact solution Approximate solution Absolute error Relative error

0.1 0.34676399505 0.346763995059 1.11022×10−16 3.20167×10−16

0.2 0.51389727584 0.513897275841 1.11022×10−16 2.16040×10−16

0.3 0.69799087251 0.697990872514 2.22045×10−16 3.18120×10−16

0.4 0.89347216024 0.893472160244 3.33067×10−16 3.72778×10−16

0.5 1.09313499306 1.093134993060 2.22045×10−16 2.03126×10−16

0.6 1.28913717194 1.289137171947 2.22045×10−16 1.72243×10−16

0.7 1.47419437696 1.474194376963 1.05871×10−12 7.18161×10−13

0.8 1.64260136255 1.642601633577 1.02182×10−9 6.22073×10−10

0.9 1.79079791833 1.790798347506 4.29173×10−7 2.39655×10−7

Table 4: Numerical result of upper bound RPS-solution of Example 5.2

ti Exact solution Approximate solution Absolute error Relative error

0.1 0.34676399505 0.346763995059 1.66533×10−16 4.80250×10−16

0.2 0.51389727584 0.513897275841 1.11022×10−16 2.16040×10−16

0.3 0.69799087251 0.697990872514 2.22045×10−16 3.18120×10−16

0.4 0.89347216024 0.893472160244 3.33067×10−16 3.72778×10−16

0.5 1.09313499306 1.093134993060 2.22045×10−16 2.03126×10−16

0.6 1.28913717194 1.289137171947 2.22045×10−16 1.72243×10−16

0.7 1.47419437696 1.474194376963 1.05871×10−12 7.18161×10−13

0.8 1.64260136255 1.642601633577 1.02182×10−9 6.22073×10−10

0.9 1.79079791833 1.790798347506 4.29173×10−7 2.39655×10−7

Fig. 4: The 3-dim plot for Example 5.2:blue and orange
are lower and upper bounds of 10th-RPS fuzzy solution.

Example 5.3 Consider the following fuzzy QRDE

f̂ ′(t) =− f̂ 2(t)+ 1, t > 0, (29)

with the fuzzy initial conation

[ f̂ (0)]γ = [γ − 1,1− γ],γ ∈ [0,1]. (30)

In particular, for γ = 1, the exact solution of Eq.(29)
with crisp initial condition f (0) = 0 is given as:

f (t) = (e2t − 1)(e2t + 1)−1
. (31)

Using definition 2, the fuzzy IVPs (29) and (30) can
be reduced to the set of ODEs corresponding to their
parametric forms as follows:

f̂ ′1γ(t) =− f̂ 2
1γ(t)+ 1,

f̂ ′2γ(t) =− f̂ 2
2γ(t)+ 1,

(32)

subject to the initial conditions

f̂ ′1γ(0) = γ − 1,

f̂ ′2γ(0) = 1− γ.
(33)

Following the RPS algorithm and depending on the
initial data (32)and (33), the first few terms an and bn of
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the truncated RPS solution described in (13) are given by:

a1 = (2γ − γ2)t,

a2 = (−2γ + 3γ2 − γ3)t2
,

a3 =
1

3
(4γ − 14γ2+ 12γ3 − 3γ4)t3

,

a4 =
1

3
(−2γ + 15γ2 − 25γ3+ 15γ4 − 3γ5)t4

,

a5 =
1

15
(4γ − 62γ2 + 180γ3− 195γ4+ 90γ5− 15γ6)t5

,

a6 =
1

45
(−4γ + 126γ2− 602γ3+ 1050γ4

− 840γ5+ 315γ6− 45γ7)t6
,

...

and

b1 = (2γ − γ2)t,

b2 = γ(2− 3γ + γ2)t2
,

b3 =
1

3
(4γ − 14γ2 + 12γ3− 3γ4)t3

,

b4 =
1

3
γ(2− 15γ + 25γ2− 15γ3 + 3γ4)t4

,

b5 =
1

15
(4γ − 62γ2+ 180γ3− 195γ4

+ 90γ5− 15γ6)t5
,

b6 =
1

45
γ(4− 126γ+ 602γ2− 1050γ3

+ 840γ4− 315γ5+ 45γ6)t6
,

...

Particularly, if γ = 1, the terms an and bn vanish as
soon as n is even integer and then the RPS solution
f (t) = t − 1

3
t3 + 2

15
t5 − 17

315
t7 + 62

2835
+ ..., coincides

precisely with the Taylor expansion about t = 0 of the
exact solution given in (31).

Table 5 shows the error analysis of the proposed
algorithm for system (32) and (33) at some nodes t in
[0,1] with step size 0.16 for γ = 1 and n = 51. Anyhow,
Table 6 shows numerical comparison between the 10th

RPS solution and other existing numerical methods
including RK-4, OHAM [49], and MNN [50]. From the
table, it can be observed that the numerical results
obtained by the RPS method are in good agreement with
those obtained by other methods.

Figure 5 depicts the lower and upper bounds of the
triangular fuzzy RPS solutions at n = 8 for
t = 0.25,0.5,0.75 and 1, where the midline represents the
center (crisp) solution at γ = 1. Figure 6 depicts the
surface plot of the 10th-RPS approximate solution for all
t and γ over the interval [0,1] in which blue and orange
color correspond to upper and lower bounds of the fuzzy
solution.

6 Concluding remarks

In this article, the RPS algorithm has been applied to
investigate the series solution to fuzzy QRDE under
strongly generalized differentiability. This method can be
used directly by choosing appropriate initial guesses
without being linearized, discretized or exposed to
perturbation. Numerical results have shown the
performance and reliability of the present approach. The
results indicate that the RPS method is very efficient and
powerful to nonlinear fuzzy differential equations with
less calculations, time and effort. From the numerical
comparison, it can be concluded that the RPS solutions
are very well in comparison with those obtained by other
methods.

(a) Solution plots for t = 0

(b) Solution plots for t = 0.25

(c) Solution plots for t = 0.5

(d) Solution plots for t = 0.75

Fig. 5: Triangular fuzzy solution plots for the 8th-RPS
solutions of Example 5.3.
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Table 5: Numerical result of the RPS solution of Example 5.3 at γ = 1

ti Exact solution Approximation Absolute error Relative error

0.16 0.158648504297 0.158648504297 5.55112×10−17 3.49900×10−16

0.32 0.309506921213 0.309506921213 5.55112×10−17 1.79354×10−16

0.48 0.446243610249 0.446243610249 5.55112×10−17 1.24397×10−16

0.64 0.564899552846 0.564899552846 0.00000 0.00000

0.80 0.664036770268 0.664036770268 3.33067×10−16 5.01579×10−16

0.96 0.744276867362 0.744276867358 4.29645×10−12 5.77265×10−12

Table 6: Numerical comparison of Example 5.3 at γ = 1.

ti Exact 10th RPSM OHAM [47] MNN [48] RK-4

0.1 0.099668 0.099668 0.099668 0.099668 0.100000

0.2 0.197375 0.197375 0.197376 0.197375 0.199000

0.3 0.291313 0.291313 0.291315 0.291313 0.295040

0.4 0.379949 0.379949 0.379949 0.379949 0.386335

0.5 0.462117 0.462121 0.462092 0.462121 0.471410

0.6 0.537050 0.537078 0.536910 0.537077 0.549187

0.7 0.604368 0.604514 0.603815 0.604513 0.619026

0.8 0.664037 0.664641 0.662245 0.664640 0.680707

0.9 0.716298 0.718392 0.711287 0.718390 0.734371

Fig. 6: The 3-dim plot for Example 5.3: blue and orange
are lower and upper bounds of 10th-RPS fuzzy solution.
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