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Jesús Medina-Viloria

Departament of Mathematics, University Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela

Received: 17 May 2019, Revised: 23 Nov. 2019, Accepted: 4 Dec. 2019

Published online: 1 Mar. 2020

Abstract: In the paper, I introduce the definition of the (m,h1,h2)–HA-convex functions, present some properties of these new class

of functions and establish some inequalities of type Hermite–Hadamard for these functions and an application these inequalities for

special means.
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1 Introduction

The convex functions are important and provide a basis
for constructing literature on mathematical inequalities. A
function f : I → R, where I is an interval in R is called
convex if

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y),

where t ∈ [0,1] and x,y ∈ I.
A large number of inequalities have been developed for

convex functions and their generalizations see [1,2,3,4,5].
A classical inequality for convex functions is the Hermite–
Hadamard inequality, this is given as follows:

f

(

a+ b

2

)

≤ 1

b− a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
,

where f : I → R is a convex function and a,b ∈ I with
a < b.

The authors in [6] gives the definition of (m,h1,h2)–
convex functions.

Definition 1. Assume f : I ⊂ R0 = [0,+∞) → R, h1,h2 :
[0,1]→R0, and m∈ (0,1]. Then f is said to be (m,h1,h2)–
convex if the inequality

f (tx+m(1− t) f (y))≤ h1(t) f (x)+mh2(1− t) f (y)

holds for all x,y ∈ I and t ∈ [0,1].

One of the recent generalizations of convexity was
introduced by İ. İşcan in [7]. İşcan gave the following
definition of harmonically convex functions:

Definition 2. Let I be an interval in R \ {0}. A function

f : I → R is said to be harmonically convex on I if the

inequality

f

(

xy

tx+(1− t)y

)

≤ t f (y)+ (1− t) f (x), (1)

holds, for all x,y ∈ I and t ∈ [0,1].

The following result of the Hermite-Hadamard type for
harmonically convex functions holds.

Theorem 1([7]). Let f : I ⊂ R \ {0} → R be a

harmonically convex function and a,b ∈ I with a < b. If

f ∈ L[a,b] then the following inequalities hold

f

(

2ab

a+ b

)

≤ ab

b− a

∫ b

a

f (x)

x2
dx ≤ f (a)+ f (b)

2
. (2)

In [8], the authors gave the definition of harmonic s–
convexity in the second sense as follows.

Definition 3. A function f : I ⊂ R+ = (0,+∞) → R is
said to be harmonically s–convex in the second sense and
s ∈ (0,1] if

f

(

xy

tx+(1− t)y

)

≤ ts f (y)+(1− t)s f (x), (3)
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is valid for all x,y ∈ I and t ∈ [0,1].

In [9], they gave the following definition

Definition 4. Let h : [0,1] ⊂ J → R0 = [0,+∞) be a
function. A function f : I ⊂ R+ → R is said to be
harmonically h–convex function, if

f

(

xy

tx+(1− t)y

)

≤ h(t) f (y)+h(1− t) f (x), (4)

for all x,y ∈ I and t ∈ [0,1].

Remark. It is obvious that for h(t) = t and h(t) = ts in
Definition 4, we have the definitions of harmonically
convex functions and harmonically s–convex functions of
second sense respectively.

In [10], they defined m–harmonic-arithmetically convex
functions.

Definition 5. Let f : (0,b]⊂ R+ → R and m ∈ (0,1] be a
constant. If

f

(

xy

ty+m(1− t)x

)

≤ t f (x)+m(1− t) f (y),

for all x,y ∈ (0,b] and t ∈ [0,1], then f is said to be an

m–harmonic-arithmetically convex (or m–HA–convex)

function.

Some authors introduced a new introduce a new
concept of the harmonic convex functions with respect to
an arbitrary non-negative function.

Definition 6([11]). Let h : [0,1] → R be a nonnegative

function. A function f : [a,b]⊂ R \ {0}→ R is said to be

relative harmonic m–convex function, where m ∈ (0,1], if

f

(

xy

tx+(1− t)y

)

≤ mh(1− t) f (xm)+ h(t) f (y), (5)

for all x,y ∈ [a,b] and t ∈ (0,1).

The HermiteHadamard type inequalities for relative
harmonic m–convex functions were investigated in [11].
In the same paper the following two theorems were
proved:

Theorem 2. Let f : [a,b] ⊂ R\ (0) → R be relative
harmonic m–convex function, where m ∈ (0,1]. If
f ∈ L[a,b], then

ab

b−a

∫ b

a

f (x)

x2
dx

≤ min{ f (b)+m f (ma), f (a)+m f (mb)}
∫ 1

0
h(t)dt. (6)

Theorem 3. Let f : [a,b] ⊂ R \ 0 → R be relative
harmonic m–convex function, where m ∈ (0,1]. If
f ∈ L[a,b], then

1

h(1/2)
f

(

2ab

a+b

)

≤ ab

b−a

∫ b

a

f (x)+m f (xm)

x2
dx

≤ 1

2

{

f (a)+ f (b)+2m[ f (am)+ f (bm)]+m2 [ f (am2)

+ f (bm2)]
}

×
∫ 1

0
h(t)dt. (7)

Theorem 4. Let f ,g : [a,b] ⊂ R \ 0 → R be relative
harmonic m1–convex function and relative harmonic
m2–convex function respectively, where m1,m2 ∈ (0,1]. If
f ∈ L[a,b], then

ab

b−a

∫ b

a

f (x)g(x)

x2
dx ≤ min{M1(a,b),M2(a,b)} , (8)

where

M1(a,b) = [m1m2 f (am1)g(am2)+ f (b)g(b)]
∫ 1

0
[h(t)]2dt

+[m1 f (am1)g(b)+m2 f (b)g(am2)]
∫ 1

0
h(t)h(1− t)dt,

M2(a,b) = [m1m2 f (bm1)g(bm2)+ f (a)g(a)]
∫ 1

0
[h(t)]2dt

+[m2 f (a)g(bm2)+m1 f (bm1)g(a)]
∫ 1

0
h(t)h(1− t)dt.

2 Main results

We now introduce the concept of (m,h1,h2)–HA–convex
functions.

Definition 7. Let hi : [0,1]→R0 = [0,+∞) and m ∈ (0,1]
such that hi 6≡ 0, for i = 1,2. A function f : R+ → R0 is

said (m,h1,h2)–HA–convex function, if

f

(

xy

ty+m(1− t)x

)

= f









1

t
1

x
+m(1− t)

1

y









≤ h1(t) f (x)+mh2(1− t) f (y), (9)

for all x,y ∈ I and t ∈ [0,1].

Remark. 1. If h1(t) = h2(t) = h(t), for all t ∈ [0,1], then
f : R+ → R0 is (h,m)–HA–convex.

2. If f : R+ → R0 is an (h,m)–HA–convex, then f is a
relative harmonic m–convex function.

3. Let f : R+ → R0 be a harmonically (h,m)–convex
function and m ∈ [0,1]. When h(t) = t for t ∈ [0,1],
the function f is said to be m–harmonic-arithmetically
convex (or m–HA–convex).
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4. If f : R+ → R0 is harmonically (h,1)–convex
function, then it is harmonically h–convex.

Example 1. Let f : R+ → R be a function defined as:

f (x) =
1

xp
, for p ≥ 1 fixed, and m ∈ (0,1]. Let h1(t) = t p1

and h2(t) = t p2 for t ∈ (0,1] and 0 < p1, p2 ≤ 1. Then f is
(m,h1,h2)–HA–convex function.

In effect, let x,y ∈ R+, t ∈ [0,1] and m ∈ (0,1], such
that

f

(

xy

tx+m(1− t)y

)

=

[

tx+m(1− t)y

xy

]p

=
[tx+m(1− t)y]p

xpyp

≤ txp +(1− t)(my)p

xpyp

≤ t p1xp +(1− t)p2mpyp

xpyp

= t p1
1

yp
+mp(1− t)p2

1

xp

= h1(t) f (y)+mh2(1− t) f (x).

Thus, f is (m,h1,h2)–HA–convex.

Now we present some properties of (m,h1,h2)–HA–
convex functions.

Theorem 5. Let hi : [0,1] → R0, such that, hi 6≡ 0, for

i = 1,2 and f : I ⊂ R+ → R+ is a (m,h1,h2)–HA–convex

function, if m = 1, then h1(t)+ h2(t)≥ 1, ∀t ∈ [0,1].

Proof. Since f is a (m,h1,h2)–HA–convex, and m = 1,
then for all x ∈ I and t ∈ [0,1], we obtain

f (x) = f

(

x2

tx+(1− t)x

)

≤ h1(t) f (x)+h(1− t) f (x) = [h1(t)+h2(1− t)] f (x).

Thus, h1(t)+ h2(1− t)≥ 1, for all t ∈ [0,1].

Theorem 6. Let hi : [0,1]→ R0, for i = 1,2,3,4, f : I ⊂
R+ → R+ and m ∈ (0,1]. If f is a (m,h1,h2)–HA–convex

function on I, h1(t)≤ h3(t) and h2(t)≤ h4(t), for t ∈ [0,1],
then f is a (m,h3,h4)–HA–convex function on I.

Proof. Since f is a (m,h1,h2)–HA–convex function on I,
then for x,y ∈ I and t ∈ [0,1], we get

f

(

xy

tx+m(1− t)y

)

≤ h1(t) f (y)+mh2(1− t) f (x)

≤ h3(t) f (y)+mh4(1− t) f (x).

Hence, the proof of Theorem 6 is complete.

Corollary 1. Let hi : [0,1]→R0 and fi : I ⊂R+ →R and

m ∈ (0,1]. If h(t) = max1≤ j≤n{hi(t)}, for t ∈ [0,1] and fi

is a (hi,m)–HA–convex on I, for i = 1, . . . ,n, then ∑
n
i=1 fi

is a (h,m)–HA–convex on I.

Proof. This follows from Theorem 6 and induction on n.

Theorem 7. Let hi : [0,1] → R0 such that hi 6≡ 0 for

i = 1,2, f : I ⊂ R+ → R+, g : J ⊂ R+ → g(J) ⊂ I and

m ∈ (0,1]. If f is nondecreasing and (m,h1,h2)–convex

function with respect to function g on I and if g is a

m–HA–convex function on J, then f ◦ g is a

(m,h1,h2)–HA–convex function on J;

Proof. Since g is a m–HA–convex function, for any x,y∈ J
and t ∈ [0,1] and m ∈ (0,1], we obtain,

g

(

xy

ty+m(1− t)x

)

≤ tg(x)+m(1− t)g(y)

In addition, f is a nondecreasing function and is a
(m,h1,h2)–convex function, therefore

f

(

g

(

xy

ty+m(1− t)x

))

≤ f (tg(x)+m(1− t)g(y))

≤ h1(t) f (g(x))+mh2(1− t) f (g(y)).

Thus, f ◦ g is (m,h1,h2)–HA–convex.

We establish some new Hermite–Hadamard type
inequalities for (m,h1,h2)–HA-convex functions, which
is the main motivation of this paper.

Theorem 8. Let hi : [0,1] → R0, hi 6≡ 0, for i = 1,2,
m ∈ (0,1] and f : R+ → R0 be an (m,h1,h2)–HA–convex
function on R+ such that f ∈ L1([a,b]) and
h1,h2 ∈ L1([0,1]), for 0 < a < b, then

f

(

2ab

a+b

)

≤ abh1(1/2)

b−a

∫ b

a

f (x)

x2
dx (10)

+
abmh2(1/2)

b−a

∫ b

a

f (mx)

x2
dx.

Proof. Since

2ab

a+ b
=

1

1

2

1

ab

ta+(1− t)b

+
1

2

1

ab

tb+(1− t)a

,

for t ∈ [0,1], from the (m,h1,h2)−HA convexity of f , we
obtain

f

(

2ab

a+b

)

≤ h1 (1/2) f

(

ab

ta+(1− t)b

)

(11)

+mh2 (1/2) f

(

ab

tb+(1− t)a

)

.
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If replacing
ab

ta+(1− t)b
and

ab

tb+(1− t)a
for 0 ≤ t ≤ 1

by x, then

∫ 1

0
f

(

ab

ta+(1− t)b

)

dt =
ab

b− a

∫ b

a

f (x)

x2
dx (12)

∫ 1

0
f

(

abm

tb+(1− t)a

)

dt =
ab

b− a

∫ b

a

f (mx)

x2
dx (13)

Substituting (12) and (13) in (11), we obtain (10). Thus
proof of Theorem 8 is complete.

Theorem 9. Let hi : [0,1] → R0, hi 6≡ 0, for i = 1,2,
m ∈ (0,1] and f : R+ → R0 to be a
(m,h1,h2) − HA–convex function on R+ such that
f ∈ L1([a,b]) and h1,h2 ∈ L1([0,1]), for 0 < a < b, then

ab

b−a

∫ b

a

f (x)

x2
dx (14)

≤ min

{

f (a)

∫ 1

0
h1(t)dt +m f (mb)

∫ 1

0
h2(1− t)dt,

f (b)

∫ 1

0
h1(t)dt +m f (ma)

∫ 1

0
h2(1− t)dt

}

.

Proof. Let x,y ∈ R+ and f an (m,h1,h2)–HA–convex
function, then

f

(

xy

ty+(1− t)x

)

≤ h1(t) f (x)+mh2(1− t) f (my). (15)

Substituting x = a and y = b in (15), we obtain

f

(

ab

tb+(1− t)a

)

≤ h1(t) f (a)+mh2(1− t) f (mb).

Integrating on [0,1] the above inequality, we get

ab

b−a

∫ b

a

f (x)

x2
≤ f (a)

∫ 1

0
h1(t)dt +m f (mb)

∫ 1

0
h2(1− t)dt.(16)

Now similarly substituting x= b and y= a in (15), we have

ab

b−a

∫ b

a

f (x)

x2
≤ f (b)

∫ 1

0
h1(t)dt +m f (ma)

∫ 1

0
h2(1− t)dt.(17)

Thus, from (16) and (17),

ab

b−a

∫ b

a

f (x)

x2
dx

≤ min

{

f (a)
∫ 1

0
h1(t)dt +m f (mb)

∫ 1

0
h2(1− t)dt,

f (b)

∫ 1

0
h1(t)dt +m f (ma)

∫ 1

0
h2(1− t)dt

}

.

Corollary 2. If h1(t) = h2(t) = h(t), for all t ∈ [0,1], from

9, we have the inequality (6).

Corollary 3. Let h1(t) = ts1 , h2(t) = ts2 , for all t ∈ [0,1],
s1,s2 ∈ (−1,1] and m ∈ (0,1], and let f : R+ → R0 be
a (m,h1,h2)–HA–convex function, such that f ∈ L1 (R+).
Then for 0 < a < b, we have

ab

b−a

∫ b

a

f (x)

x2
dx ≤ min

{

f (a)

s1 +1
+

m f (mb)

s2 +1
,

f (b)

s1 +1
+

m f (ma)

s2 +1

}

.

Theorem 10. Let hi : [0,1] → R0, hi 6≡ 0, for i = 1,2,
m ∈ (0,1] and f : R+ → R0 be a (m,h1,h2)−HA–convex
function on R+ such that f ∈ L1([a,b]) and
h1,h2 ∈ L1([0,1]), for 0 < a < b, then

f

(

ab

a+b

)

(18)

≤ h1

(

1

2

)

ab

b−a

∫ b

a

f (x)

x2
dx+mh2

(

1

2

)

ab

b−a

∫ b

a

f (mx)

x2
dx

≤ min

{[

h1

(

1

2

)

f (b)+mh2

(

1

2

)

f (ma)

]

∫ 1

0
h1(t)dt

+m

[

h1

(

1

2

)

f (ma)+mh2

(

1

2

)

f (m2b)

]

∫ 1

0
h2(t)dt,

[

h1

(

1

2

)

f (a)+mh2

(

1

2

)

f (mb)

]

∫ 1

0
h1(t)dt

+m

[

h1

(

1

2

)

f (mb)+mh2

(

1

2

)

f (m2a)

]

∫ 1

0
h2(t)dt

}

.

Proof. From the (m,h1,h2)–HA convexity of f , we obtain

f

(

2ab

a+b

)

≤ h1

(

1

2

)

f

(

ab

ta+(1− t)b

)

+mh2

(

1

2

)

f

(

abm

tb+(1− t)a

)

≤ h1

(

1

2

)

[h1(t) f (b)+mh2(1− t) f (ma)] (19)

+mh2

(

1

2

)

[

h1(t) f (ma)+mh2(1− t) f (m2b)
]

.

On the other hand,

f

(

2ab

a+b

)

≤ h1

(

1

2

)

f

(

ab

tb+(1− t)a

)

+mh2

(

1

2

)

f

(

abm

ta+(1− t)b

)

≤ h1

(

1

2

)

[h1(t) f (a)+mh2(1− t) f (mb)] (20)

+mh2

(

1

2

)

[

h1(t) f (mb)+mh2(1− t) f (m2a)
]

.

Integrating on both sides of the above inequalities
(19) with respect to t ∈ [0,1] and making changes of
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appropriate variables lead to

f

(

2ab

a+b

)

(21)

≤ h1

(

1

2

)

ab

b−a

∫ b

a

f (x)

x2
dx+mh2

(

1

2

)

ab

b−a

∫ b

a

f (mx)

x2
dx

≤
[

h1

(

1

2

)

f (b)+mh2

(

1

2

)

f (ma)

]

∫ 1

0
h1(t)dt

+

[

h1

(

1

2

)

f (ma)+mh2

(

1

2

)

f (m2b)

]

∫ 1

0
h2(t)dt.

Similarly, integrating on both sides of the above
inequalities (20), we get

f

(

2ab

a+b

)

(22)

≤ h1

(

1

2

)

ab

b−a

∫ b

a

f (x)

x2
dx+mh2

(

1

2

)

ab

b−a

∫ b

a

f (mx)

x2
dx

≤
[

h1

(

1

2

)

f (a)+mh2

(

1

2

)

f (mb)

]

∫ 1

0
h1(t)dt

+

[

h1

(

1

2

)

f (mb)+mh2

(

1

2

)

f (m2a)

]

∫ 1

0
h2(t)dt.

Therefore, from (21) and (22), we obtain

f

(

ab

a+b

)

≤ h1

(

1

2

)

ab

b−a

∫ b

a

f (x)

x2
dx+mh2

(

1

2

)

ab

b−a

∫ b

a

f (mx)

x2
dx

≤ min

{[

h1

(

1

2

)

f (b)+mh2

(

1

2

)

f (ma)

]

∫ 1

0
h1(t)dt

+m

[

h1

(

1

2

)

f (ma)+mh2

(

1

2

)

f (m2b)

]

∫ 1

0
h2(t)dt,

[

h1

(

1

2

)

f (a)+mh2

(

1

2

)

f (mb)

]

∫ 1

0
h1(t)dt

+m

[

h1

(

1

2

)

f (mb)+mh2

(

1

2

)

f (m2a)

]

∫ 1

0
h2(t)dt

}

.

Thus the demonstration is completed.

Corollary 4. If h1(t) = h2(t) = h(t), with h 6≡ 0, for all

t ∈ [0,1], from 19, we get the inequality (7).

Proof. Let h1(t) = h2(t) = h(t) for all t ∈ [0,1] and
applying the Theorem 10 and we get the desired result.

Corollary 5. Let h1(t) = ts1 , h2(t) = ts2 , for all t ∈ [0,1],
s1,s2 ∈ (−1,1] and m ∈ (0,1], and let f : R+ → R0 be
a (m,h1,h2)–HA–convex function, such that f ∈ L1 (R+).
Then for 0 < a < b, we have

ab

b−a

∫ b

a

f (x)

x2
dx ≤ min

{

f (a)

s1 +1
+

m f (mb)

s2 +1
,

f (b)

s1 +1
+

m f (ma)

s2 +1

}

.

Theorem 11. Let hi : [0,1]→R0, hi 6≡ 0, for i = 1,2, m ∈
(0,1] and f ,g : R+ → R0 be a (m,h1,h2)−HA–convex
function on R+ such that f g ∈ L1([a,b]), for 0 < a < b,
then

a−b

ab
f

(

2ab

a+b

)

g

(

2ab

a+b

)

(17)

≤
[

h1

(

1

2

)]2 ∫ b

a

f (x)g(x)

x2
dx+mh1

(

1

2

)

h2

(

1

2

)

∫ b

a

f (x)g(mx)

x2
dx

+mh1

(

1

2

)

h2

(

1

2

)

ab

b−a

∫ b

a

f (mx)g(x)

x2
dx

+

[

h2

(

1

2

)]2 ∫ b

a

f (mx)g(mx)

x2
dx.

Proof. Using the (m,h1,h2)−HA–convexity of f and g on
R+, we obtain

f

(

2ab

a+b

)

g

(

2ab

a+b

)

≤
[

h1

(

1

2

)

f

(

abm

ta+(1− t)b

)

+mh2

(

1

2

)

f

(

abm

tb+(1− t)a

)]

×
[

h1

(

1

2

)

g

(

ab

ta+(1− t)b

)

+mh2

(

1

2

)

g

(

ab

tb+(1− t)a

)]

=

[

h1

(

1

2

)]2

f

(

ab

ta+(1− t)b

)

g

(

ab

ta+(1− t)b

)

+mh1

(

1

2

)

h2

(

1

2

)

f

(

ab

ta+(1− t)b

)

g

(

abm

tb+(1− t)a

)

+mh1

(

1

2

)

h2

(

1

2

)

f

(

abm

tb+(1− t)a

)

g

(

ab

ta+(1− t)b

)

+

[

mh2

(

1

2

)]2

f

(

abm

tb+(1− t)a

)

g

(

abm

tb+(1− t)a

)

.

Integrating the above inequality on [0,1] with respect to
t and making changes of appropriate variables, we obtain
the inequality (17). The Theorem 11 is thus proved.

Theorem 12. Let hi : [0,1] → R0, hi 6≡ 0, for i = 1,2,
m1,m2 ∈ (0,1] and f ,g : R+ → R0. If f is a
(m1,h1,h2) − HA–convex function, g is a
(m2,h1,h2) − HA–convex function such that

f g ∈ L1 (R+), and h2
1,h

2
2 ∈ L1([0,1]) for 0 < a < b, then

ab

b−a

∫ b

a

f (x)g(x)

x2
dx (18)

≤ f (b)g(b)

∫ 1

0
[h1(t)]

2
dt +m1m2 f (m1a)g(m2a)

∫ 1

0
[h2(t)]

2
dt

+[m2 f (b)g(m2a)+m1 f (m1a)g(b)]
∫ 1

0
h1(t)h2(1− t)dt.
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Proof. Let x =
ab

ta+(1− t)b
for t ∈ [0,1]. By the

(m,h1,h2)–HA convexity of f and g, we have

ab

b− a

∫ b

a

f (x)g(x)

x2
dx

=

∫ 1

0
f

(

ab

ta+(1− t)b

)

g

(

ab

ta+(1− t)b

)

dt

≤
∫ 1

0
[h1(t) f (b)+m1h2(1− t) f (m1a)]

× [h1(t)g(b)+m2h2(1− t)g(m2a)]dt

= f (b)g(b)

∫ 1

0
[h1(t)]

2
dt

+m1m2 f (m1a)g(m2a)
∫ 1

0
[h2(t)]

2
dt

+[m2 f (b)g(m2a)+m1 f (m1a)g(b)]

∫ 1

0
h1(t)h2(1− t)dt.

Thus the proof of Theorem 12 is complete.

Corollary 6. Under the conditions of Theorem 12, if

h1(t) = h2(t) = h(t) for all t ∈ [0,1], then we obtain the

inequality (8).

3 Application for special means

Let us recall the following special means of two numbers
a,b ∈R (see [8]):

1. The geometric mean

G(a,b) :=
√

ab.

2. The harmonic mean

H(a,b) :=
2ab

a+b
.

3. The p–logarithmic mean

Lp(a,b) :=

[

bp+1 −ap+1

(p+1)(b−a)

]

1
p

,

with p ∈ R\ {0} and a < b.

The following theorem is a result in which we present
the relationship between the means defined above.

Theorem 13. Let 0 < a < b. Then we have the following
inequality

2p1+p2 G2(ap,bp)H−p(a,b)≤
[

2p2 mp−1 +2p1

]

Lp
p(a,b) (19)

with p ≥ 1, m ∈ (0,1] and p1, p2 ∈ (0,1).

Proof. By the example 1, we have f : R+ → R defined

by f (x) =
1

xp
, for p ≥ 1 the function is (m,h1,h2)–HA–

convex, where h1(t) = t p1 , h2(t) = t p2 with m ∈ (0,1] and
p1, p2 ∈ (0,1) and using the Theorem 8, we get

f

(

2ab

a+b

)

≤ abh1(1/2)

b−a

∫ b

a

f (x)

x2
dx (20)

+
abmh2(1/2)

b−a

∫ b

a

f (mx)

x2
dx. (21)

Solving each of expressions present in the above
inequalities,

f

(

2ab

a+b

)

=

(

2ab

a+b

)−p

= H−p(a,b). (22)

h1

(

1

2

)

=
1

2p1
and h2

(

1

2

)

=
1

2p2
(23)

ab

b−a

∫ b

a

f (x)

x2
dx =

ab

b−a

∫ b

a

1

xp+2
dx (24)

=
ab

−(b−a)(p+1)

[

b−(p+1)−a−(p+1)
]

=
ab

(b−a)(p+1)

[

1

ap+1
− 1

bp+1

]

=
ab

(b−a)(p+1)

bp+1 −ap+1

ap+1bp+1

=
1

apbp

bp+1 −ap+1

(p+1)(b−a)

=
1

G2(ap,bp)







[

bp+1 −ap+1

(p+1)(b−a)

]

1
p







p

=
1

G2(ap,bp)
Lp

p(a,b).

abm

b−a

∫ b

a

f (mx)

x2
dx =

ab

b−a

∫ b

a

1

mpxp+2
dx (25)

=
ab

−(b−a)(p+1)mp−1

[

b−(p+1)−a−(p+1)
]

=
ab

(b−a)(p+1)mp−1

[

1

ap+1
− 1

bp+1

]

=
ab

(b−a)(p+1)mp−1

bp+1 −ap+1

ap+1bp+1

=
1

apbpmp−1

bp+1 −ap+1

(p+1)(b−a)

=
1

G2(ap,bp)mp−1







[

bp+1 −ap+1

(p+1)(b−a)

]

1
p







p

=
1

mp−1G2(ap,bp)
Lp

p(a,b).
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Substituting (22)–(25) in (20), we get

H−p(a,b)

≤ 1

2p1

1

G2(ap,bp)
Lp

p(a,b)+
1

2p2

1

mp−1G2(ap,bp)
Lp

p(a,b)

=
2p2mp−1 + 2p1

2p1+p2mp−1

1

G2(ap,bp)
Lp

p(a,b)

This implies,

2p1+p2mp−1G2(ap,bp)H−p(a,b) ≤
[

2p2mp−1 + 2p1
]

Lp
p(a,b)

Therefore we get the inequality (19).

4 Conclusion

The principal contribution of this paper has been the
introduction of a new class of functions of generalized
convexity, we present some examples and properties. We
have shown that these class contain some previously
known classes as special cases as well as
Hermite–Hadamard’s inequalities type for these functions
and applied these inequalities to special means. We
expect that the ideas and techniques used in this paper
may inspire interested readers to explore some new
applications of these newly introduced functions in
various fields of pure and applied sciences.
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