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Abstract: In this manuscript, we have analyzed the complex Lorenz and complex Duffing systems of fractional order of different

dimension. Here, we have blended the ideas of reduced order synchronization with dislocated synchronization schemes. Using

stability theory of Lyapunov, sufficient conditions have been derived for accomplishing reduced order hybrid dislocated

synchronization. Numerical simulations have been performed in MATLAB to validate the efficacy of the method proposed. The results

showed the usefulness and suitability of the method to achieve the synchronization.
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1 Introduction

Chaos synchronization [1] is a process of having two or more chaotic systems( identical or non-identical ) that follow the
same path. The dynamics of one system is locked into the other and thereby causes their synchronization in the sense that
the state of one asymptotically approach to the other. Until 1990, synchronization between chaotic systems was
considered impractical because of the chaotic nature of the individual systems. However it was because of the pioneering
work of Pecora and Caroll [2], the synchronization between chaotic systems came into existence and an interesting area
of research emerged. Chaos is the inherent property of nonlinear systems and has various applications such as
viscoelasticity [3], dielectric polarization, electromagnetic waves [4], diffusion, signal processing, mathematical biology
and many other disciplines. The nonlinear systems which show such type of behaviour are known as chaotic systems.
Various methods are used to determine the chaotic behaviour of a system, some of them are by plotting phase portrait,
poincare section or by finding the lyapunov exponents. Various studies were conducted in the last two decades. Different
methods have also been designed for synchronization of chaotic systems such as adaptive feedback control, optimal
control, linear and nonlinear feedback synchronization [5], active control [6], sliding mode control [7], adaptive sliding
mode technique [8], time delay feedback approach [9], tracking control [10], backstepping design method, etc. Due to
the increased interest in chaos synchronization various kinds of synchronization schemes, such as lag synchronization
[11], complete synchronization [12], phase and anti-phase synchronization [13], anti-synchronization [14], hybrid
synchronization, projective synchronization [15], hybrid funchtion projective synchronization [16], generalised
synchronization [17] etc. have been proposed.

Many attempts have been made to synchronize similar systems with different techniques. Moreover the non-identical
systems have also been synchronized by many researchers. In this manuscript we have tried to synchronize the two
non-identical system of fractional order. We have also introduced dislocated synchronization due to which the number of
choices of switching increases and enhances the analysis of our study. In dislocated [18], the slave system states are
synchronized with the desired state of the master system. In the process of hybrid synchronization, coexistence of
complete and anti-synchronization occurs. This co-existence of synchronization is also referred to as mixed
synchronization. We believe that it is the first kind of study addressing the problem of fractional order dislocated hybrid
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synchronization of chaotic systems.

Researchers have done a lot of work on reduced order synchronization. The study of synchronization of chaotic
systems of different orders is very significant from the view of usable application in real life problems and practical
application [19]. Dislocated synchronization was proposed to increase the security of transmission via synchronization
based on active control mechanism. In dislocated synchronization, different states of the slave system are synchronized
with the desired state of the master system in a different manner. Due to the number of choices of switching,
unpredictability increases and enhances the security in secure communication. In the process of hybrid synchronization,
concurrence of complete and anti-synchronization occurs. This co-existence would be very fruitful in secure
communication. During our studies, we have synchronized the 3D complex Lorenz system and 2D complex Duffing
system. Based on the stability theory of Lyapunov, sufficient conditions are obtained to achieve the desired
synchronization among two non-identical chaotic systems. Numerical simulations have been performed using MATLAB
to validate the suitability of the proposed method. Results obtained showed the feasibility and effectiveness of the used
technique.

2 Preliminaries

2.1 Definition:

As various definitions have been available for fractional order derivative, we have considered Caputo’s definition:

aDα
x g(x) =

1

Γ (n−α)

∫ x

a

g(n)(τ)dτ

(x− τ)α−n+1

where n is integer, α lis real number and (n− 1)≤ α < n and Γ (.) are the Gamma function.

2.2 Problem formulation

Let us consider a complex fractional order chaotic master system as:

dqX(t)

dtq
= h(X , t) (1)

and a complex fractional order chaotic slave system as:

dqY (t)

dtq
= f (Y, t)+V (2)

where X = [X′
1,X

′
2, ......,X

′
n]

T ∈ Cn and

Y = [Y′
1,Y

′
2, .......,Y

′
m]

T ∈ Cm

are the state vectors and

X′
i = xp + ixq,Y

′
i = yr + iys

where xp,xq,yr,ys are real variables.

h : Cn → Cn ,and
f : Cm → Cm are non linear function.
V = (v1,v2, ......vm) ∈ Cm is the controller to be programmed. When m < n( f 6= g), the synchronization is accomplished
in the reduced order. In particular, the problem of reduced order is synchronizing a response system with the projection
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Fig 1:lThe chaotic attractors of complex fractional ordered Lorenz chaotic system

of master system. Consequently, we can split the master system into two parts. The projection part is

ẋ′p = hp(x
′) (3)

where x′p = (x′p1,x
′
p2, ......x

′
pm) ∈Cn and hp : Cn → Cm. Remaining part of the system is

ẋ′r = hr(x
′) (4)

where x′r ∈Cl
,hr : Cn →Cl and orders m,l satisfy m+l=n.

Between the system (3) and (4), the error states can be defined as ei j = y j ± xpi, where i,j=1,2,.....,m.
Definition: The master system (1) and the slave system (2) are said to be in reduced order dislocated hybrid
synchronization, if there exists suitable controller V = (v1,v2, ......,vm) such that

limt→∞ei j = limt→∞[y j ± xpi] = 0 (5)

ı, j = 1,2, .......,m and i 6= j for at least one state variable.
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3 System description

3.1 Master system

The fractional order complex Lorenz system is given by

dqx′1
dtq = a1(x

′
2 − x′1)

dqx′2
dtq = a2x′1 − x′2 − x′1x′3

dqx′3
dtq = 1

2
(x̄′1x′2 + x′1(x̄

′
2))− a3x′3

where x′ = [x′1,x
′
2,x

′
3]

T is the state variable vector,x′1 = x1 + ix2 and x′2 = x3 + ix4 are the complex variables, while x′3 = x5

is the real variable and a1,a2,a3 are parameters.
Resolving into imaginary and real parts, we get

dqx1

dtq
= a1(x3 − x1)

dqx2

dtq
= a1(x4 − x2)

dqx3

dtq
= a2x1 − x3 − x1x5 (6)

dqx4

dtq
= a2x2 − x4 − x2x5

dqx5

dtq
= x1x3 + x2x4 − a3x5

For the values of parameters as a1 = 10,a2 = 180,a3 = 1, x(0) = [2,3,5,6,9]T as initial condition and at q = 0.95, the
system is chaotic .

3.2 Slave System:

The fractional order complex Duffing system is given by
dqy′1
dtq = y′2

dqy′2
dtq = y′1 −αy′2 − y′31 + δcos(ωt)

where y′ = [y′1,y
′
2]

T is the state variable and α,δ ,ω are parameters.

Resolving into the imaginary and real parts, we get

dqy1

dtq
= y3

dqy2

dtq
= y4

dqy3

dtq
= y1 −αy3 − y3

1 + 3y1y2
2 + δcos(ωt)

dqy4

dtq
= y2 −αy4 + y3

2 − 3y2
1y2

(7)

For the values of parameters as α = 1,δ = 8,ω = 0.5, initial conditions y(0) = [−1,0,−1,1]T and for q= 0.95, the system
is chaotic.

c© 2021 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 7, No. 2, 117-125 (2021) / www.naturalspublishing.com/Journals.asp 121

−10

−5

0

5

10

−0.5

0

0.5
−50

0

50

y
1
(t)y

2
(t)

y
3
(t

)

(a)

−10

−5

0

5

10

−50

0

50
−3

−2

−1

0

1

y
1
(t)y

3
(t)

y
4
(t

)

(b)

−10 −5 0 5 10
−50

−40

−30

−20

−10

0

10

20

30

40

50

y
1
(t)

y
3
(t

)

(c)

Fig 2: lThe chaotic attractors of complex fractional ordered Duffing chaotic system

4 Reduced order hybrid dislocated synchronization

Here, we study the reduced order hybrid dislocated synchronization between the complex Lorenz system (master) and
Complex Duffing system (slave). To attain the intended synchronization, we take the projection of the master system
and synchronize it with the slave system. For doing so,there are various possibilities of combinations. Here, we do the
simulations for one arbitrarily selected hybrid combination.The outcome of other possibilities of other hybrid possibilities
are self explanatory.
The projection of the Lorenz system is

dqx1

dtq
= a1(x3 − x1)

dqx2

dtq
= a1(x4 − x2)

dqx3

dtq
= a2x1 − x3 − x1x5

dqx4

dtq
= a2x2 − x4 − x2x5

(8)
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Then, the corresponding slave system is given by

dqy1

dtq
= y3 + v1

dqy2

dtq
= y4 + v2

dqy3

dtq
= y1 −αy3 − y3

1 + 3y1y2
2 + δcos(ωt)+ v3

dqy4

dtq
= y2 −αy4 + y3

2 − 3y2
1y2 + v4

(9)

where v1,v2,v3,v4 are the controllers to be constructed in such a way that system (8) and system (9) are
synchronized. As there are various possibilities of combination, we choose the states that are to be synchronised for any
random combination.
To examine the hybrid dislocated synchronization between these systems, we define the error states as:

E1 = y2 − x1

E2 = y3 + x4

E3 = y1 − x3

E4 = y4 + x2

(10)

The error dynamics is obtained as:

dqE1

dtq
= y4 − a1x3 − a1E1 + a1y2 + v2

dqE2

dtq
= y1 −αy3 − y3

1 + 3y1y2
2 + δcos(ωt)+ a2x2 − x2x5 + y3 −E2 + v3

dqE3

dtq
= y3 − a2x1 + y1 + x1x5 −E3 + v1

dqE4

dtq
= y2 + y3

2 − 3y2
1y2 + a1x4 − a1x2 +αx2 −αE4 + v4

(11)

Theorem: If the control functions v1,v2,v3,v4 are designed as follows:

v1 =−y3 + a2x1 − x1x5 − y1 +w1

v2 =−y4 + a1x3 − a1y2 +w2

v3 =−y1 +αy3 + y3
1 − 3y1y2

2 − δcos(ωt)− a2x2 + x2x5 − y3 +w3

v4 =−y2 − y3
2 + 3y2

1y2 − a1x4 + a1x2 −αx2 +w4

(12)

where w1,w2,w3,w4 are functions of the error states E1,E2,E3,E4, then the drive system (8) and the slave system (9) will
accomplish the reduced order complete hybrid dislocated synchronization.

Proof: Using the controllers defined by (12), (11)can be given by

dqE1

dtq
=−a1E1 +w2

dqE2

dtq
=−E2 +w3

dqE3

dtq
=−E3 +w1

dqE4

dtq
=−αE4 +w4

(13)

w1,w2,w3,w4 are chosen in such a way that (13) becomes stable. Since this feedback stabilizes the system, the errors
E1,E2,E3,E4 will asymptotically converge to zero. Let us choose
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Fig 3: The synchronized trajectories of the master and slave systems
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= A







E1

E2

E3

E4






where A is a 4×4 constant matrix whose elements are selected such thatw1,w2,w3,w4 make(13) stable.

There are various possibilities of choosing A . We choose a particular form of given matrix A given

by







0 0 −1 0
(a1 − 1) 0 0 0

0 −1 0 0
0 0 0 −1






. Thus,







w1

w2

w3

w4






=







−E3

(a1 − 1)E1

−E2

−E4






the error system(13) with these values of w1,w2,w3,w4

becomes

dqE1

dtq
=−E1

dqE2

dtq
=−2E2

dqE3

dtq
=−2E3

dqE4

dtq
=−(α + 1)E4

(14)
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Fig 4: The simultaneous error plot

To display that the systems (13) and (14) are stable under this choice of w1,w2,w3,w4, we design the Lyapunov
function V (t), as follows:

V (t) =
1

2
(k1E2

1 + k2E2
2 + k3E2

3 + k4E2
4) (15)

where k1,k2,k3andk4 are positive numbers. The function V (t) is positive definite. The time derivative of V is given by

dV

dt
= k1E1Ė1 + k2E2Ė2 + k3E3Ė3 + k4E4Ė4

= k1E1(−E1)+−k2E2(−2E2)+ k3E3(−2E3)+ k4E4(−(α + 1)E4)

=−k1E2
1 − 2k2E2

2 − 2k3E2
3 − (α + 1)k4E2

4 < 0

Here, we have positive definite and negative definite function V and V̇ respectively.By stability theorem of Lyapunov,
(13) becomes stable. Similarly, zero solution of (14) is asymptotically stable. Thus systems (8) and (9) accomplish the
desired synchronization, respectively.

5 Numerical simulations and discussions

Simulations have been carried out making use of MATLAB. The parameters for Lorenz and Duffing system are taken
as (a1 = 10,a2 = 180,a3 = 1) and (α = 1,δ = 8,ω = .5). The initial values for drive and response system are taken as
(x1(0) = 2,x2(0) = 3,x3(0) = 5,x4(0) = 6,x5(0) = 9) and (y1(0) =−1,y2(0) = 0,y3(0) =−1,y4(0) = 1).
lFigures 1 and 2 display the chaotic attractors of complex fractional Lorenz and Duffing system, respectively.Fig. 3 shows
the synchronized trajectories of the master and slave systems, i.e. Fig. 3 (a) and Fig. 3 (c) display complete synchronization
and Fig. 3 (b) and Fig. 3 (d) display anti-synchronization. Fig. 4 displays the simultaneous error plot and the errors
converging to zero which imply the accomplishment of synchronization.

6 Conclusion

In this article, we have introduced the reduced order dislocated synchronization method. Here, the different state
variables of the driven system(response) were synchronized with the desired state variables of projection of the driving
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system(master). This type of synchronization scheme can be used to enhance the security of information transmission.
Due to the possibility of several synchronization combinations, it would be challenging to the hackers to interrupt or
track the combination in which synchronization would occur. The controllers have been designed successfully to
accomplish reduced order dislocated complex fractional order hybrid synchronization between the Lorenz(drive) and
Duffing system(slave). Numerical simulations have been performed to validate the scheme. This type of synchronization
scheme can be applied to other chaotic systems, as well.
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