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Abstract: In this article, we develop a numerical technique for solving HIV mathematical model of complex order with drug resistance
during the therapy treatment, where the derivative is defined in Caputo sense. Two numerical methods are presented to numerically
investigate the complex order fractional HIV model. The proposed numerical methods are the non-standard finite difference method
and the generalized Euler method. Comparative studies and numerical simulations are presented to validate the theoretical results.
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1 Introduction, motivation and preliminaries

The complex order fractional derivative can be considered as a generalization of the integer order derivative and
fractional order derivative [1] when the imaginary part of complex order equals to zero A new model for HIV infection is
investigated, in [2] where the derivatives are defined as complex order fractional derivatives.

The human immunodeficiency virus (HIV) is a retrovirus that declines the restraint of the immune system. The HIV
power results virus in its wide replication during the acute stage. The next band of the HIV infection is the chronic stage.
For more details on the model problem see [3], [4].

The five major medicine classes, that damage HIV/AIDS are the protease inhibitors (PI), the multi-drug inhibitors
(MI), the fusion/entry inhibitors (FEI), and the reverse transcriptase inhibitors (RTI), integrate inhibitors (II).

The nonstandard finite difference method (NSFDM) is proposed by Mickens ([5]-[12]). In addition, the NSFDM is
used to solve fractional order systems. For more details, see [13]- [16]).

The main contribution of this work is to develop an efficient numerical algorithm for approximating the solutions of
the fractional complex order model which is given in [2]. Comparative studies between NSFDM and the generalized Euler
method (GEM) are given. Simulations for the fractional complex order model are given.

The rest of this paper is structured as follows: In Section 2, fractional complex order definitions and NSFDM are
given. In Section 3, the HIV fractional complex order model is presented. In Section 4, some properties of the solution
of the proposed model are addressed. In Section 5, the NSFDM is constructed for the proposed model, the positivity and
the boundedness are proved. The applicability and efficiency of NSFDM are given in Section 6. Finally, conclusion is
presented in Section 7.
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2 Mathematical tools

In this section, we recall some important definitions of the complex calculs and the NSFDM which are used in the
remaining section of this paper

2.1 Complex order calculus

Consider the following fractional complex order differential equation:

ODif(t) =y(t,f(1), f(0)=fo, z€C. (1)

There are three definitions for the derivative of the complex order namely Griinwald—Letinkov’s definition (GL), the
Riemann-Liouville and the Caputo definition. The Caputo derivative of complex order is given as follows[17] :

d%{y)v lf € N’
cpi [Re(z WchRe f(t), Re(z) eRT and z¢ N,

; Spi~ 'df[ , if Re(z) =0 and 3(z) #0,
OCsz(t): 4 f( ), if z=0, )

e Jo(t=5) "1 (s)ds, if Re(2),3(2) € R,
JE S W), if Re(o) €

The Stirling asymptotic formula of gamma function for z € C is given as follows [18]:

r@) = enie 4o 1+00), )] <mild - = 3)

The Griinwald—Letinkov’s complex order derivatives is given as follows [17] :

BV ) s
oD ——=

dt h—0+ h?

; “4)
where

—LE ek z—keC\Z,

z (+l)£“( —k+1)
— DAL (k
(k) = 1_7((“1))1_(( kz+1 if z€eZ~ and kEZg,

0, if (keZ” or k—zeN) and z¢Z~.

We extend the generalized Euler method (GEM) to complex fractional order z € C when #;,1 = t; + h and using (3)
as follows :

Z

L(z+1) ©)

Y(tjr1) = y(t;) + f(t,5(t;))

2.2 NSFDM

The NSFDM can preserve the properties of the exact solution of the studies ordinary differential equations (ODEs) or
partial differential equations (PDEs). We point out here that using Euler method to approximate %, we will replace

y(ﬂrt’}l; Y1) by y(r+¢h (),Sy(l) , where ¢ (h) is a continuous function,

¢(h) =h+O(h*). (6)

Also, the nonlinear terms are replaced as in the following example:

yx — {ynxn+1a}
Yn+1Xn-
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3 Complex order HIV model

The fractional complex order model is given as follow:

1 . .
~(§DFP 1 SDY YT (1) = — (ke (1 — )T (0)Vir(e) + ks (1 —

2

SEDE P LEDEPYT0) = (1 —wks(1 i — ST)T (V1))
SEDEP L SDEP Y1) = —(Va(0) ~ NS(1 ~ my)T(0),

SEDEP L EDEPYV,(1) = (~8T;(0) + kel ~ )T (T, (e) + uky(1 —
SEDEP LEDEPIWL(0) = (Vi) ~ Ned (1 — )T,

where, the uninfected target cells 7 is given as follows [19]:

file) = r(l—?) (dT = 2),
f(T) =9 o) =r(1 = F7575) = (dT = ),
fo(t) = =(aT - 1).

)T(0)Vs(t) = f(T)),

Ws(O)T (1)),
(M

(®)

The definitions of all variables and parameters are given in Tables 1 and 2 respectively. For more details for this model

see [2]. The initial conditions are given as follows:

Table 1: HIV model variables [2].

Variable Definition
Vs Infectious viruses of drug-sensitive
T Infected CD4™ T drug-sensitive cells
T, Infected CD4™" T drug-resistant cells
T Uninfected CD4™" T populations cells
Vi Infectious viruses of drug-resistant
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Table 2: HIV model parameters [2]
Parameter Value Definition

A 75 The production rate of T cells .
d 0.1 The death rate of 7" .
r 0.03 The rate of proliferate of T .

Tnax 1500 T'carrying capacity.

kg 24%x10°° The rate of infected by V; .

ky 2x10°° The rate of infected by V. .
u 3x107° The rate of proliferate of 7' (in absence of the infected T cells or virus ).
) 1 Death of infected cell.

Ny 4800 Bursting sizes of drug-sensitive strain.

N, 4000 Bursting sizes of drug-resistant strain.
c 23 The rate of the cleared the viruses.

ny; 0.4 The rate efficacy of RTI for wild type.

n 0.2 The rate efficacy of RTI for mutants.

ny, 0.1 The efficacy of PI for mutants.

n, 0.1 PI efficacy of wildtype strain.

4 Properties of the solutions of the proposed model

4.1 Stability analysis

The disease-free equilibrium is defined as the point at which no disease is present in the population(7, = 0), which is
represented in the model as

1 . .
~(§pfP 4§t PyT (1) =0,

The disease free equilibrium point of system (7) is

2

SEDE P 4§ DE Py =0,

L6045 DE P yv0) =0,

SEDEP 46 DI T (1) =0,

26D 1§ DI, (0) =0,
£ = (dl%:;,o,o,o,oy

The Jacobian matrix J for this system evaluated at the equilibrium point is:

—d — () — ks (1= m )V —kr (1= )Vy 0 —ks(1—n})T 0 —kr(1 =T
(1 —u)ks (1 —nf;)Vs - (1 —uks (1 —n3,)T 0 0
J= 0 Ned(1—n3) —c 0 0
uks (1 — 3 Vs +kp (1 —ny, Vy 0 uks(1—n3 )T -8 kr(1=ny, )T
0 0 0 N6 (1 —njp) —c
such that the Jacobian matrix evaluated at the free equilibrium point is
d— L 0 k(1 s\ _Atr 0 k(1 —n" Atr
Toar s(L=ny) 77 (1 =n) g
0 —5 (1= k(1 — ) 7 0
Tmax
J(&1) 0 NS(1-n) —c 0 0 :
0 0 uk,(lfnj,)di”:f *6 kr(lfn:[)di;r'r
0 0 0 C O ONS(1-n) —c

(C))

10

an
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S | 0 —ky(1 —nf.,)dfrl 0 k(1 711::,)(”’1;{
0 5 (1—uk(1—n) 2o 0 0
(J(&)—nl)= 0 N,S(1—n) —e=mg ™ 0 0 . (12)
0 0 uks(1—n5,) dj;:’.u - -5-n  k(1-n) dfr,,{m
0 0 0 N,5(17n]’,) —c—1n
The characteristic equation is given as follows:
N’ +53.1n* +820.21381> 4+ 3101.61951> + 4381.30441 + 2082.0898 = 0. (13)

Then the eigenvalues are given by,

Ny = —0.0500, mp =—11.5973, n3=-0.4027, ns=—11.6051, ns5 = —0.3949. So, the free equilibrium point for

the model is asymptotically stable when 1y, 12, 113, 4 and 15 < 0. If all the eigenvalues 7; of the Jacobian matrix J = 3—5

otif)|n
2

calculated at the equilibrium point satisfy |arg(n;)| > I ,and 0 < |oe+if| < 1 the equilibrium point is locally

asymptotically stable.

5 Discretization scheme

Let us consider,

ty =nAt, n=0,1,2,3,...N,, h:=At=-"L4

Where N, is a natural number, the final time is #;,,; and & represents the step size.
Numerical values of T,T; ,V;,T, and V, at t,, are denoted by 7,,,T,,Vsn, T and V,,,. Moreover, the Griinwald—Letinkov’s
approach for Caputo operator is given as follows:

n+1
WiXn+1—i — Gn4+1X0), (14)
=

€ a£ip B 1
0P b= oy (et

where

wi=(—1)"" (‘“?iﬁ) wi = a+ip,

1

i~ (a£ip)

== i=1,23,....,N,+1.
qi F(]—((Xiiﬁ))’ l 12,3,y Ny +

Using 14) we can write (7) as follows
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0.5 ntl 0.5 n+l
@yed Tt = Lwilui=anaT(O) + com ey (T = Y wiThir-i = G T(0))

T, '
=A- dT 1+ }"(1 - n—H) - ks(l - n;[)VS'Tn+l - kr(l - n:[)VrTnJrla

max

0.5 ntl 0.5 n+1
W I, sz Sn+1—i %HT(O))JFW Snil ZW T, i — anT(O))

= (1 _u)ks(l _nrls)VsTrH»l 5Ts,,+|a
0.5 ntl 05 n+l

(¢(h))“+iﬁ( Sn+1 ;Wz sni1—i — dn+1Vs (0))+W( Sl ZW Vsriri — dns1Vs(0))

:Ns5< — )T,

Sn+-1
0.5 n4l 0.5 n+1 .
((P(h))OhL’ﬁ ( Tnt1 Zwl Tn1—i qn+lT(0))+ (¢7(h))0tflﬁ rn+l ZW Fagl—i qth]Tr(O))

- CVYnJrl )

= Mks(] - nf‘t)VsTrH»l +kr( - nﬂ)VrTrH»l - 6tr,,+1a

0.5 ntl 0.5 n+1
(¢(h))a+iﬁ( T'nt1 sz Fpgl—i —qnt1Vy (0))+W( Tl ZW Vrn+| L qn+1V (O))

:Nr6(1 - rl)T"n+1 7CVrn+l'

as)

Since each of these equations is linear in Ty, Ty, . |, Vs, 1> Tr,,, and V;, .. Then some calculations give us the following

explicit expressions

1 052 1Wl n+1—i

Ty = (A4r+
G g A+ e k(=) k(1= nl)V, (9 ()P

0.5¢u1T(0) 05X Wil 0.5¢%,,T(0)

¢(h)a+iﬁ d)(h)a*iﬁ d)(h)a*iﬁ )a
1 0.5y ' wit,,, , 0.5 wiT,
7—;‘ 41 05 ((] —M)ks(l —nsl)VsTn+1 + L P ntl—i + nt1-i
n 5 71 lﬁ - lﬁ
0w T e T (¢(h)) ¢(h)
0.5g,+175(0) + O-Sanr[Tv(O))
(@ ()b (¢(h))*—
1 05" hwiV,,, ,  05Ylwiv,
Viwi1 = 03 03 (Ns6(1 —n;)TS ot s ;;r i L nl—i
n n i IB
(o(h ))a+zﬁ + (9 (h))*— iB +c (‘P(h)) (¢(h))
O'Sqn+1VS(O) O-SCIVH»IVS(O))
(@(m)*HP (g(h)) @B
! s r 0. SZnJrl WiV
Ty = 05 05 S (uks (1 =3 ) VsTy1 + ke (1 =y ) Vi Tpr + W
(@(n)*+P " (g(h)*~iP
0STN WiThyis , 056111T(0) | 0-5¢,.,T5(0)
(¢(h))*—P o(h)la+ip)  o(h)la—ip)”
1 0.5 wiVs,,,  0.5Y wiv,
Vrn+l = (Nr5(1 _n;l)TrnJr] + Zl ! :+lﬁn+l—r Zl | ‘:: lﬁ"+l l+
o(h )a+zﬁ + o(h )a o(e—iB +c (P( ) ¢( )
0561,,+]Vr(0) 05q”+|Vr(0)) (16)
o) a—iB)  ¢(h)la+if)”
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5.1 Boundedness and positivity

This subsection analyzes some properties of the proposed approximation scheme (16).

Theorem 1.(Positivity) Suppose that Ty > 0, T, (0), Vi, >0, T,,, > 0 and V;, > 0, then ¢ (h)T,, >0, Ty, >0, V,, >0, T;, >0
andV,, > 0 is satisfied, n=1,2,3,...,N,

Proof.Using induction principle, n = 01n (16) :
05wiTy | 0.5¢217(0) | 0.5w} T OSqZHT(O)) >0

e Mﬁ*@’ﬁﬁ+%+ky<lfn»;,>vs+kr<1—n:,> (Atr g + “oar® T gma® T e

e 5B +]¢<h?¢f,,-,3 5 (I wks (1= VST + 0(5‘;"‘?’(23 g(Sv;aTj% N %?q§l+o:ft([;))) i (;(52%5530))) 0

Vi = gl (NS0 )T+ S e et s ) > 0

- %* AL bl S0 850 i St
Vi = sl N 01— nf)T + S T + S + ) 2 0

Since the parameters are positive. Suppose that foralln <n+1that7 >0, 7, >0, Vs >0, T, > 0 and V, > 0, thus for
n+1

Tyt = ! (g QST T
! o(h (;3+15 + o(h )a B +d+7— T +k (1 =n})Vs+ k(1 —ny,)V, ¢(h)‘”"ﬁ
0.5¢,1T(0)  0.5%"'w; T,,H,l- N O.Sq;HT(O))
¢ (h)otiP ¢ (h)oiP ¢(h)*=F
1 0.5y 0.5y wiT,
T, = (1= b1 — Ty + 232 e 20k R
o(h )a+rB+¢( )oc iB +5 ¢( ) ! ¢( ) !

0.5¢,+17:(0)  0.5g;.,T5(0)

. =),
¢(h)la+iB)  o(h) a—iB)
1 ) 0.5 wiVs, ., 0.5 wivy
VY}H»I - 0.5 (NY8(1 - n}))]}'tl+l + (],l)a«ﬂﬁ = (h)a lﬁ e
S0y gy ¢ ¢ ¢
0.5¢,+1V5(0) O'SanAVX(O))
(@B g ()BT
1 0.5 wiv,,
T, = (uks(1 = )VsTor1 + k(1 =0l )V T + —l”'
" e T amew 0 " " ¢ (h)*+iP
0. 52n+1 Wil n 0.5¢,117:(0)  0.5g;,,7.(0) )
¢ (h)oiP ¢(h)la+iB)  ¢h)a—iB)”
1 0.5 WiV, . 05X wiv,
Vint = 43 05 (NS (1= m )Ty, + (f;)aﬂﬁ - (h)o—iB -
s+ g T ¢ ¢
0.5¢,41V,(0) | 0.54;,,V,(0)
SUEB] g 4
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Theorem 2.(Boundedness). Let that the initial conditions are Ty = 1000, Ty, = 1 and Vs,=T,,=V,,=0.01, then T,, T,, V;,,
T, and V,, are bounded, n=1,2,3,4,...N,.

Proof.System (16) can be written:
0.5 " Wil

0.5 0.5 r s - -
Tn+l(¢(h)a,iﬁ =+ ¢(h)0¢+iﬁ +d+ m Jrkx(l *nrt)VsWLkr(l 7nrt)vr) = ()L +r+ ¢(h)0¢+iﬁ

0.5y ' wiT11—;  0.5¢%,,T(0) O.Sq,,HT(O))
¢ (h)oiP ¢ (h)oiP ¢(h)otib 7

using induction principle, for n = 0, we have:

0.5 0.5 r ) r
Tl(¢(h)a+iﬁ + ¢(h)a7,'[3 +d+ m +ks(1 =13 ) Vs + k(1 —nl,)V,)
0.5¢:7(0) = 0.5wT(0)  0.5¢;7(0) , 0.5w;T(0) )

I T N T DT

=A+r+

0.5 0.5 , |
Tl(¢(h)a+iﬁ + ¢ (h)o—iP +d+ T +ks(1 = n Vs + k(1 —nl,)V,)
(s 050T(O) | OSWIT(0) | 05T (0)  0.5miT(0),
¢ (h)o+iP ¢ (h)o—iB ¢ (h)o—iB o (h)@+iP 1-
So,
hi= MI,TSI < MI’VS] < M17Tr1 < MlaVrl <M.
For n = 1, we have:
0.5 0.5 - S r
T2(¢(h)a+iﬁ + ¢(h)ocfi[3 +d+ m +ks(1 = n Vs + k(1 —nl,)V,)
(g Q3T 0501 (0) | OSYE Wil 05657 (0)y 5 O5@T(0) | 05wiTi
o)t B p(n)atip OB g(h)o—iP o)+ B g(n)otiB

0.5wiTy  0.5¢5T(0)

(e g M

So,

TZ SMZ;TSQ SMZ;VYZ §M277;’2 SMZ;VVZ SMQ

For n =2, we have:

0.5 0.5 0.552  wiTs_; r \ .
T3(¢(h)oc+i[3 +¢(h)ocfi[3 + ¢(h)06+i[3 +d+m+k§(17nﬂ)V§-+kr(17nﬂ)Vr)
0.5 ,wiTs_; 0.5¢3T(0) 0.5¢5T(0) 0.5w1T  0.5¢3T(0)
= (2 i=1 "7 : ) < (A . :
A= e ® " omed  gman) = P()eTB | g(n)arip

0.5wiT,  0.5¢3T(0)

Yo gmen) M

So,

T3 SMT))T;‘} §M3)VS3 §M37’Tr3 §M3)Vr3 §M3
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For n = 3, we have:

0.5 05 . s r
T4(¢(h)0‘+i[3 + o(h)* B +d+ T + ks (1 =15,V + k(1 —n")V;)
=(A+r+ 0.5¢4T(0)  O5Ei wilay  OSLL wiTai  0.5¢4T(0) O0.5%, WiT4J) <(A+r+ 0.5wiT3  0.5g4T(0)
O()*+P o(h)*+P SB T ome B T e )= SU)EB g (hyarp
0SwiTs | 05GT(0),
¢(h)—iB ¢ (h)*—iP :
Thus,

T4 S M47TY4 S M47‘/S4 §M4,Tr4 S M4,Vr4 S M4.

Now we suppose that

Tn SMVHTYn SMVH‘/S,, SM}'[;TF,, SMVHVI‘,, SM}'[

We claim that:

Tt <M1, Tynsn) < Must, Vi) < M1, Trngr) < M1, Vi) < My

5.2 Stability
Scheme(16) is called asymptotically stable, if there are constants Ly, Ly, L3, L4, Ls as |z| — 1, such that

T, < Ly, 1T

Sn+1

< L,,V,

Sn+1

§L37T

Tn+1

S L4;Vr,,+1 S LS'

Using theorem of boundedness we can claim that NSFDM (16) is asymptotically stable.

6 Numerical simulations

In the following, NSFDM is introduced to study the fraction complex order model (7). The initial conditions are given as
follows : 7(0) = 1000, Ts(0) = 1 and Vs(0) = Tr(0) = Vr(0) = 0.01 and ¢ (h) = 1 — e~ ". Parameter values are given in
Table 2, and the simulations are given at different values of o and 3. To show that the proposed scheme is efficient, we
will take different values for the final time with different values of the time step 4. Convergences behavior are reported in
Table 3 for the following numerical methods: NSFDM, standard finite difference method (SFDM) and ode45 when
o =1, B =0. We can claim from this table that for large # NSFDM is convergent while ode45 and SFDM only converge
when £ is small. Table 4 reports CPU time when @ = 0.9, § = 0.2, i.e., NSFDM is more efficient than the method which
used in [2]. Figure 1 shows how the disease-free equilibrium point changes with growth rate f; when § = 0.2 and
o = 1,0.7 respectively. Figure 2 exhibits how the drug-sensitive endemic equilibrium point of ( 7) changes when
u=3x10"8 kr=2.0x1073, ks = 2.4 x 107>, Nr = 2300, 8 = 0.2 and & = 0.9,0.7 respectively and growth rate f|
using GEM. Figure 3 shows how the drug-sensitive endemic equilibrium point is changed when N; = 4000, N, = 4800,
k, =2.0x 107, kg =2.4x 107, B = 0.25 and & = 0.8,0.7 respectively and growth rate f; using NSFDM. Figure 4,
shows how endemic equilibrium point of the model (7) changes when k, = 2.0 x 1073, kg = 2.4 x 107, B =0.21,
o = 0.9 and growth rate f; using NSFDM. Figure 5, manifests how the disease-free equilibrium point of the model (7)
changes when 3 = 0.1 and a = 0.9,0.5 respectively and growth rate f». Figure 6, shows how the drug resistance
endemic equilibrium point of the model (7) changes when Ny = 4000, N, = 4800, Ky = 2.4 x 1073, K, =2.0x 1072,
B =0.21, a = 1,0.8 respectively and growth rate f>.
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Table 3: Comparing between NSFDM, SFDM and ode45 when ¢, = 1000 for different values of h, & =1, B = 0.
h NSFDM SFDM ode45

0.1 | Convergent | Convergent | Convergent
1 Convergent | Convergent | Convergent
2 Convergent | Divergent Divergent

10 | Convergent | Divergent Divergent
20 | Convergent | Divergent Divergent
100 | Convergent | Divergent Divergent

Table 4: The CPU time when o« = 0.9, f =0.2.

CPU time for NSFDM | CPU time for [2]
0.3979sec 1.8703 sec
0.4063 sec 2.684614 sec

0.536131 sec 6.715916 sec
0.659607 sec 23.553965 sec
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Fig. 1: The disease-free equilibrium point with growth rate f; of the model (7) when § = 0.2.
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Fig. 2: The endemic equilibrium point of (7) when § = 0.1 and growth rate f] using GEM.
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Fig. 4: The endemic equilibrium point with growth rate f; of the model (7) when § = 0.21 using NSFDM.
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Fig. 6: Endemic equilibrium point of (7) when § = 0.21 and growth rate f.
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7 Conclusion

In this article, the fractional complex order HIV model waa numerically investigated. This dynamical model is more
suitable to describe the biological phenomena with memory than the fractional and integer order model. In addition, the
fractional complex order system reveals rich dynamics and variation of the value of the complex order derivative sheds
new light on modeling the intracellular delay. NSFDM has been constructed to simulate the solutions of the proposed
model.Some properties of the proposed method, such as positivity and boundedness have been studied numerically. This
method has bigger stability region than GEM and Runge-Kutta method. Moreover, NSFDM saves the computational time
when the final time is very big and provides valid approximations.
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