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Abstract: In many problems of life-testing, the test process may require an unacceptable long time period for its completion,
if the test is simply carried out under specified standard stress conditions. In such problem, It is generally possible to run the
life test under higher stresses than the specified standard, in order to accelerate life-testing. In this article, a cumulative
exposure model description under Frechet distribution is introduced. In addition, “the maximum likelihood method” is used
to obtain the estimators of the unknown parameters from Frechet distribution, with respect to a cumulative exposure model
under data Type II censoring. The performance of the findings in the article is showed by demonstrating some numerical
illustrations through Monte Carlo simulation. Finally, tables to illustrate all the discussed inference methods are presented.

Keywords: Frechet distribution; Cumulative exposure model; Step-stress model; Type-II censoring data; Accelerated life
testing ; Maximum likelihood estimation.

1 Introduction

Manufacturers are now under strong pressure to produce modern, highertechnology goods rapidly, while improving prod
uctivity. This has stimulated the advancement of techniques such as simultaneous engineering and facilitated the broad
use of engineered product and process improvement experiments.

The need for further upfront testing of the materials, components, and systems was increased by the criteria for greater r
eliability. This is in linewith the new theory of quality for the development of highreliability products: achieving high rel
iability by enhancing design and production processes; moving away from inspection (or screening) dependency to achi
eve high reliability, see Meeker.For several decades, engineers in the manufacturing industry have used Accelerated Life
Test (ALT) experiments. The object of ALT experiments is to quickly obtain reliable information. According to Bai et
al. [2] and Nelson [3], one way of applying stress to the test is a step-stress scheme which allows the stress setting of a
unit to be changed at pre-specified times or upon the occurrence of a fixed number of failures. This scheme is called step
stress accelerated life test (SSALT). To implement the SSALT, first low stress is applied to all products. If a product
endures the stress (does not fail) we apply a higher stress, if only one change of the stress level is done, then it is called a
simple step-stress accelerated life test.

The aim of the SSALT experiment is to estimate the prediction of percentile life or reliability by choosing the optimal ti
me to increase the amount of stress that results in the most precise estimate. The main aim is to choose the times to adjus
t the level of stress in such a way that the variance of the estimator of the above parameters is minimised under the level
of natural stress, see Khamis [4] and Fard[5]. The step-stress procedure was first introduced, with the cumulative exposure
model, by Nelson [6]. Furthermore, Miller and Nelson [7] provided the optimum simple stress plans for the accelerated
life testing.

The Frechet distribution was named after the French mathematician Maurice Frechet (1878—1973). It is also known as the
Extreme Value Type II distribution. It has the cumulative distribution function specified by

-a
F(ty=exp{-(3) }, t>0a>0 and 6>0. 1)
The corresponding probability density function, is
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where «a is a shape parameter and 0 is a scale parameter. In engineering applications shape parameter is usually greater than
2. Frechet [8] considered the Frechet distribution, which was proposed to model extreme events such as annually maximum
one-day rainfalls and river discharges. This distribution has found wide application in extreme value theory. Further details
about the Frechet distribution can be found in Kotz and Nadarajah [9]. Mead et al. [10] defined and studied a new
generalization of the Frechet distribution called the beta exponential Frechet distribution. Abd- Elfattah, et al. [11] consider
the estimation of the unknown parameters of the generalized Frechet distribution. Kamran et al. [12] develop the Bayesian
estimators in the context of reference priors for the two-parameter Frechet distribution. Wagner Barreto-Souza et al. [13]

derive Some Results for beta Frechet distribution. D. Gary Harlow [14] consider the applications of the Frechet distribution
function. While Krishna [15] considered the applications of Marshall-Olkin Frechet distribution. Nadarajah et al. [16]
considered the exponentiated Frechet distribution.

2 Cumulative Exposure Model Description

2.1 Notation

ALT Acceerated life testing.

SST  Step stess testing.

S; Stress levels.

pdf  Probability density function.

cdf  Cumulative distribution function.

G(t) Cumulative exposure distribution function.

g(t) Probability exposure density function.

n Identical units under an initial stress level s;,.
tin The ordered failure times of the i unit under test.

T, The time before which the stress level is changed from S to S;.

T; The time before which the stress level is changed from S;_; to S;.
t,,  The time when the " failure occurs the experiment is terminated.
N; Number of units that fail before time 7; at stress level S;_;.

a The shape parameter of the Frechet distribution

0; The scale parameters of the Frechet distribution.

2.2 Assumptions

Supposing that the cumulative distribution function of the lifetime (of the items) under life testing is F (x), and probability
density function f (x), the failure rate function of F(x) will be

_ fx
A0 = L2, 3)
and the cumulative failure rate function be
A() = [; AB)dt, )
Then we get F(x) as follows,
F(x) =1—exp(—A(x)), (5)

Now, suppose that, for a particular m-step stress pattern, step i (1 < i < m) runs at stress S;, that (starts) at time 7;_; and
ends at time 7;. The cumulative distribution function of time to failure for units run at the stress S; is denoted by F;(t). Let
G (t) be the cumulative distribution function of time to failure under a particular step-stress pattern. Then the cdf G (t) of time
to failure under a particular step-stress pattern can be expressed mathematically as follows:

The population cumulative fraction of specimen failing by time ¢ in first stress level S, is

Gt)=F @), 0<t<T,. (6)
The population cumulative fraction of sample failing by time t in second stress level S; is
G =FKR[t-Tt)+u] 7,.5t<71y, @)
where u,, the equivalent starting time, is the solution of
F(uy) = Fi(7y). (®)
Similarly, in stress level S,,
Gt)=F[(t—1)+u,], 17,5t<Ty )

with equivalent starting time u,, being the solution of
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F3(up) = F[(t; —71) + w4 (10)
In general, in i-stress level S;,
G =Flt—1-)+tuq] 7<t<T, (11
with equivalent starting time u;_;, being the solution of
Fi(ui-1) = Fi1[(Ti-1 — Ti-2) + ui—2]- (12)

It is required to know the probability density function of the failure time of a unit under a particular m-step stress pattern
to carry out statistical inference in order to determine the maximum likelihood estimators and the optimal ;. Suppose that
the pdf of time to failure for units run at a constant stress S; is g;(t).

The pdf for cumulative exposure model is

A L0t <1y,
fol(t—10) + ] , Ty S < Ty,
[ —13) +uy] T St <13,
g@) = . (13)
finl(t = Tmet) + Umo1] Tt St < o0,
then, we can say,
9(0) =37 (14)
The failure rate function for the cumulative exposure model at step i (i = 1,2,...,m) is
Ao(®) = L[t — 1) +uq], 1o St <7 (15)
or, we can say
(1) = 22 (16)

1-G(t)

3 Cumulative Exposure Model Description under Frechet Distribution

In this section the cumulative exposure model is deduced under Frechet distribution (see, Miller and Nelson [7]). The

failure rate function is
—(a+1) -a
@G el

t -a
1—exp{—(§) }
The cdf function of time to failure under a particular step-stress pattern can be expressed mathematically as follows:
The population cumulative fraction of specimen failing by time ¢t in stress level S, is

t -
G(t) =F,(t) =exp {— (9—1) }. 0<t<T;. (18)
The population cumulative fraction of specimen failing by time ¢t in stress level Sj is

A(t) = (17)

_ -a
Gt)=F[(t—1)tu]=exp {— (%) }, T St <1y, (19)
where u,, the equivalent starting time, is the solution of
_ _(w -a _ _(u —-a
R =R@) = el (2) )= en{-(2)) 20
Then, we get
w) ™ ()" Wo_n = (%
(92) N (91) Z 5 e O Wz (91) - 1)
Then, we can rewrite G (t) in stress level S; as follows
G(t) = exp{- (52 + T—l)_a} L, <t<T (22)
p 9, o, L 2
The population cumulative fraction of specimen failing by time ¢t in stress level S, is
CG)=FK[t—-1)+u]= 1,<t<Tt,, (23)
with equivalent starting time u, being the solution of
-a ( _ )+ -
F3(up) = R[(t; — 1) +wy] =exp {_ (Z_:) } = exp {_ (%2111) }, (24)
Uz _ (t2-T1)+uy Uz _ (TZ_T1)+(z_i)T1 (25)
0 0, 0 0, ’
then, we get
_(G2-t)  T1
u, = (—92 + 91) 0, (26)

Then, we can rewrite G (t) in stress level S, as follows:
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t—To T2—T1

-
T1
— =< 141 <
G(t) = exp{ ( a + % +91) }, T, <t <73
The population cumulative fraction of specimen failing by time t in stress level S5 is

_ -a
G(@t) =F,[(t —13) +us] = exp{— (%) }, T3 St < Ty,

with equivalent stating time u; being the solution of
Fy(us) = F5[(t5 — 72) + up),

_(u3 —a} _ {_ ((13—12)+u2)_“} us _ (13-T2)+up
exp{ (94) = €Xp 63 = 6s 03 ’

5 ) 05 , then we rewrite Eq. (30) as follows:

(12-71)

Where, U, = (20—21
(T2-71) 71

uy _ (r3— T2)+(T+g—1)93

0, 03

then, we get

_ (I3~ T2 2771
u3_( 5 o +9)94’
Then, we can rewrite G (t) in stress level S; as the follows:
_ _ -a
G(t) = exp{ (t i +ﬂ+ﬂ+r—1) }, T3 <t <1y
64 63 62 61
The population cumulative fraction of specimen failing by time t in stress level S, is
In general, in step m,
t-tm)+um\ %

G(t) = Fnpa [t —70) +up] = exp{— (Tﬂ) } Ty ST <,

with equivalent stating time u,,, being the solution of
Fm+1(um) = Fm[(Tm - Tm—l) + um—l]'

Then, we obtain that,

Tm—T T3=Tp | To=T1 |, T
um:(m Im=Tm-1 _|_3 2+2 1+_1)9m+1:
Om 62 61
— m Ti—Ti-1

j=i+1 )71

Then, we can rewrite G (t) in stress level S, as the follows:
-a
G(t)_exp{ (t Tm+2 ﬁ) }’ Tmst<oo’
Om+1 91‘—1

j= l+1
Where,i =0,1,2,...,m, and j=i+1,
Then, we can say, the cumulative exposure distribution function (cedf) for Frechet distribution as follows:
G, (t) O<t<Tty,
G,(t) 11 <t<Ty,
Gs(t) ,1,<t<rty
G(t) = G,(t) ,T3 St < Ty,

)

Gm+1(t) yTm St < 00,

where
t
G0 =exp{-(7) } 0<t<t,
a

—T1

GO =exp{-(52+3) |, n<t<m,
-

G3(t)—exp{ (9 T292T1+;—1) }, T, <t < T3

t-13 | T3=Tp | =7y |, T\ ¢

G4(t)—exp{ (_4+T+T+91) }, T3 St < Ty,
In general,
-a
Gm+1(t) = exp {_ (;_Tm + ‘ml':=1 %) }; Tm S t< 0,,
m+1 j=i+1 7t

Where 7, = 0.

27)

(28)

(29)

(30)

G

(32)

(33)

(34)
(33)

(36)

(37)

(38)

(39)

(40)
(41
(42)
(43)

(44)

The simple step stress model is a special case from the cumulative exposure model so we can define, the cumulative
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exposure distribution function G (t) for Frechet distribution at two stress level as follows:

G,(t) 0<t<Ty,
G(&) = {Gz(t) ,T1 St < Ty
The corresponding probability expsure density function g(t) is:
g1(t) ,0<5t <1y,
g2 (t) , Ty St <1y,
gs(t) , T, St <13,
g(t) = g.(t) ,T3St<‘[4,’

gm+1(t) »Tm St<om,

—(a+1) -
D e -6
0012 (2) (202 e~ (5243))

—(a+1) —-a
a t—1;, Tp—T1 T1 _ t—Ty Tp—T1 1
93) ( 03 + 6 + 91) * exp{ ( 63 + 6, + 91) }

04 05 6, 6, 0, 05

In general,

—(a+1)
i — a ) t—Tm m Ti—Ti—1 _[t-m
Im+1(0) (9m+1 (9m+1 L= * exp P

m+1

j=i+1 Vit

(50) then, we can rewrite pedf for simple step stress as follows:

_(g:1(®) 0<t<1y,
9@ = {gz(t) T ST< T,

t—Ty T4—T, T,—T, T\ @D t—Ty Ta—T, T,—
3,153 2, 0 1_|_1) *exp{—( 3.1 2, D

(45)

(46)

(47)

(48)

(49)

(1)

For a simple step-stress model, we have n identical units under an initial stress level S,. The stress level is changed to S;

at time 7.

The failure rate function 4,(t) under cumulative exposure model for Frechet distribution is

A1(t) 0<t<T,

A,(t) ,T1 St < Ty,
A3(t) , T, <t <13,
Ao(0) = A4(t) ,1.3 <t< 14,’

Ams1(t) Ty St < oo,

where
—(a+1) _a
/11 (t) = (9;“1)(%) *Exp_{;(%) }
O
- —(a+1) B )
L) = (%)(t9;1+%) a *exp{_(f0;1+;_1) a}
B e
5 — —(a+1) ~ . »
ity < BIGEER) el (gegy)”)

_ _(t=T2,T2-T1, 71\ % ’
1 exp{ (93 +—92 +91)

(52)

(53)

(54)

(55)
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(e ) (e e 5

(8 = 0. 63 6, Yo, ’ 36
4-() 1—exp{ (t9:3 139—31'2 1:29211 ;i) a} (56)
In general,
( a ) Lty ym  TiTioy (a+1)*exp ttm  ym Tt -
Om+1/\Om+1 i L+1 0j_1 Om+1 j= L+1 0j-1
A1 () = =z : (57)
t— Ti—Tj_
1—exp{_<9 T_:r; Z} o ng_L11> }
Then, we can rewrite pedf for simple step stress as follows
(1) 0<t<1y,
A®) = {/Iz(t) ,T1 St < T, (58)

4 Maximum Likelihood Estimation of Frechet Distribution Parameters under Simple Step
Stress Model

The maximum likelihood method is used to obtain the estimators of the unknown parameters from Frechet distribution
with respect to simple step stress model under data Type II censoring . The simple step stress model is special case from
the cumulative exposure model. From the cumulative exposure distribution function by Eq. (45) and the corresponding
probability exposure denisty function Eq. (51), we obtain the likelihood function of 6, ,8, and a based on the Type-II
censored sample as follows,
L(Qlﬁ 92' altl n) (n r)‘ [ ?:1 g(ti:n)] * [1 - G(tr:n)]n_r;
0 <ty <<ty < Ty < byppg <eoo < tpp < (59)
where r = N; + N, and ¢ is the vector of observed Type-II censored data. Therfore the likelihood function becomes,
I- IfN; =randN, = O the likelihood function becomes

L(Hll 921 altl n) (n— r)‘ [ ?—1 gl(ti n)] [1 - Gl(tr:n)]n_r 'O < tl:n <..< tr:n < T < o, (60)
t'n (a+1) tin w“ trin ot
L(81,0;, altin) = (n o [H 91) X exp {_ (Z) }] [1 B exp{ (91 ) }] ’
0 <ty <..<tpy <Tg <00, (61)
2- IfN; =0and N, = r the likelihood function becomes
L(Hl‘ gz‘altl n) (n T)| [ ?—1 gz(ti'n)] X [1 - Gz(tr:n)]n_r )Ty Sty < <ty < 00, (62)
—(a+1) —-a
tl n~T1 , T1 _(tin=T1 | T1
L(Hll 92: 6(lti:‘n.) (n T')‘ [H 92 + 91) X exp{ ( 92 + 91) }]
£ —@n-T
X [1 —exp {— (T“ + ;—1) }] T Sty <o <ty < 00, (63)

3- f1<N, <r-1, the likelihood function becomes
L(Ql’ 92’ alti:n) (n r)‘ [Hl 1g1(ti:n)] X [H?=N1+1 92 (ti:n)] X [1 - GZ (tr:n)]n_r’
yhim <o <ty < Ty Sty i <o <y < 00, (64)

= [H’f-a ) () e ) [ em (=)
i —(a+1) ‘ B
[ () (3 3) e (1 3) )

g <o <ty < Ty Sty i <o <ty < 00, (65)

L(Qlﬂ 92' altl n)

The log-likelihood function may then be written as
N
= InL(03, 6 alti) = I+ Ny 1n( ) +N,In ( ) — @+ DY In (“n) . (fe—n)
1
tin—T T tin—T T
?=N1+1 ( = L 9—1) —(@a+ DXy 4110 (Tl + 9—1)
t‘r:n‘ *
+(n—71)ln [1 —exp {— (—92 LS ;—1) }],
i <o <tym < T S bypgim <oor < by < 0. (66)

Then, we obtain the estimators of 8, 8, and a are estimated of by differentiating Eq. (66) with respect to 8, ,8, and a
respectively and equating to zero, in this case we have
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9L Mty 9 gy (“n)+2 (t‘”) “In (“")+ZN1 A7%1In(A;.,)

Ja a
~ Syt ) = (1 = B InB,) [pre] =0, (67)
. . —(a+1) (a+1)
ey [ )] 05 )] S [ )
a(n-r)t 1 \(@+D 1 -Brf
+( 67 1) (E) [1 e—Br‘r’z] 0, (68)
_ in (a+1) (a+1)
:sz = —Z_j + (a + 1) Z‘{=N1+1 (tln Tl) (Ajn) l Ni+1 I:a;% (Tln) - 0;_1;21 (rln) ]
am-1)(trn—11) 1 (a+1) BT _
HEE) ) [ = (69)
Where 0 = (6,,0,,a), § = (81,0, &), A = fr;_;fl + ;_1 , and B,., = tz_;fi + ;_1

Since the closed form solution to nonlinear equations Eq. (67- 69) is very hard to obtain. Therefore, we use the MATLAB
program to solve the previous nonlinear equations simultaneously to obtain 8,, 8, and @&, see Tables (a-1, b-1).

5 Inverse Fisher information Matrix and Confidence Interval for Frechet Distribution under
Type-II Censored

The asymptotic variance and covariance matrix of maximum likelihood estimates are given by the elements of the inverse
of Fisher information matrix as follows,

1:(0) = E{— o } (70)
A= a@iae j
Unfortunately, the exact mathematical expressions for the previous expectation are very difficult to obtain. Therefore,
Fisher information matrix is given by

8%«
1©® = {~ 5355} n
which is obtained by approximating the expectation on operation E and replaced 6;,60, and a with 8;,0, and &

respectively, Cohen [17]. The asymptotic variance covariance matrix F for the maximum likelihood estimates can be

written as follows,
-1

_ok 9% 0%
da? 9006, 0036,
0%¢ 92%f 92
_1 — _ _o=+ _
F7 =1~ 3004 262 96,00, (72)
__o% ok 9%
00,0 00,004 60%
The elements of matrix F are given as the following:
%6 _ _aN; ((n_r)azr%) e~2Briip-2-2a N ((n_r)m%) e-Briip-2-a
69% 9% o1 (1 e_B;'%)Z 01 (l—e_B;:%)
_ (Z(n—r)m'l e—Br % MNPy _ 2atin tl.n -1-a + (ati:n) 1+ o)t (ti_:n)_z_a
63 1 e‘Brn 03 0% tn g,
2T _2atg 4 at o
_(1 + Of)z [93 1 ] Z 1A 1 a + ( 1) (1 + a’)TlAi:,% a] , (73)
i=1+Ny 1Ai:n i=14+N;
%2t _ N, _ n-r)a?(trn—11)? e—ZBr:nB;%—Za (n=-r)a(tyn—11)> e_B;:%B;.ﬁ_“
007 63 03 (1-e-578)° o (1-e—575)
_ 2(m-1a(trn-14) e BrnBrn « (1 + a)z [Z(fi:n—‘fl) _ ((ti:n_‘fﬂz)]
93 (1—e_Br n i=14+N, 923Ai:n GéA%:n
2a(ti—tiAnn ¢ | atin(1+a@)(tin-T)ATE" Y  ati(1+a)(tin—T)ALE * 4
- 33 + 94 - 94 ’ ( )
i= 1+N1 2 2
% _ _Ni_Np_ e~?Brif (n— T)ln[Brn] 2Brp* e~ BT (n—1)In[By.n]? By2%
daZ az a2 (1-e~Brm)~ 0‘) 1-e—Brm)~%
-B75; 2p—a N 2 —a
e Prm(n—r)In[By.,] Brmn [ti:n] (ti:n) _ r 2 1—a
1-e~Br i=1 In 0, 61 Z i=1+Ng 1n[Ai:n] Ain, (75)
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%t _ m-r)a?(trm—T1)T1 e_ZB;!%B;,Zfza _ (n-r)a?(trm—11)T1 e_B;i%B;%_Z“
86,00, 62602 (1_6_3;.«;{)2 6262 1-B;%
(n-r(A+a)a(tyn-1t1)71 |~ T‘ﬂBrn a 1 tln T1
+ ' +(1+a
0292 1— E_B a ( ) i= 1+N 92(A1n)2
aTl (tln_rl)(ALn) e altin—t) @) T2 7Y 76
- 02 + 92 ’ ( )
i=1+4+N; 1 2
0%t _ Ny (n-naty e-2<Br-n>‘“ln(Br:nmr:n)—l—m (n-r)aty [e~Brm) " “In(Br.p) (Brpn) 1 72%
0610a 6, 0% (1-e~(Bra) =) 02 1-e-Brm) @

4 = rm e—<Brn> “Bra) 17 (-r)azy [e"Brm)  In(Brn) (Bra) "%
(1 e—Brm)~ a 92 1—e—-Brm)~%

ti\~%
”‘1“[91 1 (a;) n ZT T Zr [(l—aln(Ai:n))‘rl(Ai:n)_l_“] 77)
0% 61 i=14+n, 01 (in) i=1+N; o '

_ (n— T)a(tr—‘h)[ e=2(Brm)” aln[Brn](Brn) 1-2a n g—(Br:n)_aln[Br:n](Br:n)—l—Zzz]

6926a - 62 —o—(Brm)~4 1—e—Brm) ®
(1-e )
e_(BTm)_a(n—r)(tr—‘rl)(Br;n)_l_a _ e_(Brin)_u(n—r)aln[Br:n](tr—Tl)(Br;n)_l_a
(1—e-Brm) %)62 (1—e-Brn) %)p2
+ZT tl._Tl ] Z (tl Tl)(ALn)_1 @ _ ln[A ] (a(ti_fl)(Ai:n)_l_a)] (78)
i=1+N; 92(‘4”1) i= L+ - H 03 '

tin—T t T
where 4;.,, = =L 1+— and B, = 22141
02 62 6,

Consequently, the maximum likelihood estimators 8,8, and & for 6;, 6, and & have an asymptotic variance covariance
matrix defined by inverting the Fisher information matrix F and substituting 8 = (8,,0,, &), for 8 = (6;,6,, ), see
Tables (a-2, b-2).
Now, we construct confidence intervals (CIs) for the unknown parameters 6,, 8, and « for larger sample sizes under data
Type II-censored. Let the unknown parameters 6 and assume that Ly = Lg(t1.,, ..., tpn) and Ug = Ug(ty.q, - -+, typ) are
functions of the sample data ¢, ., ..., t,.,, then a confidence interval for a population parameter 8 is given by

P[Lg <6 < Ug] =6, (79)
where Lg and Uy are lower and upper confidence limits which enclosed 6 with probability §. The interval [Lgy, Ug] is
called a two sided 1006% confidence interval for 6. For large sample size, the maximum likelihood estimations, under
appropriate regularity conditions, are consistent and asymptotically normally distributed. Therefore, the two-sided
approximate 100 6% confidence limits for the maximum likelihood estimate 8 of a population parameters 6 can be
constructed, such that,

Pl-zs 2 <z =0, (80)

M] standard normal percentile. Therefore, the two sided approximate 100 §% confidence limits for

where, z is the [

a population parameter 8 can be obtained, such that,

Plo—2z0(0)<0<8+z0(0)] =6 (81)
Then , the approximate confidence limits for 8, 8, and a will be constructed using Eq. (81) with confidence levels 95%
and 99%, see Tables (a-3, b-3).

6 Sumulation Study

In this section, we describe the algorithm to obtain the Type-II censored sample, and the estimators 8,, 8,, &. In addition,
the absolute relative bias (RABias), mean square error (MSE) and relative error (RE).
Step 1: Given 1, and initial values for the parameters 6, 6, and a.
Step 2: Based on n, 1,74, 6;, 0, and a, we generate a random sample of size n from Uniform (0,1) distribution, and
obtain the order statistics Uy.p, ..., Up., such that,
Ui <...<Upn} (82)
Step 3:Find N; such that
1\ %
Ungn < exp{=(3) } < Unprn (83)

1
Solving the above inequality to get the failure times of units from unit 1 to unit N;. The failure times under Frechet

distribution of units is given as follows:
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for1 <i < N, we set
tin = Ll ’ (84)
(U~ 1a
forl1 <j<r-—N,;,weset
tNy+jn = 9—21 - Z_ZTI +17. (85)
(o) T
Step 4: Based on n, 1, Ny, 7,, and order observations
{tl:n' L) tlen' tN1+1:n' Y] tr:n}' (86)
where r = N; + N,
= Al: If N =r and N, = 0, then, we solve the system of nonlinear equations get from Eq. (61) to obtain the
unknown parameters 6, and &@. Go to step 5.
=  A2: If N, =0 and N, =, then, we solve the system of nonlinear equations get from Eq. (63) to obtain the
unknown parameters 8;, 8, and &@. Go to step 5.
= A3:If1 < N; <r — 1, then, we solve the system of nonlinear equations (65) to obtain the unknown parameters
6,,0, and &. Go to step 5.
Step 5: Repeat steps (2) to (4) H times and arrange all 8;, 8, and & in ascending order to obtain

6" ...a", {8,",...8,"} and {a,.. a") (87)
Then, we get the estimators as follows,

A*_ 1vH 5[] A*Y_ 1oH 5 [h] ~x _ 1 oH »[h)

6, —;Zh=1 6, 0, —;thlgz and @ =q4n=10 (88)

Substituting the values of parameters él*, éz* and @*, the absolute relative bias (RABias), mean square error (MSE) and
relative error (RE) are obtained. Furthermore, the asymptotic variance and covariance matrix and two-sided confidence
intervals of the estimators are obtained.

Table a-1: The RABais, MSE and RE of the parameter based on Type II censoring from Frechet distribution
r = 75%mn and 7; = 10).

(n) 0 0 RABias MSE RE
0, 2.986038  0.194415 0.255767  0.202294
(25) 0, 2.082963  0.041481 0.059205  0.121661

a 1.235096 0.176603 0.073779  0.181082
0, 2.947478 0.447478 0.219545  0.187423

(50) 6, 2.022144 0.011072 0.041355  0.101680
Case (2.5,2,1.5) a 1.167002 0.221998 0.111863  0.222973

r = 75%n 0, 2.935701 0.174280 0.200745  0.179218

(75) and 0, 1.935100 0.032450 0.084205  0.145090
7, = 10 a 1.186251 0.209166 0.099839  0.210649

0, 2.927132 0.170853 0.190418  0.174548

(100) 6, 1.878951 0.060525 0.116857  0.170922

a 1.187907 0.208062 0.100805  0.211665

0, 2.905252 0.162101 0.174537  0.167110

(125) 6, 1.858857 0.070571 0.066891 0.129316

a 1.183475 0.211017 0.101222  0.212102

Table a-2: Asymptotic variance and covariance of estimates based on Type II censoring data from Frechet distribution
(r=75%nand r; = 10).

n 0 0, 0, @
0, -0.1103 -0.0325 -0.2377
(25) 0, - 0.2941 0.1110
@ - - 4.4042
Case (2.5,2,1.5) 0, -0.0357 -0.0314 -0.0929
(50) r = 75%n o, - 0.1804 0.0403
and @ - - 3.2681
(75) 7, =10 Ql -0.0271 -0.0196 -0.0648
0, - 0.1124 0.0260
@ - - 3.0735
0, -0.0202 -0.0144 -0.0455
(100) 0, - 0.0838 0.0189
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| a - - 2.9475
0, -0.0146 -0.0121 -0.0342
(125) 0, - 0.0676 0.0147
a - - 2.0121

Table a-3: Confidence bounds of the estimates at confidence level based on Type II censoring data 95% and 99%

(r=75%nand r; = 10).

_(m |
25

(50)

(75)

(100)

(125)

Table b-1: The RABais, MSE and RE of the parameter based on Type II censoring from Frechet distribution

6 (L, U) bound 1 (L, U) bound 2
0, (2.712100, 3.259976) (2.625446, 3.346630)
0, (1.634630, 2.531295) (1.492810, 2.673115)
a (1.117414, 1.352778) (1.080188, 1.390004)
0, (2.675122, 3.219833) (2.588969, 3.305986)
0, (1.625930, 2.418358) (1.500597, 2.543691)
Case (2.5,2,1.5) a (1.105790, 1.228215) (1.086427, 1.247578)
r = 75%n 0, (2.730982, 3.140419) (2.666224, 3.205177)
and 0, (1.380753, 2.489448) (1.205399, 2.664802)
7, =10 a (1.112894, 1.259607) (1.089690, 1.282812)
0, (2.752093, 3.102172) (2.696723, 3.157542)
0, (1.252351, 2.505550) (1.054141, 2.703760)
a (1.073572, 1.302243) (1.037404, 1.338410)
0, (2.706261, 3.104244) (2.643315, 3.167190)
0, (1.434077, 2.283637) (1.299708, 2.418006)
a (1.120470, 1.246479) (1.100540, 1.266409)

(r =95%nand r; = 10).

(n)

25)

(50)

(75)

(100)

(125)

Table b-2: Asymptotic variance and covariance of estimates based on Type II censoring data from Frechet distribution
(r =295%nand 7; = 10).

Case (2.5,2,1.5)
r = 95%n
and
7, =10

% 0 RABias MSE RE

0 2.423428 0.030629 0.082577 0.114945
0, 2.103334 0.051667 0.078293 0.139905
a 1.520450 0.013633 0.034554 0.123925
0 2.454549 0.018180 0.049582 0.089068
0, 1.913356 0.043322 0.089118 0.149263
a 1.530352 0.020234 0.020592 0.095665
0 2.470489 0.011804 0.041845 0.081824
0, 2.020295 0.010148 0.080728 0.142063
a 1.467296 0.021803 0.024430 0.104200
0 2.576434 0.030574 0.025293 0.063615
0, 1.881799 0.059101 0.079928 0.141358
a 1.500267 0.000178 0.017880 0.089143
0 2.508792 0.003517 0.018813 0.054864
0, 1.891526 0.054237 0.082183 0.143338
a 1.545032 0.030021 0.016620 0.085945

()

25

(50)

(75)

(100)

(125)

Case (2.5,2,1.5)
r = 95%n
and
7, =10

4 0, 0, a

0, -0.2316 -0.0009 -0.4292
0, - 0.1238 0.0882
@ - 2.4199
0, -0.1169 -0.0014 -0.2110
0, - 0.0609 0.0405
@ - - 0.8929
0, -0.0592 -0.0069 -0.1218
0, - 0.0473 0.0217
@ - 0.7144
0, -0.0656 -0.0013 -0.1202
0, - 0.0341 0.0197
@ - 0.4352
0, -0.0552 -0.0006 -0.1022
0, - 0.0242 0.0157
@ - 0.4115
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(r =295%nand 7; = 10).

(n) 0 (L, U) bound 1 (L, U) bound 2
0, (1.880560, 2.966295) (1.708837, 3.138019)
(25) 0, (1.593677, 2.612992) (1.432458,2.774210)
a (1.158322, 1.882577) (1.043772, 1.997128)
0, (2.027306, 2.881792) (1.892158, 3.016940)
(50) 0, (1.353430, 2.473282) (1.176311, 2.650401)
Case (2.5,2,1.5) a (1.255459, 1.805244) (1.168504, 1.892200)
(75) r = 95%n 0, (2.073745, 2.867234) (1.948244, 2.992735)
and 0, (1.464829, 2.575761) (1.289121, 2.751470)
7, =10 a (1.167728, 1.766863) (1.072967, 1.861625)
0, (2.303082, 2.849787) (2.216613, 2.936255)
(100) 0, (1.378431, 2.385166) (1.219202, 2.544395)
a (1.238187, 1.762347) (1.155284, 1.845250)
0 (2.240512, 2.777073) (2.155648, 2.861937)
(125) 0, (1.371419, 2.411634) (1.206895, 2.576158)
a (1.308269, 1.781794) (1.233375, 1.856689)

£ SN\

Table b-3: Confidence bounds of the estimates at confidence level based on Type II censoring data 95% and 99%

6 Conclusion

The cumulative exposure model under Frechet distribution is very important in the industry world because this model is
used to accelerate failure and this helps to measure validity. This article present derivation of: the probability density
function, the cumulative distribution function and the failure rate function under the cumulative exposure model for
Frechet distribution. From this; the simple step-stress model under the same distribution was concluded. It was concluded
that; the cumulative exposure model of Frechet distribution is used for all types of data and also for a mixture of data. In
this paper, a simple step-stress model was consided, with two stress levels from Frechet distribution when the data are
Type II censored. Also procedure was proposed for constructing the estimator 8 beside RABies, MSE and RE of it (see
tables (a-1, b-1). Moreover, the variance and covariance matrix, see tables (a-2, b-2), and the confidence interval (Cls) for
6 at 95% and 99%, see tables (a-3, b-3). Since, we chose the value of parameters 8 to be (2.5, 2,1.5), for different (n),
we take 7 = 75% n and 95% n the best results were 7 = 95%n. The parameters 6 increases the estimates have smaller
MSE and RE, as the sample size increases.
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