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Abstract: In this paper, a new weighted generalized measure of inaccuracy of order £ and its dynamic (residual) version

is introduced. It is shown that the weighted generalized residual inaccuracy uniquely determines the survival function.
Based on proportional hazard rate model (PHRM), some characterization results of the proposed dynamic measure of
inaccuracy are focused. Further, some important properties and their relationships with the other reliability measures of the
dynamic measure have also been studied under proportional hazard rate model (PHRM).
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1 Introduction

Entropy, the quantitative measure of uncertainty, generally known as Shannon’s entropy was originally introduced by
Claude Shannon in [1]. The measure has promoted a wide interest and attention among the researchers towards the
development of its generalizations and one of the remarkable generalizations of this measure known as inaccuracy measure
, has been proposed by Kerridge in [2]. The proposed measure has been widely used as a fundamental tool for the
measurement of error in experimental results.

Let X and Y be two non-negative random variables describing time to failure of two systems with density functions f’ (x)

and g(x)respectively and let F'(x) and a(x) be the survival functions of X and Y respectively. Then Shannon’s measure
of entropy and Kerridge’s measure of inaccuracy are respectively defined as

)= [ 1o 12,
0 (D

and
£(x.7)=~[ (x) logg(x)ax. @)
0

In case, g(x)z f (x), then (2) reduces to (1).

The information measures defined above are shift-independent, as they consider only probability density function of
the observed random variable. But sometimes in several real life situations, it is necessary to also take into account the
value of random variable known as weight or preference, which depends on the goal set by the experimenter. See Rao [3].
So, we need to study shift-dependent (weighted) version of the above measures. In this situation, Belis and Guiasu [4],
introduced a new measure of entropy called as “length biased” entropy, or weighted entropy, defined as
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0

1" ()= =[x f(x)log £ (x)dx. 3)
0
Based on (3), the weighted (length biased) measure of inaccuracy is defined as

&"(X.7)= =[x/ (x)logglx)ax. o)
0
where, the coefficient x in the integral represents the weight function w(x) of the elementary events.

when w(x):x, i.e. the weight function depends on the length of unit of interest, X" is said to be length (size) biased
random variable.

The measures (1) and (2) cannot be applied to a system which has survived for some units of time say t. Ebrahimi [5],
introduced the measure of uncertainty for the residual lifetime random variable X, = [X -t/ X > t], known as residual

measure of entropy given as

H(X;t)= —I%log%dx. 5)

Taneja et al. [6] defined a residual measure of inaccuracy as

&(x,v;0)= —T%log%dx. (6)

Dicrescenzo and Longobardi [7] developed the weighted form of (5) as follows

H%X;t):—jx%log%dx, (M
and

Kumar et al. [8] developed the weighted form of (6) as follows

§W(X,Y;t):—jx£(x)1ogﬁdx. (8)
) Fle) 6l

Recently, there has been an ample interest among scholars in developing the new and important length biased
inaccuracy measures. For more in this direction we refer to, Kumar and Taneja [9], Kundu [10], M. Khorshadizadeh [11],
Daneshi et al. [12].

Various researchers have developed several generalizations of Kerridge’s measure of inaccuracy in different ways and
in this direction, Nath [13], introduced a new generalized inaccuracy measure of order § defined as follows

£5(x,7)= 1_1ﬂ 1og[J' f(x)(g(x))ﬁ_ldx] BELB>0 , )
0

where,

lim &y (X Y ) =- I f (x)log g(x)dx , which is the Kerridge’s inaccuracy given in (2). Further, it should be noted that, when,
p—1

0
g(x)z f (x), then (9) reduces to Renyi’s entropy of order £ and even when g(x) =f (x), S —1, then (9) reduces to (1),

the Shannon’s entropy.
Analogous to (6) and on the basis of (9), the generalized dynamic (residual) inaccuracy of order £ is defined as

§ﬂ(X,Y;t):$10g T(%J{%}ﬁ_ldx B#LB>0 . (10)

The objective of this research work is to develop a new one parametric weighted generalized inaccuracy measure
(WGI) and its dynamic (residual) version (WGRI). The rest of the paper consists of the following sections. In section 2, we
define weighted generalized inaccuracy (WGI) along with an example to compare the generalized inaccuracy with its
weighted version. In section 3, we define the weighted generalized residual inaccuracy (WGRI) and based on proportional
hazard rate model (PHRM), some significant characterization results of the proposed dynamic measure of inaccuracy are
studied. In section 4, under the proportional hazard rate model (PHRM).we discuss some important properties and their
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relationships with the other reliability measures of WGRI. Finally, in section 5, we illustrate some concluding remarks.

2 Weighted Generalized Inaccuracy (WGI)

In this section, we discuss the weighted form of generalized inaccuracy (GI) (9), which is known as weighted generalized

inaccuracy (WGI).
Definition 2.1. Analogous to (2) and on the basis of (9), the WGI is given by

! 5 log[zxﬁ f(x)(g(x))ﬁ‘ldx} B#1p>0.

1—

ER(x.Y)=

It can be further expressed as

AR
00

&y (x,y)= Fx)(ex)y " ax,

o'-—.x
o'—.x

ﬂ

- ﬂlog( (e ().

Remark 2.1. When g(x) =f (x), then (11) reduces to weighted Renyi’s entropy of order £ .

The following pairs of examples exhibits the difference between GI (9) and its weighted version (11)
Example 2.1. Let the two random variables X and Y be distributed as

1. fl(x):1;0<x<1,gl(x)=2(1—x);0<x<1.
2. fz(x)=1;0<x<1,gz(x)=2x;0<x<1.

then, by simple calculation, we obtain

27
51(ﬁ)(X>Y):§2(ﬁ)(X, Y)= - ﬂlog( 5 ]

and
W 1 2P AT (B +1
Elp(X.Y)= log pr(p+1)
1-5 r(2p+1)
1 2h2
& (X,Y):—log .
(s) 545
where,
1
J.x’" 1 " Ldx = Lmln , is a beta function.
0 IT'm+n

(11)

Thus, from the above calculations, we observe that the generalized inaccuracy (GI) of both the numerical examples is same,

but their weighted versions are different. i.e., §1( ﬂ)(X Y ) = §2( ﬂ)(X , Y) but flv(vﬂ)(X ,Y ) # 52”( ﬁ.)(X ,Y )

3 Weighted Generalized Residual Inaccuracy (WGRI)

In this section, we discuss the weighted version of GRI (10) which is called as weighted generalized residual inaccuracy
(WGRI). Some characterization results by using the proportional hazard rate model (PHRM) of this measure are also

discussed.
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Definition 3.1. Analogous to (4), the weighted form of (10), known as weighted generalized residual inaccuracy (WGRI) is
defined as

é_‘,‘b"(X,Y;t)z#log Zfﬁ(%}(%f_ldx ,B#1,B5>0. (12)

Remark 3.1. When ¢ =0, then (12) reduces to (11), the weighted generalized inaccuracy measure.

In order to provide characterization results we define the proportional hazard rate model (PHRM). The notion of this
model was introduced by Cox [14]. The model has been widely used in the variety of fields such as survival analysis,
reliability, economics etc. For the application of this model one may refer to Cox and Oakes [15], Ebrahimi and Kirmani
[16] and Nair and Gupta [17].

Definition 3.2. Two random variables X and Y are said to satisfy proportional hazard rate model (PHRM), if there exists
(proportionality constant) € > 0 such that

A (x) =05 (x) . Or, equivalently, (_}(x) = [}_T(x)]g , for some 6. (13)
where, A, (x) and A, (x)represent the hazard rate functions of X and Y respectively.

Table 1: Expressions of WGI & (X , Y)for some lifetime distributions.

Distribution £(x) g(x) X & (x,7)
-1 i
Uniform l M O<x< i’l,a >0 Slog nepr(p + Z)F(W_p)
n n? I D(w+2)
i 1
Pareto pi M x2 A4, 1,0>0 Slog M}
X'UH x,uGH | ﬂW—l
_répei‘%ﬂf (p+2) wh
=) | g e
Weibull le r Qe r x>AA,r,0>0 S'log )
r r w
[ gr
Exponential me ™ me "0 x20;m,0>0 Slog] %1
mw

B p+l pgp _
Finite range a (1 — x)“‘l a 9(1 _ x)"e—‘ 0<x<lLa>160>0 Slog a” 0 F(P + 2)F(a w P)}

F(aw+ 2)

p+l 3
2 20‘9”F(p+2j

x? 0x*
Rayleigh X e @6_? 0<x<0,0>0 Slog 3
o2 o2 Wp+5
1 1 < Talb
where, S=——,p=8-1L,w=pO+1 and B(a,b): J.u“’l (l—u)b_1 du :I u du = a is the complete beta
1-8 ) s (1+u)* [(a+5b)

function.

In the following theorem, an alternative way of expressing the WGRI (12) is obtained.
Theorem 3.1. If random variables X and Y satisfy the proportional hazard rate model (13) with proportionality constant
6 > 0, then for all# > 0, the following equality holds

1

& (0. v:0)= 1 togl” expl(1- p)gy (x.1:1)
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F()

e AR e g1
- Li).zﬂldz + jizﬂldz} [%} (%Jﬁ_l dx

Z[%J(%Jﬂl dx}zz. (15)
Since, from (10), we have

T [%J[%r—ldx:exp«l_ﬂ a1 (16)

0(B-1)+1
8 j ﬂl( (Z)] exp(( ,B)fﬂ(XYz))d] (14)

and

jf = OGO explli- p)es (x.7:0)

Using proportlonal hazard rate model (13), we obtain

If )W ax=(F ())H(ﬁ D expl(1- B, (X, 7;0). (17

Using (15) (16) and (17) in (12), the desired result is satisfied.
Theorem 3.2. Let the two non-negative random variables X and Y with survival functions F' (x)and G(x)respectively,

satisfying the proportional hazard rate model (13) and Let §Z(X ,Y ;t)< o,Vt >0 be an increasing function off, then
$p (X ,Y; t), determines }_T(t) uniquely.
Proof. Rewriting (12) as
o 002}
1= B)EN (X, Yot :Iﬂ_— ASIR 8
woli-axjcral [ 3] &5 o "

Differentiating (18) w.r.t.t, we have

2 ol g .70 <2, a0

20+ (8- O exol(1- ) (x, :0)). (19)
Where, Ar (t) = % and A (t) = % denoting the hazard rates of X and Y respectively.

By using the relationship A (t) =0 (t) in (19), we obtain
P05 (2 ()~ (008~ 1)+ Dexpl(1 - £)3 (X, 720)) 2 (1)
0
+§exp<(l - B)ES (XY t)): 0 (20)
Hence for fixed¢ >0, A, (t) , is a solution of the equation z'(x, ) =0, where
o(x,) =207 xf —(0(p-1)+ Dexpl(1- B)Ey (X, V1)),
0
= exp((l - B (XY z)). 21)

Here, T(O)zgexp((l— ,B)fg(X Y ;t))ZO, since we have assumed that (f/V;(X Y ;t) is increasing in ¢, and also as

© 2021 NSP
Natural Sciences Publishing Cor.



876 NS

M. S. Shah, M. A. K. Baig: Some Results on parametric ...

X, >0, z‘(oo): 0.
Differentiating (21) both sides w.r.t. x,, we have

ir(xt)zﬂtﬁeﬂ_l x;
Ox,
and

2

0 _ _
—5 (%)= B(B-1)P67" /2.
Ox;

Now, ﬁ2'( ) 0, gives
ox

t

(0(8-1)+ Vexpl(1 - gz (X, v:0) |71

X; =

BiPoP!

L (o(B 1)+ expl(1- Az (X, Y1)

= x, (say).

So, in view of the above, the unique solution to T(xt ) =0 is given by x, = A (t) Thus, 4‘;; (X ,Y; t), the

Weighted generalized inaccuracy uniquely determines A, (t), which in turn determines 1_7(1)

In the below given table 2, we derive the expressions of weighted generalized residual inaccuracy corresponding to some

well-known lifetime distributions.

Table 2: Weighted generalized residual inaccuracy é‘}; (X Y ;t) of some lifetime distributions.

Distribution f(x) g(x) x &y (X.Y;50)
0-1 w+l gp
Uniform 1 Oln—x)"" 0<x<n;0>0 S1OgLK(’W)
n n’ (n—1)"
0 p,ptl
Pareto n HOA x2 A4, 1,0>0 Slog] 10 n
x,u+l x,u€+1 ,LlW—l
= wit
_(ﬂj _g(x—ﬁ] réfe” F(p +2, rj
Weibull le r Qe r x>AA,r,0>0 Slog
p+2
r r w
P ™M 2 t
Exponential me ™ mbe m0* x20;m0>0 Slogl:e ¢ (p Tomw )}
mwp+2
P (- p+2 -
Finite range a(l—x)y" af(1-x)"" 0<x<lLa>16>0 Slogl:a (l( ’p):w av=p)
-1
L1
o2 02 6”’F(p+; v;tJ
Rayleigh e Ox 5 0<x<0,0>0 S log =
(o2 (72 *;72 eré
e 2w 2

where, K(p,w): B(p+1,v—p)—§(é;p+2,w—pj,

1
xab:J.u 1 ubldua>0b>0and13’ xab ju
0 X

“du,a > 0,b > Oare the lower and upper incomplete
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0
beta functions, respectively and I' (b, ax) = abJ.ub e du;a > 0,b > 0, is the upper incomplete gamma function.
X

In the following example, we study the monotonic behavior of weighted generalized residual inaccuracy é‘};(X ,Y. ;t) with

respect to exponential distribution.
Example 3.1. If a random variable X is exponentially distributed with parameter m >0 and X and Y satisfy the PHRM
with proportionality constant & > 0, then from the above table 2, we have

&y X, Yﬁ)=$ (ﬂ_1)10g9+m(l+9(ﬂ—1))t+log[r(ﬁ+1’m(l+0('B_1)t))ﬂ_

m(1+6(8-1))""
In the below given table 3, assuming f=04,0=0.5 and m=1.2 in the expression of éjr};v(X Y ;t)corresponding to

exponential distribution and then calculate the values of the expression for different values of ¢ as shown in the following
table

Table 3. Different values of 5;{ (X R Y;t)for different values of ¢

t 6 7 8 9 10 11 12 13 14 15

g&/‘;(X,Y;t) 3485 | 3.611 | 3.723 | 3.823 | 3.914 | 3.997 | 4.073 | 4.143 | 4.209 | 4.271

The graph of this table is shown in Fig. 1 and it clearly shows that 5};()( , Y;t) is monotonic increasing int € [6,15].

p=04 o
. me=12 o~
S e-o0s e
- "/.—-
- -
P >
~

(XY
\\

.
38
1

=
o /

o
T
6 7 8 9 10 11 12 13 14 15

-
—

Fig.1: Weighted Generalized Inaccuracy for Exponential Distribution.

4 Some Properties and Inequalities of gg(){, Y;t)

In this section, we present some significant properties and inequalities of WGRI.
Definition 4.1. The survival function F is said to have increasing (decreasing) WGRI of order S represented by IWGRI

or DWGRI, if 52’()( Y. ;t) is increasing (decreasing) inz,¢ > 0.

It means F has IWGRI or DWGRI ifaﬁgg()(, Y;1)>(<)0.
t
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Theorem 4.1. Let the random variables X and Y have IWGRI, then under the PHRM, 5; (X ,Y; t) obtains a lower bound as

follows

p-1
1 9P1,P 1+§mF(t)
ERX,Y;t)> log
PTG G| e
Proof. From equation (12), we have
o 10 )
1= B)ER(X,Y:) =1 j p S X))
Differentiating both sides w.r.t. t, we have
( ﬂ) & (XYs0)= Apefolp-1)+1]
— 057 (2, (0)) expl(1- B)y (X, ¥30)). (22)
1+ L (o)
Using A (t) = 81—()’ where m (t), represents the mean residual life function of X, we obtain
mp\t
0
1+—m (t)
0 w ot 3
1-8)—&5 X, Y;t)=|0f-1)+1| —=———
( ﬂ)at é:ﬂ( , ’t) [ (ﬁ )"‘ ] mp(t)
ol
I+ —mglt
—tP6P Vexpl-(1- B)EY (X, Y3t ot
0= ppera) —2e s
Since, é"};(X Y ;t) is increasing w.r.t. t. Therefore
p-1

1 gptp | L mp(e)
log
1= @B-1)+1)]  mp()

& (X, yit)>

Theorem 4.2. Let the random variables X and Y be lifetimes of two components of a system with probability density
functions f (x) and g(x)and with survival functions F (t) and G(t) respectively, s > 0, then for 0< <1 5};(X Y ;t)

attains a lower bound as follows

EN(X,Y51)2 E(X, Y30)+ J' (x) logxdx. (23)
t

Proof. From log-sum inequality, we have

(1), [f(o)} T
J (ﬂt)] e ( g())}(gg(t;f ' I [%j i
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=—(1-p)&y(x.Y;1). (24)
Where (24) is obtained from (12).
The L.H.S of (24) leads to
L)) £, 260 y
(1 ﬂ)‘!-[i(t)jlog[a(t) dx ﬂ'! ]?(t) logx dx. 25)

Using definition of £(X, Y;¢) and (25) in (24), we obtain (23).
Theorem 4.3. Let F be an INGRI (DWGRI) and g <1, then under PHRM

tPoPs!

Ap(t) < (Z){(ﬁ(ﬂ -1)+ 1)exp((1 P, Y”))}‘“ |

Proof. From (22), we have

1-A) 2 (720 = 2 (Ofolp-1) 1] 707 (2, 0 expl-(1- P (. 7:1).
Since F' is IWGRI (DWGRI) and g <1, therefore, we have

2008 -1)+1)-207 1 (i (O exol-1- A (x.v:o))= o,

which leads to

. (t) < (Z)|:(9<ﬂ - 1)+ l)exp((l _ ﬂ)f;()(, Y: t))}ﬁ'—] |

PP

Theorem 4.4. For the random variables X and Y having support (0, b], probability density functions f (x) and g(x)and
survival functions ]?(t)and a(t) respectively, # > 0, then for 0 < # <1, the following upper bound of 5"3” (X Y ;t)holds

1 jxﬁ' []I;((J:))] [%(()3}'5‘1 logx” (]}_;(();))J(%(();;Jﬂ—l )
R

Proof. From log-sum inequality and (12)

jxﬂ [%} ( %Jﬂ‘l log” ( %} ( %Jﬂ—l .

Ep(X.Y5e)<

+log(b—1)|.

() e [F0G0) o

t

- j:'xﬁ (L")J (@Jﬁ_l ax|(1- By (X, ¥30)-toglb—r)]

Fl) \ Glo)
After the simplification, the desired result is obtained.
Proposition 4.1. For the random variables X and Y having WGRI fg (X , Y;t) and S > 1, we have

st 1"
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Proof. Since, —logx >1—x, we have

&5 (X,Y30)= ! longﬁ(M (ﬁ ﬂ_ldx

Theorem 4.5. If the hazard rate A (z‘) i

Ep(X,Yse)> ﬁlogfxﬁ({:(():))}dx log 6(¢)-

Proof. Rewriting the equation (12) as

£, 1:0)= log{j (Lo (22 Jﬂ'ldx}

o

ecreasing inf, then

Since, E(x) < G( ) for x > ¢, implies A (x) Ag (t) therefore

= log[ug o je [ L) 2 ;]ﬂ 14
- fﬂlog[uG(r))ﬂ-ffxﬂ(%}x].

which gives the required result.
Definition 4.2. If X and Y are the two non-negative random variables with density functions f’ (x) and g(x)respectively,

&y (X.¥;0)>

then X is said to be less than or equal to Y in the likelihood ratio ordering, denoted by
lhr
x %y it L) i decreasing in x thatis it 78 < SOty

g(x) glx) gl

lhr
Theorem 4.6. If X <Y, then

W 1 At » .

@ &y (X, v;51)< —ﬂl g/128+Hﬂ(X;t),If0<ﬂ<l.
w . 1 ﬂ'F(t) w AR

(I1) fﬁ(X,Y,t)Z—l_ﬂlog—/lG(t)+Hﬂ(X,t), p>1.

where,
B

Hg ( X; t) = . 1,[7’ logj[ X %((x)) dx , is the weighted residual Renyi’s entropy of order £ . See Nourbakhsh and Yari [18].
- t

Proof. (I) From equation (12), we have

il
[ () )

&y (X, v;t)=

Since, M < it) , for all x> ¢, Therefore equation (26) reduces to
glx)~ g(t)
© 2021 NSP
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which leads to
2:(t) .
ER(X, Y5t —log +Hy(X;t),if0< B <1.
] )< 1-8 () p(x:)

Similarly, we can prove (II) for # >1.
In the following theorems, we consider more than two variables and obtain some bounds for WGRI.
Theorem 4.7. Let the random variables X, X,& X; have the density functions f|, f, & f3, survival functions

Ihr f

F1,F2 & F3 and hazard rate functions /IF ,ﬂF &ﬂF respectively. Further, let X, < X, , that is is increasing in x,
1

then ()
w ) EW . 1 AFI ).
D fﬁ(Xl,Xg,t) §ﬁ(X2,X3,t) - ﬂlogﬂFz(t),1f0<,B<l.
w . w . 1 ﬂ’F] (t)
D &YX X)Xy, Xy3t) > - 1 & (t),lfﬂ>l
(x)< hle

Proof. (I) since, by the given condition, we have Therefore, for 0 < 4 <1 from (12), we obtain

£x) 7 £ )
w )< 1 0 wx fl(t) ( ) (X) .
&5 (X, X550)< ——1 g,! g F()F. ()[ ()] ‘

1-p
. Lo 220
:gﬂ(X29X3;t)+§10 (ﬂ::()]

This completes the proof of (I). The proof of (II) follows similarly.

lhr . f3

Theorem 4.8. Consider the three random variables as mentioned in theorem 4.7. Further, assume X, < X3, that is 7
2
increasing in x > 0, then for g #1

5 (1)

P(X, X yst) - &5 (X, X530)> —1 A,
§ﬂ 1425 —écﬁ 1,435 __Ogle(t)'

Proof. Since, we have /2 (x) < fz—(t) therefore for S # 1 from (12), we obtain

A NNAGK
(0 art) g [ A0 | £OAG)
sl e xﬂ(fm J( fg(t)Fz(t)] “

Hence we get the desired result.

5 Conclusions

In this paper, we have developed and studied a weighted inaccuracy measure of order £ with its dynamic (residual)

version. It is shown that the weighted generalized residual inaccuracy measure uniquely characterizes the survival function.
Further, we study the monotonic behavior of the proposed dynamic measure on the basis of exponential distribution.
Finally, we have presented some important properties and inequalities of the proposed inaccuracy measure.
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