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Abstract: The present paper aims to introduce an algorithm based on the Caputo-Fabrizio fractional differential mask for image

contrast enhancement. Experiments show that the method can control the degree of contrast enhancement by varying the fractional

differential order. The contrast performance is measured using Peak Signal to Noise Ratio (PSNR).The final numerical procedure is

given for contrast enhancement. The experimental results asserted the effectiveness of the algorithm (higher PSNR values) compared

with other proposed fractional differential mask.
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1 Introduction

The concept of fractional derivative is a generalization of the integer-order differentiation. In recent years, the fractional
derivative has become popular due to its applications in numerous fields of science and engineering [1–4] . It also helps
solve differential and integral equations as well as other problems such as contrast image enhancement, image denoising
and image restoration [5–19]. Several known forms of the fractional derivatives have been used to obtain fractional
differential masks. In [7], the authors proposed 1 ∼ 2 order fractional differential masks based on Riemann-Liouville
definition. In [5], Chen Qing-li, Huang Guo and Zhang Xiu-qiong proposed 0 ∼ 1 order fractional differential masks
based on Riemann-Liouville definition. In the same line, in [8, 9] , we can find some fractional differential masks based
on the Grümwald-Letnikov fractional derivative.
Recently, Caputo and Fabrizio have introduced a new fractional derivative [20] . The interest in this new approach is due
to the necessity of using a model describing structures with different scales [20] as well as facilitating detection of edges
and regions in an image. In literature, no results have been obtained on image contrast enhancement using
Caputo-Fabrizio fractional derivative. Indeed, motivated by [5–9], our interest in this work is to develop the
Caputo-Fabrizio fractional differential mask and demonstrate its capability for image enhancement by varying the
fractional differential order. The paper is organized as follows: in Section 2, we briefly review the basic definitions
concerning the Caputo-Fabrizio fractional operators. Caputo-Fabrizio fractional differential mask is constructed in
Section 3. Section 4 presents the experimental performance of the proposed method. Conclusion is presented in Section
5.

2 Basic definitions

Here, we present some definitions concerning the Caputo-Fabrizio fractional operators used in our subsequent discussion.
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Definition 1.Suppose a,α ∈ R such that α ∈ (0,1). The Caputo-Fabrizio fractional integral of order α is defined by

Iα
axu(x) = (1−α)u(x)+α

∫ x

a
u(s)ds. (1)

Definition 2.Suppose a,α ∈ R such that α ∈ (0,1). The Caputo-Fabrizio fractional derivative of order α is defined by

Dα
axu(x) =

1

1−α

∫ x

a
e−

α
1−α (x−ξ )u′(ξ )dξ . (2)

For more details, see [12, 14, 21-29 ]. In particular, when a = 0, (2) can be approximated as

Dα
0xu(x) =

1

1−α

∫ x

0
e−

α
1−α (x−ξ )u′(ξ )dξ ,

≈
1

1−α

N−1

∑
k=0

(k+1)·
x

N
∫

k·
x

N

e−
α

1−α (x−ξ )u′(ξk)dξ . (3)

3 Construction of Caputo-Fabrizio fractional differential mask

Let’s take a partition of N + 1 nodes xk = k∆x,k = 0,1, ...,N of the interval [0,x], with step ∆x = x/N. Then, the N + 1
pixels can be given by











































u0 = u(0),

u1 = u(x/N),
...

uk = u(kx/N),
...

uN = u(x).

(4)

By approximating, we obtain

(k+1)·
x

N
∫

k·
x

N

e−
α

1−α (x−ξ )u′(ξk)dξ ,

≈
u( kx+x

N
)− u( kx

N
)

∆x
·

(kx+x)/N
∫

kx/N

e−
α

1−α (x−ξ )dξ ,

=
1−α

α
·

u( kx+x
N

)− u( kx
N
)

∆x
·
[

e−
α

1−α (N−k−1)∆x
− e−

α
1−α (N−k)∆x

]

. (5)

Then, taking (5) into (3), we have

Dα
0xu(x)≈

1

α
·

N−1

∑
k=0

{

[

u((k+ 1) · x
N
)− u(k · x

N
)

x/N

]

·

[

e−
α

1−α [N−(k+1)] x
N − e−

α
1−α [N−k] x

N

]

}

=
1

α ·∆x



































(

1− e−
α

1−α ∆x
)

uN +
(

2e−
α·∆x
1−α − e−2 α·∆x

1−α − 1
)

uN−1+
(

2e−
2α·∆x
1−α − e−3 α·∆x

1−α − e−
α·∆x
1−α

)

uN−2 + · · ·+
(

2e−
α·(N− j)·∆x

1−α − e−
α·(N− j−1)·∆x

1−α − e−
α·(N− j+1)·∆x

1−α
)

u j

+ · · ·+
(

2e−
α·(N−1)·∆x

1−α − e−
α·(N−2)·∆x

1−α − e−
α·N·∆x

1−α
)

u1

+
(

2e−
α·N·∆x

1−α − e−
α·(N−1)·∆x

1−α − e−
α·(N+1)·∆x

1−α
)

u0



































(6)
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From (6), we obtain N + 1 nonzero coefficients ci(i = 0, . . . ,N) which are a function of fractional order α . The nonzero
coefficients are



























































































c0 =
1

α ·∆x

(

1− e−
α

1−α ∆x
)

,

c1 =
1

α ·∆x

(

2e−
α

1−α ∆x
− e−

2α
1−α ∆x

− 1
)

,

c2 =
1

α ·∆x

(

2e−2 α
1−α ∆x

− e−3 α
1−α ∆x

− e−
α

1−α ∆x
)

,

...

c j =
1

α ·∆x

(

2e−
α

1−α (N− j)∆x
− e−

α
1−α (N− j−1)∆x

− e−
α

1−α (N− j+1)∆x
)

,

...

cN−1 =
1

α ·∆x

(

2e−
α

1−α (N−1)∆x
− e−

α
1−α (N−2)∆x

− e−
α

1−α ·N·∆x
)

,

cN =
1

α ·∆x

(

2e−
α

1−α ·N·∆x
− e−

α
1−α (N−1)∆x

− e−
α

1−α (N+1)∆x
)

.

(7)

Taking ∆x = 1, then the approximate differences of fractional partial differentiation on x-and y-coordinate are defined by

∂ α u(x,y)

∂xα
:=

1

α
·



















(

1− e−
α

1−α
)

u(x,y)+
(

2e−
α

1−α − e−2 α
1−α − 1

)

u(x− 1,y)

+ · · ·+
(

2e−
α

1−α (N− j)
− e−

α
1−α (N− j−1)

−e−
α

1−α (N− j+1)
)

u(x− k,y)+ · · ·

+
(

2e−
α

1−α N
− e−

α
1−α (N−1)

− e−
α

1−α (N+1)
)

u(x− n,y)



















and

∂ α u(x,y)

∂yα
:=

1

α
·



















(

1− e−
α

1−α
)

u(x,y)+
(

2e−
α

1−α − e−2 α
1−α − 1

)

u(x,y− 1)

+ · · ·+
(

2e−
α

1−α (N− j)
− e−

α
1−α (N− j−1)

−e−
α

1−α (N− j+1)
)

u(x,y− k)+ · · ·

+
(

2e−
α

1−α N
− e−

α
1−α (N−1)

− e−
α

1−α (N+1)
)

u(x,y− n)



















respectively.

4 Experimental performance

This section aims to demonstrate the performance of the proposed Caputo-Fabrizio fractional diffrerntial mask method.
For this purpose, three test images (i.e. dark living-room image, panther image and Goldhill) are used, as shown in Fig. 1

Table 1: Values for PSNR of the proposed mask.

al pha dark living-room phanter Goldhill

10−3 54.0831 36.7739 39.6978

10−4 74.0857 56.7765 59.7004

10−5 94.0860 76.7768 79.7007

10−6 114.0862 96.7770 99.7009

10−7 134.0619 116.7528 119.6769

10−8 153.1599 135.8507 138.7748

10−9 136.4216 119.1024 122.0041

10−10 162.7767 145.5665 148.5020

10−11 162.7767 145.5665 148.5020

10−12 76.6730 59.3534 62.2519
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Fig. 1: Original images: dark living-room, panther and Goldhill

Table 2: Values of PSNR considering the mask given in [30].

al pha dark living-room phanter Goldhill

0.01 21.4133 4.1688 6.9463

0.02 21.6614 4.4217 7.1844

0.09 23.5280 6.3397 8.9538

0.1 23.8140 6.6367 9.2209

0.2 26.9128 9.9494 12.0130

0.3 29.8277 13.4326 14.3663

0.399 30.2471 14.2526 14.5970

0.4 30.2340 14.2382 14.5864

0.5 28.0883 11.7231 12.8364

0.6 25.7333 9.0613 10.7878

Table 3: Values of PSNR considering the mask given in [16].

al pha dark living-room phanter Goldhill

0.03 25.9788 8.7088 11.6943

0.04 28.3511 11.0815 14.0401

0.05 31.4253 14.2607 17.0251

0.06 35.3429 18.9058 20.6147

0.0699 37.6893 24.2845 22.3918

0.07 37.6822 24.3034 22.3834

0.0701 37.6745 24.3205 22.3744

0.08 34.5865 20.1482 19.6139

0.09 30.8791 15.1783 16.2085

0.1 28.0412 11.8444 13.5055
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For ease of calculation, only the first three coefficients are considered in this paper,

c0 =
1

α

(

1− e−
α

1−α
)

, (8)

c1 =
1

α

(

2e−
α

1−α − e−
2α

1−α − 1
)

, (9)

c2 =
1

α

(

2e−2 α
1−α − e−3 α

1−α − e−
α

1−α
)

. (10)

From (8)-(10), we construct the following fractional differential mask (see Table 4)

Table 4: Proposed mask.

C2 C2 C2 C2 C2

C2 C1 C1 C1 C2

C2 C1 C0 C1 C2

C2 C1 C1 C1 C2

C2 C2 C2 C2 C2

which will be used in this paper. For the comparison purpose, we used the PSNR (Peak Signal to Noise Ratio). The
maximum value of PSNR in Tables 1, 2 and 3 are α = 10−10, α = 0.399 and 0.0699, respectively. These tables indicate
that the proposed mask has higher Peak Signal to Noise Ratio (PSNR) values in comparison with the results obtained
using other methods.

Figures 2 to 7 show the visual results of the proposed method applied on dark living-room, goldhill and panther images
with different values of fractional order α ∈ (0,1). Based on these results, the proposed mask can control the degree of
contrast enhancement by varying the fractional order α . In Figure 8, we compared the visual result of the different masks
and observed that the proposed mask has demonstrated significant advantages over other known methods.

Fig. 2: Results of applying the proposed method on a dark image(taken from [5]) with different values of fractional parameter α .
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Fig. 3: Results of applying the proposed method on a dark image with different values of fractional parameter α .

Fig. 4: Results of applying the proposed method on a dark image with different values of fractional parameter α .
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Fig. 5: Results of applying the proposed method on a dark image with different values of fractional parameter α .

Fig. 6: Results of applying the proposed method on a dark image with different values of fractional parameter α .
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Fig. 7: Results of applying the proposed method on a dark image with different values of fractional parameter α .

Fig. 8: Results obtained for the best value of each model.
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5 Conclusion

In this paper, we presented the Caputo- Fabrizio fractional differential mask, which can enhance both contrast and
texture of a real image. The method can control the degree of contrast enhancement by varying the fractional differential
order α ∈ (0,1). Experiments showed that the proposed mask did not only enhance edges and texture of the image but
also improved some traditional algorithms. After employing the proposed method with different fractional orders, we
observed that the value with the best contrast was α = 10−10. As a future work, we plan to improve the proposed
Caputo-Fabrizio fractional differential mask for contrast image enhancement.
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