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Abstract: In this article, an explicit form of the stress-strength reliability R = P(X < Y ) is introduced when X and Y are independent

random variables belonging to Marshall-Olkin extended Weibull family. Also a characterization of the parent distributions associated

with R is presented. Based on Type-II progressive censoring with fixed and random number of removals, maximum likelihood and

Bayesian estimators of the parameter R are obtained. Two distributions for the random number of removals are considered, namely

discrete uniform and binomial distributions. Using informative and non-informative priors, the Bayesian estimation is discussed under

two different loss functions: the squared error loss function (SELF) and linear exponential loss functions (LINEX). A numerical

illustration is performed to highlight the theoretical results that are obtained. Also a real data example is provided.
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1 Introduction

Marshall and Olkin [1] introduced a general method for adding a new parameter α to any family of distributions. Starting
with parent survival function (SF), F (x) , they constructed a new survival function, G(x,α) , as

G(x,α) =
α F(x)

1−αF(x)
, α > 0, (1)

where α = 1−α . In the last decade, several authors used Marshall and Olkin extension for adding a new parameter to the
classical distributions to obtain more flexible distributions. Jose [2] displayed the related work of Marshall-Olkin family
and its applications in different fields as reliability theory, time series, and stress-strength analysis. Also, Ahmad et al. [3]
introduced a brief survey on Marshall-Olkin extended distribution and some other families.

Gurvich et al. [4] introduced a class of extended Weibull distribution with SF

F (x,θ ,η) = e−θ ψ(x,η)
, x ∈ D ⊆R+,θ > 0, (2)

where η could be a vector parameter and ψ(x,η) is non-negative, monotonically increasing function of x, not depending
on θ and differentiable with respect to x and η . It is noticeable that ψ (x,η) → 0 as x → a+ and that ψ (x,η) → ∞ as
x → b− when (a,b) is the support of x.

Santos et al. [5] considered the class of extended Weibull given in (2) as a parent distribution of Marshall-Olkin extended
distribution and they called it Marshall-Olkin extended Weibull (MOEW) family of distributions.

∗ Corresponding author e-mail: sohair smz@women.asu.edu.eg

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/100210


386 N. A. Mokhlis et al. : Estimation of stress-strength reliability...

Let X be a random variable with a probability distribution belonging to MOEW family with parameters α, θ and η , i.e. X

having MOEW (α,θ ,η), then the SF, Gx (x,α,θ ,η), and the probability density function (PDF), gx (x,α,θ ,η), of X are
given respectively by

Gx (x,α,θ ,η) =
α e−θψ(x,η)

1−αe−θψ(x,η)
, α > 0, (3)

and

gx (x,α,θ ,η) =
α θ ψ(1) (x,η)e−θψ(x,η)

[
1−αe−θψ(x,η)

]2 , α > 0, (4)

where ψ(1) (x,η) is the first partial derivative of ψ (x,η) with respect to x.
Notice that for α = 1, the SF of X is reduced to the parent SF. Clearly, the SF and the PDF in (3) and (4) can be
presented as linear combinations of the parent distribution in (2) according to the value of α. First: If α <1, then we have∣∣∣αe−θψ(x,η)

∣∣∣< 1, and using the binomial expansion for the denominator, we get

Gx (x,α,θ ,η) = α
∞

∑
k=0

(α)k
e−θ(k+1)ψ(x,η)

, (5)

and

gx (x,α,θ ,η) = α θψ(1) (x,η)
∞

∑
k=0

(k+ 1)αk
e−θ(k+1)ψ(x,η)

. (6)

Second: If α > 1, we can rewrite the denominator of (3) as α
[
1−
(
1− 1

α

)(
1− e−θψ(x,η)

)]
. In this case, we have

∣∣∣
(
1− 1

α

)(
1− e−θψ(x,η)

)∣∣∣< 1. Applying the binomial expansion, we get

Gx (x,α,θ ,η) = e−θψ(x,η)
∞

∑
j=0

(
1−

1

α

) j(
1− e−θψ(x,η)

) j

, (7)

Similarly, we get the PDF as

gx (x,α,θ ,η) =
θψ(1) (x,η)e−θψ(x,η)

α

∞

∑
j=0

( j+ 1)

(
1−

1

α

) j(
1− e−θψ(x,η)

) j

. (8)

Many distributions in the literature could be considered as special cases of MOEW(α, θ ,η) by choosing the appropriate
form of ψ (x,η). For example, Marshall-Olkin extended exponential (ψ (x,η) = x), Marshall-Olkin extended Rayleigh

(ψ (x,η) = x2

2
), Marshall-Olkin extended Pareto (ψ (x,η) = ln x

η ), and many other distributions. For more details, see

[2].
Stress-strength models have attracted the attention of a large number of researchers due to its importance in many aspects
of life. If Y is the strength of a system and X is the stress imposed on this system, then R = P(X < Y ) is the system stress-
strength reliability. However, X and Y may represent other variables of interest, such as the life time of two equipments
or the effect of two medical treatments. A valuable review of stress-strength models and their applications is presented in
[6]. In subsequent years, many researchers studied R when X and Y have specified distributions, for example [7,8,9,10,
11] and others. Mokhlis et al. [12,13] discussed the reliability R when X and Y are independent random variables having
SF given in (2). Gupta et al. [9] proposed a general form for R when X and Y are independent random variables having
Marshall-Olkin extended given in (1) with equal parent SFs, and different α’s.
In the present paper, we consider the estimation of the stress-strength reliability parameter R = P(X < Y ) when the stress
X and the strength Y are independent random variables having MOEW(α, θ1,η) and MOEW(α,θ 2,η), respectively.
In many situations, it is difficult to observe the failures of all units under the study. This could be due to the lack of
time, money or other considerations. Thus, censored schemes are often used. A Type-II progressive censored scheme
is one of the most popular censoring schemes. Thus, in this article, we consider the estimation of R based on Type-II
progressive censored samples. Type-II progressive censored data is defined, as follows: Suppose that N units are under
experimentation and only n < N prefixed number of units is observed until failure. When the first failure x1:n:N occurs,
R1units are randomly eliminated from the (N − 1) remaining units. Similarly, when the second failure x2:n:N occurs, R2

units are eliminated from the remaining (N − R1 − 2) units. When the nthfailure xn:n:N occurs, the experiment terminates.
For more details, see [14]. In some practical situations, the assumption of eliminating a fixed number of units at each
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failure is impossible. Thus, we also consider both situations when the removals R1, R2, . . . ,Rn are fixed or random. Two
cases of random removals are considered, namely; discrete uniform and binomial random removals. For more details on
random removals, see [15,16].
The remaining part of the paper is organized as follows:
In Section 2, the stress-strength reliability R = P (X < Y ), when X and Y are independent random variables following
MOEW(α, θ1,η) and MOEW(α,θ 2,η) respectively, is obtained in an explicit form showing that R does not depend
on η . Also, a characterization of the parent distributions, associated with R, is presented in this section. The estimation
of R based on Type-II progressively censored samples, for fixed as well as random removals with discrete uniform and
binomial distributions, is discussed in Sections 3 and 4. In Section 3, the maximum likelihood estimator (MLE) of R is
obtained. In Section 4, Bayes estimators of R using Lindley’s approximation for informative and non-informative priors
under two different loss functions (SELF and LINEX) are presented. A simulation study illustrating the theoretical results
is performed in Section 5. A real data example is discussed in Section 6. Conclusion is presented in Section 7.

2 Stress-Strength Reliability

In this section, we obtain the stress-strength reliability, R, when the stress X and the strength Y are independent random
variables following MOEW(α, θ1,η) and MOEW(α,θ 2,η), respectively. Theorem 1 presents a characterization of the
parent distributions of X and Y associated with the stress-strength reliability R.
Theorem 1 Let X and Y be two independent, non-negative, continuous random variables following Marshall-Olkin
extended distribution given in (1) with parent SFs F1 (.) and F2(.) respectively. Then, the stress-strength reliability R is

R =
θ1α2

θ1 +θ2

ϕ

(
α,

θ1

θ1 +θ2

)
, (9)

where ϕ (α,ω) =
∫ 1

0 [1−αuω ]−2
[
1−αu1−ω

]
du is a function of α and ω .

if and only if, the parent SFs are

F1 (x) = e−θ1 ψ(x,η)
, (10)

and
F2 (y) = e−θ2 ψ(y,η)

, (11)

Where, ψ (z, η) is a non-decreasing differential function in z such that ψ (z,η)→ 0 as z→ 0 and ψ (z, η)→∞ as z→ ∞.
Proof Suppose that X and Y are random variables having MOEW(α, θ1,η) and MOEW(α,θ 2,η) with parent SFs given
by (10) and (11), respectively. Then, the stress strength reliability is given by

R =
∫ ∞

0
gx (z,α,θ1,η)GY (z,α,θ2,η)dz. (12)

Using (3) and (4), we get

R =

∫ ∞

0

θ1α2ψ(1) (z,η)e−[θ1+θ2]ψ(z,η)

[
1−αe−θ1ψ(z,η)

]2 [
1−αe−θ2ψ(z,η)

]dz. (13)

Setting u = e−[θ1+θ2]ψ(z,η) in (13), and after simplification, we get (9).
Conversely, suppose that X and Y are independent random variables following Marshall Olkin extended distribution in (1),

and that (9) holds. When α = 1, the distributions of X and Y are reduced to the parent distributions and ϕ
(

1,
θ1

θ1+θ2

)
= 1.

Hence, R = θ1
θ1+θ2

. Then, according to Theorem 1 in Mokhlis et al. [12], if R = θ1
θ1+θ2

then, X and Y must have the

independent distributions given by (10) and (11). Hence, the proof is complete.
Notice that:

1.Using (5) and (6) in (12) for α < 1 and (7) and (8) in (12) for α > 1, the stress strength reliability R can be written as

R =





∑∞
s=0 ∑∞

k=0
α2θ1α k+s(k+1)
(k+1)θ 1+(s+1)θ2

, α < 1,
θ1

θ1+θ2
, α = 1,

∑∞
j=0 ∑∞

k=0 ∑k
r=0 ∑

j
t=0

(−1)r+t
(

k
r

)
( j

t )(1− 1
α )

k+ j
(k+1)θ1

α(r+1)θ1+α(t+1)θ2
α > 1.

(14)

2.The formula of the stress strength function R obtained in (9) and (14) does not involve η . This means that if α, θ1 and
θ2 are known, the exact value of R could be determined without knowing η . However, if the parameters are unknown,
the estimated value of R must depend on the value of η or the estimated value of η .
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3 Maximum Likelihood Estimation of R

In this section, the MLE of R is obtained based on Type-II progressively censored data. Fixed as well as random removals
with discrete uniform and binomial distributions are discussed. The MLE of R is

R̂ =
θ̂1α2

θ̂1 + θ̂2

ϕ

(
α̂,

θ̂1

θ̂1 + θ̂2

)
, (15)

where θ̂1, θ̂2, and α̂ are the maximum likelihood estimators of θ1, θ 2, and α respectively, based on Type II progressive
censoring schemes. Although the expression of R obtained in (15) does not involve η̂ , we will obtain the MLE η̂ of η
since the estimator of the parameters θ1, θ 2, and α in some cases may depend on ψ (., η̂).
Suppose that (X1 :n:N , X2:n:N , . . . , Xn:n:N) and (Y1:m:M ,Y2:m:M , ...,Ym:m:M) are Type-II progressive censored samples from

MOEW(α, θ1,η) and MOEW(α, θ2,η) with censoring schemes(R1, R2, ..., Rn) and
(
R̀1, R̀2, ..., R̀m

)
, respectively.

Three cases for (R1, R2, ..., Rn) and (R̀1, R̀2, ..., R̀m) are considered, as follows:
Case1: Fixed removals
Assume that the censoring schemes (R1, R2, ..., Rn) and (R̀1, R̀2, ..., R̀m) are predetermined fixed numbers. Then the
likelihood function can be written as

L1 = c1c2

n

∏
i=1

gx (xi,α,θ1,η)Gx(xi,α,θ1,η)
Ri

m

∏
j=1

gy (y j,α,θ2,η)Gy(y j,α,θ2,η)
R̀ j , (16)

where
c1 = ∏n−1

k=1 N
(
N −∑k

i=1 (Ri − 1)
)

and c2 = ∏m−1
s=1 M(M −∑s

j=1 (R̀ j − 1)).
Using (3) and (4) in (16) we get

L1 ∝ θ n
1 θ m

2 αn+m+∑n
i=1 Ri+∑m

j=1 R′
j

×
∏m

j=1 ψ(1) (y j,η)e
−θ1 ∑n

i=1 (Ri+1)ψ(xi ,η)−θ2 ∑m
j=1 (R̀ j+1)ψ(y j ,η)

∏n
i=1

[
1−αe−θ1ψ(xi,η)

]Ri+2
∏m

j=1

[
1−αe−θ2ψ(y j ,η)

]R̀ j+2
. (17)

Then, the likelihood equations are given by

n

θ1

−
n

∑
i=1

(Ri + 1)ψ (xi,η)−
n

∑
i=1

(Ri + 2)ψ (xi,η)αe−θ1ψ(xi,η)

[
1−αe−θ1ψ(xi,η)

] = 0, (18)

m

θ2

−
m

∑
j=1

(
R̀ j + 1

)
ψ (y j,η)−

m

∑
j=1

(
R̀ j + 2

)
ψ (y j,η)αe−θ2ψ(y j ,η)

[
1−αe−θ2ψ(y j ,η)

] = 0, (19)

n+m+∑n
i=1 Ri +∑m

j=1 R̀ j

α
−

n

∑
i=1

(2+Ri)e−θ1ψ(xi,η)

[
1−αe−θ1ψ(xi,η)

] −
m

∑
j=1

(
R̀ j + 2

)
e−θ2ψ(y j ,η)

[
1−αe−θ2ψ(y j ,η)

] = 0, (20)

∑n
i=1

δ ψ(1)(xi ,ηk)
∂ ηk

ψ(1)(xi ,ηk)
−∑n

i=1 θ1 (Ri + 1) δψ(xi,ηk)
∂ηk

−∑n
i=1

(Ri+2)θ1
δ ψ(xi ,ηk)

∂ ηk
αe−θ1ψ(xi ,ηk)

[
1−αe−θ1ψ(xi ,ηk)

] +

∑m
j=1

δ ψ(1)(y j ,ηk)
∂ ηk

ψ(1)(y j ,ηk)
−∑m

j=1 θ2

(
R̀ j + 1

) δψ(y j ,ηk)
∂ηk

−∑m
j=1

(R̀ j+2)θ2

δ ψ(y j ,ηk)
∂ ηk

αe
−θ2ψ(y j ,ηk)

[
1−αe

−θ2ψ(y j ,ηk)
] = 0.

(21)

where, k = 1, ..,T and η = (η1,η2, . . .,ηT). The MLEs θ̂1, θ̂2 , α̂ and η̂ can be obtained by solving equations (18–
21) numerically.

Case 2: Removals with discrete uniform distribution
In this case, Ri, i= 1, . . . ,n and R̀ j , j= 1, . . . ,m are assumed to be independent random variables following discrete uniform

distributions. Thus, P(R1 = r1) =
1

N−n+1
, and

P(Ri = ri | Ri−1 = ri−1 . . . .R1 = r1) =
1

N − n−∑i−1
k=1 rk + 1

,
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where, 0≤r1≤N − n, 0≤ri≤N−n−∑i−1
k=1 rk , i= 2, . . . ,n−1 and Rn=N−n−∑n−1

k=1 rk.

Similarly, P(R̀1 = r̀1) =
1

M−m+1
, and

P
(
R̀ j = r̀ j

∣∣ `R j−1 = r̀ j−1 . . . .R̀1 = r̀1

)
=

1

M−m−∑
j−1
s=1 r̀s + 1

,

where, 0≤r̀1≤M−m, 0≤r
′

j≤M−m−∑
j−1
s=1 r̀s , j= 2, ...,m−1 and R̀m=M−m−∑

j−1
s=1 r̀s.

Hence, the likelihood function is given by

L2 = L1 ×P(R1 = r1, R2 = r2, ..., Rn = rn)×P(R′
1 = r′1, R′

2 = r′2, ..., R′
m = r′m)

= L1

(
1

N − n+ 1

n−1

∏
i=1

1

N − n−∑i−1
k=1 rk + 1

)(
1

M−m+ 1

m−1

∏
j=1

1

M−m−∑
j−1
s=1 r̀s + 1

)
, (22)

where L1 is given in (17). Clearly, the joint PDFs of Ri’s, i= 1, . . . .,n−1 and R̀ j’s, j= 1, . . . ,m−1, are free of parameters.

Then, the MLEs θ̂1, θ̂2, α̂ and η̂ can be obtained by solving simultaneously the system of equations (18- 21). The
difference here is that ri and r̀ j are observations of the random removals Ri, i= 1, . . . ,n and R̀ j, j= 1, ...,m, respectively.

Case3: Removals with binomial distribution

Here, we assume that Ri, i= 1, ..,n and R̀ j, j= 1, ..,m are independent random variables following binomial distributions.

Thus, P(R1 = r1) =

(
N − n

r1

)
P

r1
1 (1−P1)

N−n−r1 , and

P(Ri = ri | Ri−1 = ri−1, . . . ,R1 = r1) =

(
N − n−∑i−1

k=1 rk

ri

)
P1

ri(1−P1)
N−n−∑

i−1
k=1

rk ,

where, 0≤r1≤N − n, 0≤ri≤N−n−∑i−1
k=1 rk, i= 2, . . . ,n−1 and Rn=N−n−∑n−1

k=1 rk.

Similarly, P(R̀1 = r̀1) =

(
M−m

r̀1

)
P2

r̀1(1−P2)
M−m−r̀1 , and

P
(
R̀ j = r̀ j

∣∣ R̀ j−1 = `r j−1, . . . , R̀1 = r̀1

)
=

(
M−m−∑

j−1
s=1 r̀s

r̀ j

)
P2

r̀ j (1−P2)
M−m−∑

j−1
s=1 r̀s ,

where, 0≤r̀1≤M−m, 0≤r
′

j≤M−m−∑
j−1
s=1 r̀s, j= 2, ...,m−1 and R̀m=M−m−∑

j−1
s=1 r̀s.

Thus, the likelihood function is given by
L3 = L1 ×P(R1 = r1, . . . , Rn = rn)P(R′

1 = r′1, , . . . , R′
m = r′m)

= L1 ×

(
N−n

∏
n−1
i=1 ri!(N−n−∑

n−1
i=1 ri)!

P
∑

n−1
i=1

ri

1 (1−P1)
(n−1)(N−n)−∑

n−1
i=1 (n−i)ri

)

×


 M−m

∏m−1
j=1 r̀ j!

(
M−m−∑m−1

j=1 r̀ j

)
!
P

∑
m−1
j=1 r̀ j

2 (1−P2)
(m−1)(M−m)−∑

m−1
j=1 (m− j)r̀ j


 , (23)

where L1 is given in (17).

Notice that the joint PDFs of Ri’s, i= 1, . . . .,n−1 and R̀ j’s, j= 1, . . . ,m−1 depend only on P1and P2 respectively, then the
MLEs of parameters θ1,θ2, α and η can also be obtained by simultaneously solving the same system of equations, (18-
21). The MLEs of parameters P1 and P2 are obtained by maximizing L3, so

p̂1=
∑

n−1
i=1 ri

(n−1)(N−n)−∑
n−1
i=1 (n−i−1)ri

, and p̂2=
∑

m−1
j=1

r̀ j

(m−1)(M−m)−∑
m−1
j=1 (m− j−1)r̀ j

.
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4 Bayesian Estimation

In this section we discuss the Bayesian estimation of R based on Type-II progressive censoring with fixed and random
removals, under the SELF and LINEX loss functions, using informative and non-informative priors.
Informative priors:

We assume that the prior PDFs of θ1,θ2, η and α for the three cases (Case 1, Case 2 and Case 3) are given respectively
by

π j (θ j) =
1

a j

e−a jθ j , θ j > 0, j = 1,2, (24)

π3 (η) =
1

a3
e−a3η

, η > 0, (25)

and

π4 (α) =
1

a4

e−a4 α
, α > 0. (26)

Case 1: The joint posterior PDF of θ1,θ2,α and η is given by

π∗
1 (θ1,θ2, α,η) =

L1e−(a1θ1+a2θ2+a3η+a4 α)

∫
L1e−(a1θ1+a2θ2+a3η+a4 α) d(θ1,θ2, α,η)

, (27)

where, L1 is given in (17). Case 2: The joint posterior PDF of θ1,θ2,α and η is given by

π∗
2 (θ1,θ2, α,η) =

L2e−(a1θ1+a2θ2+a3η+a4 α)

∫
L2e−(a1θ1+a2θ2+a3η+a4 α) d(θ1,θ2, α,η)

,

where, L2 is given in (22). Substituting L2 and after simplifications, we find that

π∗
2 (θ1,θ2, α,η) = π∗

1 (θ1,θ2, α,η) . (28)

Case 3:

Since 0 < PK < 1 ,K = 1,2, we consider the following prior PDFs for PK ,K = 1,2

π j (Pk) =
1

B(bk,ck)
P

bk−1
k (1−Pk)

ck−1
, j = 5,6,k = 1,2, (29)

where, B(bk,ck) is the beta function.
The joint posterior PDF of θ1,θ2,α and η is given by

π∗
3 (θ1,θ2, α,η ,P1,P2) =

L3e−(a1θ1+a2θ2+a3η+a4α)π5(P1) π6(P2)∫
L3e−(a1θ1+a2θ2+a3η+a4α)π5(P1) π6(P2) d(θ1,θ2, α,η ,P1,P2)

.

Using (23), we get
π∗

3 (θ1,θ2, α,η ,P1,P2) = D1π∗
1 (θ1,θ2, α,η) , (30)

where

D1 =
P

∑
n−1
i=1 ri+b1−1

1 (1−P1)
(n−1)(N−n)−∑

n−1
i=1 (n−i)ri+c1−1

B(∑n−1
i=1 ri + b1,(n− 1)(N − n)−∑n−1

i=1 (n− i)ri + c1)

P
∑

m−1
j=1

`` +b2−1r j

2 (1−P2)
(m−1)(M−m)−∑

m−1
j=1

(m− j)r̀ j+c2−1

B(∑m−1
j=1

`` + b2r j,(m− 1)(M−m)−∑m−1
j=1 (m− j) r̀ j + c2)

.

Non-informative priors:
Here, we assume that all the prior PDFs of the parameters θ1,θ2,α and η for all cases are equal to 1.
Case 1: The joint posterior PDF of θ1,θ2 , α and η is given by

π ′∗
1 (θ1,θ2, α,η) =

L1∫
L1 d(θ1,θ2, α,η)

. (31)

Case 2: The joint posterior PDF of θ1,θ2 , α and η is given by

π ′∗
2 (θ1,θ2, α,η) =

L2∫
L2 d(θ1,θ2, α,η)

.

c© 2021 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 10, No. 2, 385-396 (2021) / www.naturalspublishing.com/Journals.asp 391

Using (22), we find that

π ′∗
2 (θ1,θ2, α,η) = π ′∗

1 (θ1,θ2, α,η) . (32)

Case 3: The joint posterior PDF of θ1,θ2 , α and η is given by

π ′∗
3 (θ1,θ2, α,η ,P1,P2) =

L3∫
L3 d(θ1,θ2, α,η ,P1,P2)

= D2π
′∗
1 (θ1,θ2, α,η) . (33)

Where D2 =
P

∑
n−1
i=1

ri
1 (1−P1)

(n−1)(N−n)−∑
n−1
i=1

(n−i)ri

B(∑
n−1
i=1 ri+1,(n−1)(N−n)−∑

n−1
i=1 (n−i)ri+1)

P
∑

m−1
j=1

r̀ j

2 (1−P2)
(m−1)(M−m)−∑

m−1
j=1

(m− j)r̀ j

B(∑
m−1
j=1

`r j+1,(m−1)(M−m)−∑
m−1
j=1 (m− j)r̀ j+1)

.

The Bayesian estimator of R which minimizes the SELF, LSEL

(
R,R̃SEL

)
, and LINEX loss function, LLX (R,R̃LX ), are

defined as R̃SEL and R̃LX respectively, where

LSEL

(
R,R̃SEL

)
=
(
R− R̃SEL

)2

,

LLX

(
R,R̃LX

)
= eβ(R−R̃LX)−β

(
R− R̃LX

)
− 1,

R̃SEL = E(R),

and

R̃LX =
−1

β
ln
(

E
(

e−β R

))
,

where β is a scale parameter of LLX . For more details, see [17]. The expectation is taken with respect to the joint posterior
PDF of the parameters.
Notice that: For the three cases considered above, from (28), (30), (32), and (33), we find that the joint posterior PDFs
of the informative and non informative priors of the parameters are similar for Cases 1 and 2, while in Case 3, the joint
posterior PDFs of the informative and non informative priors are directly proportional to the corresponding joint posteriors

of Case 1. Hence, R̃SELand R̃LX will have the same expressions for all cases, with the exception that in Case 1, the ri’s
and r̀ j ’s are fixed, while in Cases 2 and 3, they are observations of discrete random variables that are uniformly and
binomially distributed, respectively.

However, the joint posterior PDFs in (27) and (31) are intractable, so the Bayes estimators R̃SELand R̃LX couldn’t be
obtained in explicit forms. Instead, we apply Lindley’s approximation method for obtaining these estimators using the
following technique

E(u(ϑ)) =

∫
u(ϑ)eL∗(ϑ )+ρ(ϑ )d(ϑ)
∫

eL∗(ϑ )+ρ(ϑ )d(ϑ)
,

where, ϑ = (ϑ1,ϑ2, . . .ϑr), u(ϑ) is any function of ϑ , L∗ (ϑ) is the log likelihood function of ϑ and ρ (ϑ) is the log of
joint prior of ϑ . Then, the Lindley’s approximation of this integral is

E(u(ϑ)) = u+
1

2

r

∑
i=1

r

∑
j=1

(ui, j + 2uiρ j)σi, j +
1

2

r

∑
i=1

r

∑
j=1

r

∑
k=1

r

∑
t=1

L∗
i, j,kutσi, jσk,t ,

where,vi =
δv
∂ϑi

,vi, j =
δ 2v

∂ϑi∂ϑ j
,vi, j,k=

δ 3v
∂ϑi∂ϑ j∂ϑk

and the matrix of elements σi, j is equal to the inverse matrix of elements

−L∗
i, j. All the partial derivatives are evaluated at the MLEs of ϑ . For more details see [18].

5 Simulation Study

In this section, a Monte Carlo simulation is preformed to compare the performance of the different estimators of R

proposed in Sections 3 and 4. As an application, Marshall-Olkin extended Pareto is chosen as a sub-model of MOEW
by assuming that X and Y having Marshal Olkin extended Pareto distribution with parameter(α,θ1,η) and (α,θ2,η)
respectively with SFs

Gx (x,α,θ1,η) =
α e

−θ1ln( x
η )

1−αe
−θ1ln( x

η )
, x > η ,
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Gy (y,α,θ2,η) =
α e

−θ2ln
(

y
η

)

1−αe
−θ2ln

(
y
η

) , y > η .

In Marshall-Olkin extended Pareto, since x > η and y > η , so we take η̂ = min(xi:n:N ,yj :m:M) , while the MLEs of the
remaining parameters are obtained by solving the system of equations (18-20) after substituting η with η̂ .

1000 samples of size 30 are generated for both X and Y . The MLE R̂MLE is compared with the Bayesian estimators of R

under the squared error loss function R̃SSSEEELLL and the LINEX loss function R̃LX . Furthermore, the Bayesian estimation is
considered for informative and non-informative priors. For the informative priors, the hyper-parameters are chosen based
on the method applied by Ahn et al. [19] and used by Ali and Aslam [20]. The comparison of the estimates is presented
in terms of bias and mean squared error (MSE). For the simulation purpose different sets of parameters are chosen for
different values of R = 0.5, 0.7 and 0.9 to see the sensitivity of the estimators with respect to the values of R (small,
moderate and large) as shown in Tables (2-4). The LINEX loss function are considered for three different values of

parameter β as represented in Tables (2-4) as R̃LX(β=−1), R̃LX(β=1) and R̃LX(β=0.5). All the calculations are evaluated by
Maple (18) program. All the estimators are evaluated for fixed, discrete uniform and binomial random removals. The
censoring schemes considered are 20 percent and 50 percent elimination from the sample size. For fixed removal, the
elimination is either at the beginning, in the middle or at the end of the sample. Table 1 summarizes the censoring
schemes considered for fixed elimination with 0q, indicating that no elimination occurred during q failures.

Tables 2-4 summarize the results of different estimation methods based on progressive censoring schemes with discrete
uniform, binomial random removals (with P1 = P2 = 0.5) and fixed removals, respectively.

Table 1: Censoring schemes for fixed removals.

Sample size Elimination Schemes

Scheme1 (6, 023)

20% Scheme2 (012, 6, 011)

Scheme3 (023, 6)

30

Scheme1 (15, 014)

50% Scheme2 (07, 15, 07)

Scheme3 (014, 15)

Table 2:Bias and MSE of
(
RMMMLLLEEE ,R̃SSSEEELLL,R̃LLLXXX(βββ===∁∁∁)

)
,∁=−1,1 and0.5 for discrete uniform random removal.

(θ1,θ2,α,η)R bias

MSE

RMMMLLLEEE Non-Informative-prior Informative-prior

R̃SSSEEELLL R̃LLLXXX(((βββ===−−−111))) R̃LLLXXX(((βββ===111))) R̃LLLXXX(((βββ===000.555))) R̃SSSEEELLL R̃LLLXXX(((βββ===−−−111))) R̃LLLXXX(((βββ===111))) R̃LLLXXX(((βββ===000.555)))

20% bias -0.0054 -0.0061 -0.0085 -0.0037 -0.0049 -0.0027 -0.0051 -0.0003 -0.0015

MSE 0.0059 0.0060 0.0060 0.0061 0.0060 0.0051 0.0051 0.0052 0.0052

(6,5,3,8)

R=0.5596

50% bias 0.0085 0.0072 0.0033 0.0110 0.0091 0.0123 0.0085 0.0161 0.0142

MSE 0.0061 0.0064 0.0064 0.0065 0.0065 0.0049 0.0048 0.0050 0.0050

20% bias 0.0197 0.0168 0.0149 0.0187 0.0177 0.0275 0.0256 0.0293 0.0284

MSE 0.0030 0.0029 0.0028 0.0030 0.0030 0.0031 0.0029 0.0032 0.0031

(8,4,3,2)

R=0.7116

50% bias 0.0047 0.0014 -0.0015 0.0043 0.0029 0.0162 0.0134 0.0190 0.0176

MSE 0.0051 0.0052 0.0051 0.0053 0.0052 0.0046 0.0044 0.0048 0.0047

20% bias -0.0076 -0.0024 -0.0017 -0.0028 -0.0026 -0.0025 -0.0018 -0.0029 -0.0028

MSE 0.0001 0.0011 0.0018 0.0008 0.00090 0.00104 0.0018 0.0008 0.0009

(9,1,5,7)

R=0.9509

50% bias -0.0096 -0.0087 -0.0079 -0.0092 -0.0089 -0.0063 -0.0056 -0.0069 -0.0066

MSE 0.0001 0.0012 0.0021 0.0014 0.0012 0.0012 0.0019 0.0014 0.0012
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Table 3: Bias and MSE of
(
RMMMLLLEEE ,R̃sssEEELLL,R̃LLLXXX(βββ===∁∁∁)

)
,∁=−1,1 and0.5 for binomial random removal.

(θ1,θ2,α,η)R bias

MSE

RMMMLLLEEE Non-Informative-prior Informative-prior

R̃SSSEEELLL R̃LLLXXX(((βββ===−−−111))) R̃LLLXXX(((βββ===111))) R̃LLLXXX(((βββ===000.555))) R̃SSSEEELLL R̃LLLXXX(((βββ===−−−111))) R̃LLLXXX(((βββ===111))) R̃LLLXXX(((βββ===000.555)))

20% bias 0.0083 0.0072 0.0048 0.0097 0.0084 0.0108 0.0083 0.0132 0.0120

MSE 0.0033 0.00334 0.0033 0.0034 0.0034 0.0028 0.0028 0.0029 0.0029

(6,5,3,8)

R=0.5596

50% bias 0.0243 0.0226 0.0186 0.0267 0.0247 0.0262 0.0222 0.0303 0.0282

MSE 0.0034 0.0034 0.0033 0.0036 0.0035 0.0028 0.0026 0.0030 0.0029

20% bias -0.0107 -0.0123 -0.0140 -0.0106 -0.0115 -0.0030 -0.0047 -0.0013 -0.0021

MSE 0.0036 0.0037 0.0037 0.0037 0.0037 0.0032 0.0032 0.0032 0.0032

(8,4,3,2)

R=0.7116

50% bias 0.0557 0.0479 0.0445 0.0514 0.0496 0.0703 0.0669 0.0735 0.0719

MSE 0.0053 0.0045 0.0042 0.0049 0.0047 0.0067 0.0062 0.0072 0.0069

20% bias -0.0098 -0.0035 0.0036 0.0067 -0.0050 -0.0014 0.0060 -0.0048 -0.003

MSE 0.0001 0.0067 0.0229 0.0073 0.0060 0.0067 0.0251 0.0078 0.0061

(9,1,5,7)

R=0.9509

50% bias -0.0076 -0.0044 -0.0043 -0.0045 -0.0044 0.0037 -0.0036 -0.0037 -0.0037

MSE 0.0001 0.0003 0.0003 0.0003 0.00031 0.0003 0.0003 0.0003 0.00027

Tables 2-4 demonstrate that the informative Bayesian estimation gives better results than the non-informative Bayesian
estimation in terms of MSE. Bayesian estimation under LINEX loss function gives a very close result to that under SELF
loss function concerning both bias and MSE. 50% elimination gives higher MSE than 20% elimination. Concerning the
sensitivity of the estimates with respect to R, we find that the MSE decreases as the value of R increases. This indicates
that if R is unknown but it is known in advance that R is large, the presented estimators will be highly recommended.
However, if R is small or moderate, the performance of the estimators is still very good.

6 Real data example

In this section, a real data example from Proschan [21] is presented. Proschan studied the successive failures times of the
air conditioning system of different types of airplanes and showed that the failure distribution for each airplane separately
was exponentially distributed, but with different failure rate. We present the failure times of two airplanes as shown in
Table 5.

Table 5: failure intervals of the air conditioning system of two jet Planes given (in hours).

Plane (7913) [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14,

71, 11, 14, 11, 16, 90, 1, 16, 52, 95]

Plane (8044) [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]

Suppose X represents the failure interval times of air conditioning system of Plane (7913) and Y represents the failure
interval times of air conditioning system of Plane (8044). Using the (K-S) goodness of fit test, the two data sets are tested
for fitting either exponential or Marshall-Olkin extended exponential (MOEE). The results are shown in Table 6.

Table 6: MLEs of the parameters and the corresponding (K-S) values exponential distribution and MOEE

Var. Distribution Parameter estimate K-S Tabulated value

exponential θ̂1 = 0.01678 0.2131

X 0.2417

MOEE θ̂1 =0.0101 , α̂1 =0.38 0.1262

exponential θ̂2=0. 0093 0.1872

Y 0.3754

MOEE θ̂2 =0.0055, α̂2 =0.37 0.1544
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Table 4: Bias and MSE of
(
RMMMLLLEEE ,R̃sssEEELLL,R̃LLLXXX(βββ===∁∁∁)

)
,∁=−1,1 and0.5 for fixed

It is clear that the MOEE provides better fit than exponential distribution at level of significance 0.05. Since α̂1 and
α̂2 are approximately the same, we may consider X and Y as random variables with MOEE(θ1, α) and MOEE(θ2, α)
respectively.

The stress-strength reliability function R = P(X < Y ) is an appropriate measure of the effectiveness of the two air
conditioning systems. Using the results in Sections (3) and (4), we consider the reliability estimation for the complete
data case (i.e. Ri = R′

j = 0), binomial and discrete uniform random removals. The computed results are shown in Table
7.

Table7 shows that the estimated value of R for the complete data is 0.6238, which means that the failure interval times of
air conditioning system of Plane (8044) is less than that of Plane (7913) with probability estimated by 0.6238. Moreover,
estimation with 20% elimination gives almost the same results as that with complete data, while the estimation with 50%
elimination is far from that with complete data.
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Table 7: MLE and Bayes estimators of R

Type of

elimination

Elim. R̂MMMLLLEEE Non-Informative-prior Informative-prior

R̃sssEEELLL R̃LLLXXX(((βββ===−−−111))) R̃LLLXXX(((βββ===111))) R̃LLLXXX(((βββ===000.555))) R̃sssEEELLL R̃LLLXXX(((βββ===−−−111))) R̃LLLXXX(((βββ===111))) R̃LLLXXX(((βββ===000.555)))

Complete 0.6238 0.6217 0.6250 0.6183 0.6246 0.6208 0.6242 0.6175 0.6247

20% 0.6282 0.6152 0.6195 0.6109 0.6312 0.6111 0.6154 0.6070 0.6319

Binomial

50% 0.7147 0.7239 0.7309 0.7168 0.7138 0.7057 0.7129 0.6988 0.7169

Discrete

uniform

20% 0.6411 0.6496 0.6539 0.6452 0.6399 0.6311 0.6354 0.6268 0.6434

50% 0.7053 0.7072 0.7124 0.7020 0.7054 0.6931 0.6982 0.6880 0.7079

7 Conclusion

In this paper, an explicit form of the stress-strength reliability R, is obtained when the stress X and the strength Y are
independent random variables belonging to MOEW family of distributions. A characterization of the parent distributions
associated with the stress-strength reliability R was also presented. The problem of estimation R under Type-II
progressive censored scheme using classical and Bayesian technique was studied. The Bayesian estimation of R was
considered under two loss function (symmetric and asymmetric loss functions) for informative and non-informative
priors. Furthermore, fixed, binomial and discrete uniform removals with 20% and 50% elimination from the sample size
were addressed. A Monte Carlo simulation was preformed to compare the performance of the different estimators of R

showing that the results of the informative Bayesian estimates were better than those of the non-informative Bayesian
estimates in terms of MSE. However, the results of the Bayesian estimates under LINEX loss function were very close to
those under SELF in terms of both bais and MSE. Moreover 50% elimination gave higher MSE than 20% elimination.
Concerning the sensitivity of the estimates with respect to R, the MSE decreased as the value of R increased. However,
estimates showed very satisfactory results.
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