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Abstract: In this paper, we present holomorphic assemblies of a class of nonlinear conformable time-fractional wave equations type
Khokhlov-Zabolotskaya (KZ) in a complex purview. To achieve this objective, we introduce a characterization of a complex
conformable calculus (CCC) of a symmetric differential operator (SDO) and investigate its properties. Moreover, the operator is
extended to a complex domain satisfying symmetric illustrations. Employing the proposed operator, we generalize KZ equation
symmetrically. The indications imply that the suggested techniques are powerful, reliable and appropriate for employing all styles of
differential equations of complex variables.
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1 Introduction

Transmission of sound pulses and sound rays in weakly nonlinear data with enumerations of small curvature of wave faces
is of significant concern for numerous applications in science, medicine, geology and industry (see [1]). Mathematical
model of transmission of nonlinear sound pulses depends on the investigation of the pretended Khokhlov-Zabolotskaya
(KZ) equation. If we let the flow velocity of the environment at a point & at time # as w(&, ), then the KZ equation can be
inscribed in the layout

(W& + (@t aw(E.0) (&0 ), + 5 (w(E 1))ge =0

where ¢y and ¢ are parameters for the linear waves in the suggested environment. If this motion described with a
satisfactory accuracy as a plane unidirectional data flow wave, then the conforming wave equation moderates to [2]

(W(éat))f + g()(W(g,l))‘: =0,
where w(&,7) = Q(& — gyt). This solution modified in the formal w(&,7) = Q (& — (g0 + g1w(&,1))t) for the Hopf equation
W(S:1): + (6 = (S +aw(&,1)) (w(&,1))e =0.

Rudenko and Soluyan [3] presented the symmetric geometries evolution of waves over weakly nonlinear environment in
the following construction

(4(p1) + (P = (60-+ G1w(p.) (w(p.1))p + Zw(p,r) =0, 120,
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where p is the radius of the geometric shape (cylindrical and spherical) and ¢, is the shape’s parameter. For example
G = 0.5 the shape is cylindrical and ¢, = 1 is a spherical case. Our geometric and symmetric investigation will be in the
open unit disk. We shall use the idea of the geometric function theory to study the KZ equation.

In view of the Riemann-Liouville calculus,
d f(t—1)"%
D¢ t:—/i t)dt, 0<a<l
[‘P() dtOF(l—a)(P() ) — <a
the 1-D fractional KZ (F-KZ) equation is formulated by [4]
Dfw(&,1) +co(w(&,1))e =0,

where @ € (0,1) characterizes to the fractional instruction variation and £ signifies the 3-D variable expanse lengthways
the stuff line although ¢ is the time in its sizes usage and w(&,r) requires a wave amplitude. Ray (see [5] and [6]
respectively) introduced different methods to obtain the exact and analytic solutions of F-KZ. Ibrahim [7] introduced a
collection of holomorphic outcomes of the 3D fractional complex wave equation utilizing a class of complex convolution
formula

DEw(z,t) + DB w(z,1) =0, zeU={zeC:z <1},

where

1 d [ B
ng)(z):md_z./o (z—m) ﬁ(b(n)dn, 0<B<1

is the Srivastava-Owa fractional differential operator for analytic function ¢(z).
Definition 1.Let ve (0, 1]. A differential operator 2" is conformable if and only if 2° is the identity operator and D" is
the classical differential operator. Specifically, 2" is conformable if and only if for differentiable function ¢ (t),
d
7°9(t) = 9(1) and 7'9(1) = —9(1) = ¢'(1).

Also, they noted that in control theory, a proportional-derivative controller for controlling output P at time ¢ with two
tuning parameters has the algorithm

where x, is the proportional gain, Ky is the derivative gain, and Z is the error between the state-run variable and the
progression variable. In this investigation, one can recover the indication of CCC by containing SDO

Definition 2.Suppose that ve|0, 1]. An operator S* is known as SDO if and only if for any differential function ¢ satisfying

_ Kl(“at) / _ KO(MJ) 1
& ()~ ( )0 (5 )90 (1)

K](”at)+K0 ”at)+KO

such that k(1) # — Ko(U,1),

lim & (i,7) =1,  limky(u,1) =0, Ki(u,1) #0, Ve, p€(0,1),
u—0 n—1

and
lim xo(u,) =0, limko(u,t) =1, wo(u,r)#0, Ve,u € (0,1).
u—0 n—1

It is easy to show the next propositions.

Proposition 1.For the differential functions ¢ and y the following illustrations are held

1.For all A, B € R, it indicates G* (A ¢ + By) = AG* 9 + B&GHy; ;
2.For all C € R it presents G*(C) = 0;
3.64(¢.y) = 9&H(y) + y.6H(9);

4.64(9 /) = YELLSW), provided y 0.
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Proof.Firstly, we show the following illustration

ot o+ = (o ) e w0 (L Nl s s

=4 [(m <uf>(f ’;o)m,r)) ¥ - <'<1 Wﬁ;(ﬁ 7’2“"”> q)l(t)]

Ki((,1) 3 Ko(H,1) "o
B me,t)wo(u,t))"/(” (w,r)m(u,t))"’( ”}
=AGH9(r)+BGHy(1).

For the multiplication, we indicate the following proof

K1 (1,1) ' Ko(K,1)
& (0v)0) = (g ) 0w o) - (e ) vy

~ (gt 0w+ ) (Y o w0

K (p 1)+ Kok, 1) Ki ut +Ko(i,1)
_ Kl(“at) Iy K'()( Ny
. [ Kl(ﬂ,f)+Ko(ﬂ,f)) V) (KI(IJ t)+1<0( )) (v t)]

ki (U,1) , Ko(1,f) /
oY [("‘ (k) + Ko(#af)) o= (KI (1) + Ko(u,t)) ¢ )(I)}
=0.6"(y)+y.6"(9).

Last, we get the next division property

S (9. y)(t)
(s ) o 0~ (st ) 0 v
- (m uil :—‘;0 — )(d)’wlﬁd)w’ 0 - (wfi(f’;o)(u,t)) (¢’ww2¢w’>(t)
v [<K1 u? f;; (u, t)) 9'() 2<K1(u,%(ﬁ,;z(u,t)) d")(t)}
v
[(Kl ) )"’/(”‘Smm,’jo)(f’:g(u,t)) v)(-)
_y.64(9)—¢.6"(y) Y
%

2 Complex conformable calculus
In this investigation, we address a class of normalized analytic functions which is denoted by A and structured by

w(z) =z+ ) wa2", z€U, 2.1
n=2

where U indicates the open unit disk. Using the above series, we present the following definition
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Definition 3.Suppose that w € N\ and a parameter | € [0,1]. The complex symmetric operator is defined by the
construction

W

K (U,z2 Ko(K,2) /
( Mz+1<oﬂz)( (KIMZ)+K0(MZ))(ZW(_Z))

K‘] (u,z) Ko(1,z2) - nooon
< K1 (1,2) + Ko(14,2) > <Z+Z"W"Z ) <K1(u,2)+1<o(u,2)) (H,,Zzn(l) e ) (22)
. > K] [,L Z ( n+1 ) w n
o ()

_ K1 (1,2) + (=1)" ko (1, 2)
.—Z“i’n;ngZ 5 Wn l’l( Kl(ﬂ,z)+1(0(ﬂ,z) ) Wn,

SHw(z) = SH[SHw(a)] = SH e+ Y W,
n=2

1 (1:2) - n Ko(U,2) - neor

K1 (1,2) + (= )”“Ko(u,Z) 0
*”Z < 1 (1,2) + Ko (1,2) >W"Z

ki (1,2) + ()" o)\,
7Z+Z ( K1 (1,2) + Ko (1, 2) )W"Z

m (KI (:LL?Z) + (1)n+11<0(”az))m Wi 2.

&™) = H(& Wn(e)] =z I (UL L

so thatVz € U, U
€ (051)5 K‘[(,LL,Z) 7é *K‘()([J,Z),

lim &1 (i,z) = 1, lim & (1,2) =0, Ki(1,z) #0,
u—0 u—1

and
lim & (44,2) =0, Jim, Ko(u,z) =1, Ko(u,z) #0

u—0

Obviously, when m = 0, we have w(z). In terms of the Hadamard product, we indicate

_ m (KL(H,2) + ()" o (,2) ™, S
Sz <Z+Z < k1 (1,2) + Ko(1,2) >Z>*<Z+,,ZZW"Z>'

60.25(( Z.Z)z) _Z+4ell 8/36” 5/2)
Z
3 8/27eMZ7/2) 4 ((8e(™) /81 4 16e31))* (2.3)

+ (8™ /9 4 9¢121);
1) /729 +32/9¢B31) 1 25041))

—8/243(e (i) (1 +324€(2”)))z(9/2)+((8
— (8(e™(1+324¢C1))11/2)) /2187 + 0(°)
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while in terms of ¢, we get

&0 (7(1 = ) = (21 (V1) +3eP)2) /(V/(1) 4 3) + (6ie T (V/(1) +3¢)2) / (V/ (1) +3)

ei'z)?
+ (12030 /(1) +3¢C0)24) / (/) + 3) + (20ie =0 (/{1) + 3¢S ) (i) +3) &P
+ (30ie 0 (\/(1) +361)5) / (\/ (1) + 3) + O()
We illustrate the following properties:
Proposition 2.Let u € (0, 1) and the complex operator G* in (2.2). Then for w,u € A and for all A,BC € C;

1.6“(Aw+ Bu) =AG*w+BGHu;
2.6H4(C
3.6 (u. w) =u.G*(w) + w.G*(u);
4.6H(u/w) = Wb“(")w;zueu(”), where w # 0.
Based on the symmetric operators G*, the 2D complex KZ (CC-KZ) equation is structured by
S! wi(z) + 6 wi(z) = P(wi(2)), z€U, (2.5)

where wy (z) is a 2D-amplitude during time 7 and

u _ Kl(“at) wi(z) — KO(NJ) W
St = () O () 0@

and

L9 ()t (-1
eywl(z>—z+§n< i)

Moreover, we consider

Ko(u,t) = '™, wko(u,z) =va' M, k(ut)=(1-p)*, k(w2 =(1-p)

Our method is indicated by employing the concept of majorization of coefficients problem, which can be defined as
follows: let f(z) =Y fuz" and g(z) = Y gu7", by > 0 forall n > 0, then f < g < | 1| < |gnl-

It is well known that there is a complete connection between the majorization (<) and the subordination (<) concepts in
the univalent functions theory. We recognize that, the majorization converts the subordination in some settings. In
addition, the majorization signifies the maximum bounds of outcomes of differential equations. One can utilize this
procedure to estimate the outcome of Eq.(2.5) using well-known functions such as the Koebe rotated function. The
estimation can be recognized in various opinions. Initially, for unique objective functions, where the estimation
technique indicates how holomorphic functions can be estimated by other types of holomorphic functions which have
requisite possessions. Furthermore, the objective function (or cost function) can be used by suggesting convex
holomorphic functions [10], subordination and superordination theory [11], or optimization (majorization) utilizing
coefficient estimates [12]). Different approaches can be realized in [13-15].

3 Holomorphic outcomes

We proceed to find the holomorphic solution of (2.5). A holomorphic outcome w; (z) of (2.5) is titled an attractive if and
only if the term &' w; (z) + &5 w; (z) is majorized by the functional ®(w(z)), which means that |c,| < |@,|, where

Slwi(z) + SHwi(z) = Y cud

and
W):Z(pnzn7 (pn >0,Vn

Meanwhile, the left hand of Eq.(2.5) includes a fractional power in relations with u € (0,1). Consequently, the Berkson-
Porta functional ®(w;(z)) = (@ —z)(1 — @z) wi(z), z € U does not fulfill the majority condition because of disappearing

@© 2021 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

28 NS P R. W. Ibrahim et al. : Holomorphic solutions of a class...

the fractional power positions. Accordingly, we recommend a functional &(w,(z)) in positions of the common bilinear
functional

B(z) = (M)Z n,6 €0,z€ULE[0,0).

—(¢a)+1
In view of B(z), we define the following functional (see Fig.3.1)
14+ 2\*
@ () = (F25) i), G

(zeu,ue(o,l),n <%),gl,)

admitting, for example, the series
1 0.25 ) )
(;L—\/Z) wi (2) = 2+0.252/% 4 22(0.15625 4 2¢™) +2>/2(0.117188 4-0.5¢("))
—Z
+2°(0.0952148 +0.3125¢(") 4321 4 2(7/2)(0.0809326 + 0.234375¢(") 4 0.75¢>1))
+74(0.070816 4 0.19043¢™) 1 0.46875¢%") 4 46511)) 4 20/2)(0.0632286 + 0.161865¢™) + 0.351563 ) 4 £311))
+2°(0.0573009 + 0.141632¢(") 1 0.285645¢") + 0.625¢3%) 4 5¢(41))

+2011/2)(0.0525258 +0.126457¢(") + 0.242798¢") +0.46875¢3) 4-1.25¢141)) + 0(2°)
(3.2)

Eq.(3.2) can be estimated by consuming the total roots utilizing the parametric connections as follows:
@2 (wy(z2)) ~z+0.2523/2 +9.5722+9.5:0/2) 112,523 +12.57/2) 1 12.57*

(3.3)
+18.52%/2) £ 19.02° +19.0z'/2) + 0(2%).

Correspondingly, we indicate @ (w;(z)) and its estimation respectively,
14+ 0.5 3/2 . . . .
(1—\f) wi(z) =2+ ZT + (26 4+3/8)2% + (5/16 4 €25/  ((3el®) /4 43621 1 27)F
+ ((5¢'M) /8 4-3 /221 + 24)7/2) 4 ((35¢\1)) /64 4 9/8e) + 4e(3ir) + 22)7* + ((63¢!M) /128 (3.4)
1571661 42661 40.2)20/2) 4 ((231€1M) /5124 105 /128621 43 /2£51)
+5e41) 1.0.2)2° + ((0.4¢)) +0.7¢?1) 45 /4¢51) 15 /2641 1 0.2)7(11/2) 1 0(°)
3/2

0.5 N < 2 (5/2) 3
D2 (wi(z)) ~z+ 7 +9.527+9.5z°/749.57 3.5)

+12.5272 117524 +17.529/2) 4 242° + 24212 1 0(20).

Proposition 3.Assume the wave equation (2.5)-(3.1). Then w;(z) = < 7 (the rotated Koebe function ) is a holomorphic

(1—eiz)?
attractive outcome for (2.5).
Proof.In view of G*, we check two cases for the fractional values y = 0.25 and . = 0.5.

025 Z' 0.25 Z'
t (1 _eltz)2 + 4 (1 _eltZ)Z

= (2ie" " (Vi+3eP)2) [ (Vi +3) + (6ie! (Vi +3e41)2) ) (Vi +3)

+ (120 30 (/1 4 3e9)74) / (Vi +3) + (20ie 41 (Vi 4 331 2%) / (Vi +3)

+ (30ie' 31 (Vi +3¢191)8) / (Vi +3) + 0(Z) 3.6)
+244eM72 —8/36M705/2) 1 ((8e(M)) /9 4 9¢21))3 — 8 /27£M7(7/2) 1 ((8el1)) /81

+16e31) 24 — 8 /243 (e (1 + 32421))2/2) - ((8e) /729 +32/9¢31) 4 25¢41)) 5

— (8(e™ (1 +324¢1))2(11/2)) 12187 4 O(2%)

~ 7+ 7.5 +8/32/7 +1.3423 4+ 8/2772 4 1.147% + 8/2342°/Y 1 1,142 + 0(2°)
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The coefficients of the last equation are calculated by using the total roots in terms of ¢, for example the coefficient of z>
appears by finding the roots of

(2ie 1) (1 +3e21))
(Vi+3)+4el
This implies three roots 7| = —0.567673 +1.03527i, 1, =2.26348+0.915718i, 13 = 5.38212+0.782888i. By taking

the total radius |t} +#, + #3]| &~ 7.5. Comparing Eq.(3.3) and Eq.(3.6), we conclude that 6?'25 (17;,1)2 + 6?'25 (]75,-,1)2 is

optimized by the function @%2(w,(z)). Correspondingly, u = 0.5 gives

0.5 2 0.5 2
&, (] _eitz)z +4; (1 _eitz)z
— (ie(fit) + ie(it))z2 + ((3l~)e(72it) + (3l~)e(2it))z3 + ((61’)6(73”) + (6l~)e(3it))z4 + ((IOi)e(félit) 3.7)

+ (100)e™ )2 4+ (150)e 1) 4 (15)e5) 28 + 0(27) 4 24 913 4256415 + 0(20)
~ 2447224 11323 + 1124 4+0.552 + 0(20).

Which means that &0 —%— + &% —~%— is optimized by the &% (w;(z)). And it holds for all u € (0,1).

(1=ef'z)? (1—e''7)

Proposition 4.Consume the wave equation (2.5)-(3.1). Then it indicates a probability of measure 2 on (dU)?, for u — 1
achieving

[, ®On)dp

Proof.Consume that for b, § € dU achieving b = 1//z,|z| < I then |b| =1 and

<1+b1)# _ (1409 1 (14 09)H 1 B <1+zo'5

<
1+5z 1—z

u
T+ (14 gkt l—z “(1—gr T ) pu—1 (3.8)

u
According to Theorem 1.11 in [16], the (}ig;) indicates a probability of measure £ in (dU)? achieving

9(z) = /(W Gizi)ud‘@(b’h)’ Z€U.

Then in view of Proposition 3, there is a diffusion constant k achieving

1+bZ u 1+bZ u
/(BU)2<1+hZ) dlfﬂ(b,h):k (8U)2<1—hz> Wr(Z)dﬁ(b,h), zeu

or 0(z) =k [(5u2 P(wi(z))dg(b,h) occurs.
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200 |

100 |

Fig. 3.1: The holomorphic outcome of Eq. (2.5)-(3.1)
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