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Abstract: The study presents an alternative analytical method called Newton Harmonic Balance Method (NHBM) to provide an

analytical solution for two nonlinear differential equations that appear in specific dynamics. This method is based on combining

Newton’s method and the harmonic balance method. Because the periodic solution is analytically proved, the relation between the

natural frequency and the amplitude is obtained in an analytical form. The study compares the present results with the previous ones

obtained by other methods to ensure the quality of the NHBM. Comparisons with Runge-Kutta numerical integration solutions are

also made and excellent agreement has been observed. The NHBM enables to linearize the governing equations prior to applying the

harmonic balance method. Moreover, it can lead to adequately accurate solutions for nonlinear oscillators.

Keywords: Analytical approximation, Second order Newton harmonic balance method, Nonlinear oscillators, Motion equation, High

accuracy, Tapered beam.

1 Introduction

The NHBM is one of the most efficient methods for
obtaining analytical approximate solutions for strongly
nonlinear differential equations. It has many applications
in nonlinear oscillator’s problems in fractional differential
and difference equations, delay differential equations,
heat equations and several other modified versions with
applications [1–3].

One of the most interesting areas in many physics and
engineering problems is nonlinear vibrations. Mainly
nonlinear vibration of oscillation systems is modeled by
nonlinear differential equations that are widely used to
describe many important phenomena in chemistry,
biology, fluid dynamics, plasma, optical fibers and other
areas of science. Obtaining an exact solution for these
nonlinear problems is difficult and time-consuming.
Therefore researchers have tried to find new approaches
to overcome this shortcoming [4–6].

Recently, many scientists have used various analytical
methods to solve nonlinear equations in mechanical
systems. Some of these methods such as homotopy
perturbation method [7–9] and variational
iteration [10, 11] are powerful and can be used for almost
all types of nonlinear equations. There are other methods

such as optimal homotopy asymptotic [12], frequency
amplitude formulation [13, 14], harmonic
balance [15–17], energy balance and global residue
harmonic balance [18–20], coupled homotopy variational
formulation [21–23], variational approach [24–26],
iteration perturbation [27], differential transform [28],
Hamiltonian approach [29, 30], Newton harmonic
balance [31–35] and other analytical and numerical
ones [36–41].

In the present study, the approximate analytical
frequency of strongly nonlinear differential equations is
achieved by means of second-order Newton harmonic
balance method. The accuracy of the present analytical
approximate solutions has been illustrated by comparing
them with numeric results and results obtained from other
methods. The study mainly concludes that the nonlinear
frequency can be investigated by simple formulas with
respect to amplitude.

This paper is organized as follows: In Section 2, we
briefly discuss the description of the Newton harmonic
balance method (NHBM). Section 3 is devoted to
analytical solutions for nonlinear oscillations with a
natural frequency. Two illustrative examples are
demonstrated to show the accuracy and reliability of
(NHBM). Section 4 is depicted for the analytical and

∗ Corresponding author e-mail: gamalm2010@yahoo.com

c© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/140118


142 G. M. Ismail et al.: An accurate analytical solution to strongly NDEs

numerical calculations of all outcomes; also a comparison
is made with some other methods. Finally, concluding
remarks are presented in Section 5.

2 The Method of Solution

In order to illustrate the main concept of the method, the
study considers the ordinary differential equation
governing a conservative nonlinear oscillator with the
initial conditions:

ü+ f (u, u̇, ü) = 0, u(0) = A, u̇(0) = 0. (1)

To construct the analytical approximate solutions for
Eq. (1), one new independent variable τ = ωt is
introduced, in terms of this new variable, Eq. (1) becomes

ω2u′′+ f (u,ωu′,ω2u′′) = 0, u(0) = A, u′(0) = 0, (2)

where u′ and u′′ are the first and second differentiation
with respect to τ respectively. Applying Newton’s
approach, the displacement and squared angular
frequency can be expressed as Eq. (3) in which ∆u1 and
∆ω2

1 are small increments of original displacement u1 and

squared angular frequency ω2 respectively.

u(τ) = u1(τ)+∆u1(τ), ω2 = ω2
1 +∆ω2

1 . (3)

Substituting Eq. (3) into Eq. (2) and linearizing it for
the first-order analytical approximation, the following
equation is set:

u1(τ) = Acos(τ), ∆u1 = ∆u′′1 = ∆ω2
1 = 0. (4)

For the second analytical approximation, we set Eq. (4)
and solve a set of simultaneous equations in terms of C and
∆ω2

1 .
∆u1 =C(cos(τ)− cos(3τ)). (5)

The corresponding approximate analytical periodic
solutions u(τ) and the second-order analytical
approximate frequency ω2 are as follows:

ω2 = ω =
√

ω2
1 +∆ω2

1 , (6)

u(τ) = Acos(τ)+C (cos(τ)− cos(3τ)) . (7)

3 Applications

In this section, the NHBM is applied to solve two
particular physical examples of conservative oscillators.
The results are compared with those obtained by exact or
numerical solutions along with some other analytical
techniques.

3.1 Example 1:

For the first example, the nonlinear dynamics of a particle
on a rotating parabola is considered. The governing
equation of motion and initial conditions are introduced
by Nayfeh and Mook [4]:

(1+ 4q2u2) d2u
dt2 + 4q2u

(

du
dt

)2
+Ωu = 0,

u(0) = A, du
dt
(0) = 0.

(8)

By introducing a new independent variable τ = ωt, Eq. (8)
is changed to:

(1+ 4q2u2)ω2u′′+ 4ω2q2uu′2 +Ωu = 0,
u(0) = A, u′(0) = 0.

(9)

3.1.1 First-order analytical approximation

For the lowest-order (first-order) analytical approximate
solution, substituting Eq. (3) into Eq. (9), and
linearization with respect to ∆u1 and ∆ω2

1 yields:

(

ω2
1 + 4q2u2

1ω2
1 + 8q2u1∆u1ω2

1 + 4q2u2
1∆ω2

1 +∆ω2
1

)

u′′1
+
(

ω2
1 + 4q2u2

1ω2
1

)

∆u′′1 +
(

4q2u1ω2
1 + 4q2∆u1ω2

1

+ 4q2u1∆ω2
1

)

u′21 +
(

8q2u1ω2
1

)

u′1∆u′1 +Ω (u1 +∆u1) = 0.
(10)

Substituting Eq. (4) into Eq. (10) and avoiding the
presence of secular terms, the angular frequency may be
written as:

ω1 =

√

Ω

1+ 2A2q2
. (11)

3.1.2 Second-order analytical approximation

For the second-order analytical approximation, by putting
u1 = Acos(τ) and ∆u1 = C(cos(τ)− cos(3τ)) into Eq.
(10), expanding the obtained expression in a
trigonometric series and then equating the coefficients of
cos(τ) and cos(3τ) equal to zero, results are achieved in a
set of simultaneous equations in terms of ∆ω2

1 and C,
then we get

−2A3q2∆ω2
1 − 2A3q2ω2

1 −A∆ω2
1 −Aω2

1

+AΩ −Cω2
1 +CΩ = 0,

(12)

−2A3q2∆ω2
1 − 2A3q2ω2

1 + 14A2Cq2ω2
1

+9Cω2
1 −CΩ = 0.

(13)

Solving Eqs. (12) and (13) for ∆ω1 and C gives

∆ω1 =

√

Ω1

Ω2

, (14)
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and

C =
2A3q2Ω

Ω2

. (15)

where

Ω1 =−28A4q4ω4
1 + 18A2q2ω2

1 Ω − 34A2q2ω4
1

+10ω2
1 Ω − 9ω4

1 −Ω 2,
Ω2 = 28A4q4ω2

1 + 34A2q2ω2
1 − 4A2q2Ω + 9ω2

1 −Ω .

Hence, the second-order analytical approximation of
the periodic solution for Eq. (8) is

u(τ) = Acos(τ)+C(cos(τ)− cos(3τ)), (16)

where

ω =

√

Ω

1+ 2A2q2
+

Ω1

Ω2

, (17)

3.2 Example 2:

Tapered beams are important model for engineering
structures that require a variable stiffness along the
length, such as moving arms and turbine blades. In
dimensionless form, the governing differential equation
corresponding to the fundamental vibration mode of a
tapered beam is given by [39]:

d2u
dt2 +αu2 d2u

dt2 +αu
(

du
dt

)2
+ u+β u3 = 0,

u(0) = A, du
dt
(0) = 0.

(18)

Substituting τ = ωt, Eq. (18) is changed to:

ω2u′′+ω2αu2u′′+ω2αu(u′)2 + u+β u3 = 0,
u(0) = A, u′(0) = 0.

(19)

3.2.1 First-order analytical approximation

For the first-order analytical approximate solution,
inserting Eq. (3) into Eq. (19), the following is obtained:

(

2u1α∆u1∆ω2
1 + 2u1α∆u1ω2

1 + u2
1α∆ω2

1 + u2
1αω2

1

+α∆u2
1∆ω2

1 +α∆u2
1ω2

1 +∆ω2
1 +ω2

1

)

u′′1
(

2u1α∆u1∆ω2
1 + 2u1α∆u1ω2

1 + u2
1α∆ω2

1 + u2
1αω2

1

+α∆u2
1∆ω2

1 +α∆u2
1ω2

1 +∆ω2
1 +ω2

1

)

∆u′′1
+
(

u′21 + 2u′1∆u′1 +∆u′21
)(

u1α∆ω2
1 + u1αω2

1

α∆u1∆ω2
1 +α∆u1ω2

1

)

+ u1 +∆u1

+3u2
1β ∆u1 + 3u1β ∆u2

1 + u3
1β +β ∆u3

1 = 0.
(20)

Linearization of Eq. (20) with respect to ∆u1 and ∆ω2
1

yields:

(

2u1α∆u1ω2
1 + u2

1α∆ω2
1 + u2

1αω2
1 +∆ω2

1 +ω2
1

)

u′′1
(

u2
1αω2

1 +ω2
1

)

∆u′′1 + u3
1β +

(

u1α∆ω2
1 + u1αω2

1

+α∆u1ω2
1

)

u′21 + 2u1αω2
1 u′1∆u′1

+3u2
1β ∆u1 + u1 +∆u1 = 0.

(21)

Substituting Eq. (4) into Eq. (21) for first-order
approximation and the presence of secular terms,

1
4

(

−2A3αω2
1 + 3A3β − 4Aω2

1 + 4A
)

cos(τ)
+ 1

4

(

A3β − 2A3αω2
1

)

cos(3τ) = 0.
(22)

From Eq. (22) the angular frequency may be written as

ω1 =

√

4+ 3A2β

4+ 2A2α
. (23)

3.2.2 Second-order analytical approximation

For the second analytical approximation, by putting u1 =
Acos(τ) and ∆u1 =C(cos(τ)− cos(3τ) into Eq. (20) then
the obtained expression in a trigonometric series is

1
4

(

−2A3α∆ω2
1 − 2A3αω2

1 + 3A3β + 6A2Cβ
−4A∆ω2

1 − 4Aω2
1 + 4A− 4Cω2

1 + 4C
)

cos(τ)
+ 1

4

(

−2A3α∆ω2
1 − 2A3αω2

1 +A3β + 14A2Cαω2
1

−3A2Cβ + 36Cω2
1 − 4C

)

cos(3τ)
+ 1

4

(

18A2Cαω2
1 − 3A2Cβ

)

cos(5τ) = 0,

(24)

then by putting the coefficients of cos(τ) and cos(3τ)
equal to zero, and solving the set of equations in terms of
∆ω2

1 and C:

−
1
2
A3α∆ω2

1 −
1
2
A3αω2

1 +
3
4
A3β + 3

2
A2Cβ

−A∆ω2
1 −Aω2

1 +A−Cω2
1 +C = 0.

(25)

−
1
2
A3α∆ω2

1 −
1
2
A3αω2

1 +
1
4
A3β + 7

2
A2Cαω2

1

−
3
4
A2Cβ + 9Cω2

1 −C = 0.
(26)

Solving Eqs. (25) and (26) simultaneously, it is obtained
that:

∆ω1 =
[(

−28A4α2ω4
1 + 60A4αβ ω2

1 − 15A4β 2

−136A2αω4
1 + 72A2αω2

1 + 124A2β ω2
1

−28A2β − 144ω4
1 + 160ω2

1 − 16
)

/2
(

14A4α2ω2
1 − 9A4αβ + 68A2αω2

1

−8A2α − 6A2β + 72ω2
1 − 8)

]1/2
,

(27)

and

C =
(

2A5αβ + 4A3α − 2A3β
)

/
(

14A4α2ω2
1 − 9A4αβ

+68A2αω2
1 − 8A2α − 6A2β + 72ω2

1 − 8
)

.
(28)

The second-order analytical approximate frequency is
written as:

ω =
√

ω2
1 +∆ω2

1 , (29)

where ∆ω1 and ω are shown by Eqs. (27) and (29), the
approximate analytical periodic solution u(τ), is as
follows:

u(τ) = Acos(τ)+C(cos(τ)− cos(3τ)). (30)
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Table 1: Comparison between the obtained solutions by variational approach, analytical solution and numerical frequency for example

1

Constant parameters Pakar et al. Present method Exact

[26] [26]

A q Ω ωVA ω1 ω2 ωExact

0.5 1 0.5 0.5774 0.5774 0.581774 0.5815

0.5 0.5 2 1.3333 1.3333 1.33439 1.3344

1 0.8 1.5 0.8111 0.8111 0.830357 0.8288

1 0.7 0.5 0.5025 0.5025 0.511536 0.5108

1.5 0.5 2 0.9701 0.9701 0.990343 0.9888

1.5 0.3 2.5 1.3339 1.3339 1.34145 1.3410

2 0.2 4 1.7408 1.7408 1.74762 1.7473

2 0.4 1 0.6623 0.6623 0.677984 0.6767

Table 2: Comparison between the numerical frequency ω , the approximate frequency and other existing frequencies for α = β = 1 for

example 2

Razzak & Alam Hamdan & Dado Wu et al. Present method Exact

[23] [39] [40] [23]

A ω0 ω0 ω1 ω0 ω1 ω1 ω2 ωExact

5 1.37581 1.20953 1.24841 1.20953 1.32217 1.20953 1.35719 1.34288

10 1.40388 1.22074 1.26285 1.22074 1.35084 1.22074 1.39814 1.38928

15 1.40955 1.22295 1.26570 1.22295 1.35672 1.22295 1.4069 1.40138

20 1.41158 1.22373 1.26671 1.22373 1.35883 1.22373 1.41006 1.40632

25 1.41252 1.22409 1.26718 1.22409 1.35981 1.22409 1.41155 1.40883

30 1.41304 1.22429 1.26743 1.22429 1.36035 1.22429 1.41236 1.41029

50 1.41379 1.22458 1.26781 1.22458 1.36113 1.22458 1.41354 1.41261

100 1.41411 1.22470 1.26797 1.22470 1.36147 1.22470 1.41405 1.41375

200 1.41419 1.22473 1.26801 1.22473 1.36155 1.22473 1.41417 1.41408

500 1.41421 1.22474 1.26802 1.22474 1.36157 1.22474 1.41421 1.41419

1000 1.41421 1.22474 1.26802 1.22474 1.36157 1.22474 1.41421 1.41421

Table 3: Comparison between the numerical frequency ω , the approximate frequency and other existing frequencies for α = β = 2 for

example 2

Razzak & Alam Hamdan & Dado Wu et al. Present method Exact

[23] [39] [40] [23]

A ω0 ω0 ω1 ω0 ω1 ω1 ω2 ωExact

5 1.39406 1.21687 1.25786 1.21687 1.34073 1.21687 1.38338 1.37132

10 1.40898 1.22272 1.26541 1.22272 1.35613 1.22272 1.40600 1.40006

15 1.41187 1.22384 1.26685 1.22384 1.35913 1.22384 1.41052 1.40707

20 1.41289 1.22424 1.26736 1.22424 1.36020 1.22424 1.41213 1.40986

25 1.41337 1.22442 1.26760 1.22442 1.36069 1.22442 1.41287 1.41127

30 1.41363 1.22452 1.26773 1.22452 1.36096 1.22452 1.41328 1.41207

50 1.41400 1.22466 1.26791 1.22466 1.36135 1.22466 1.41388 1.41335

100 1.41416 1.22472 1.26799 1.22472 1.36152 1.22472 1.41413 1.41397

200 1.41420 1.22474 1.26801 1.22474 1.36156 1.22474 1.41419 1.41414

500 1.41421 1.22474 1.26802 1.22474 1.36157 1.22474 1.41421 1.41420

1000 1.41421 1.22474 1.26802 1.22474 1.36158 1.22474 1.41421 1.41421

4 Results and Discussion

Many researchers have tried to solve Eqs. (8) and (18)
using different methods such as variational approach,
coupled homotopy variational approach, and harmonic
balance method. In the present study, the current
equations are solved using the NHBM. Furthermore, the

obtained results are compared with those of the
mentioned methods.

To check the validity and accuracy of the method used
in this study, some comparisons with the published data
along with the exact solutions are displayed in Tables
(1-3). The approximated results are shown as being in
good agreement with numerically-obtained exact
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Fig. 1: Comparison between analytical approximate solution (dot line), and numerical solution (solid line) for example 1
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Fig. 2: Comparison between analytical approximate solution (dot line), coupled homotopy variational approach (dashed line) and

numerical solution (solid line) for example 2
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solutions. The second-order analytical approximate
solutions are found to be almost the same as exact
solutions. High accuracy results and simple solution
procedures are advantages of the proposed method, which
could be applied to other nonlinear oscillatory problems
arising in nonlinear science and engineering. We observe
from the Tables and graphical results that the approximate
solution provides relatively good approximation in
comparison with the exact periodic solution for small and
large amplitude of oscillation.

The results obtained in this paper confirm that the
NHBM is a powerful and efficient method for solving
nonlinear oscillator differential equations in different
fields of sciences and engineering.
From Figures 1 and 2, it can be concluded that Eqs. (8)
and (18) can provide excellent approximate frequencies
for oscillation amplitude. We plotted the phase curve and
the time history response with amplitudes of A=1, 1.5, 10,
20, 50, 100, 500 and 1000 in example 1 and A=1, 10, 100
and 1000 in example 2. The observation shows that the
second-order NHBM is in good agreement with the
Runge -Kutta method. From the phase curve, it reveals
that the nonlinear equations have a stable periodic
solution. It also shows that it is effective to use NHBM to
approximate the Runge-Kutta numerical solution.

5 Conclusion

The NHBM has been successfully applied to analyze and
determine approximate periodic solutions for the
governing equations of nonlinear oscillator’s differential
equations. It can clearly be seen that the second-order
approximate solutions are in excellent agreement with the
exact solutions. Furthermore, the NHBM gives an idea
about the contributions from different harmonics. We
conclude that the NHBM is not only a simple but also an
elegant way to study a wide class of realistic non-exactly
solvable problems, as well. The NHBM is expected to be
suitable for other nonlinear ordinary differential
equations. Moreover, the proposed method is a direct,
concise and effective powerful mathematical tool for
obtaining analytical approximate solutions of other
nonlinear differential equations. Our results are in perfect
agreement with numerical software.
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