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Abstract: In this paper, we define and introduce some new concepts of the higher order strongly-generalized convex functions

involving an arbitrary function. Some properties of the higher order strongly-generalized convex functions are investigated under

suitable conditions. We have proved that the optimality conditions of higher order strongly generalized can be characterized by a

class of variational inequalities, which is called higher-order strongly variational inequality. It is shown that the parallelogram laws for

Banach spaces can be obtained as applications of higher-order strongly-generalized affine convex functions. Results obtained in this

paper can be viewed as refinement and improvement of previously-known results.
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1 Introduction

Strongly convex functions were introduced and studied by
Polyak [1], which play an important part in the
optimization theory and related areas. Applications of the
strongly convex functions in complementarity problems,
characterization of the inner product, exponential stability
of primal-dual gradient dynamics are shown in [2,3,4,5].
Awan et al[8] have derived Hermite-Hadamard type
inequalities for various classes of strongly convex
functions, which provide upper and lower estimate for the
integrand. For more applications and properties of the
strongly convex functions, see [1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16] and the references therein.
Lin and Fukushima [17] introduced the concept of
higher-order strongly convex functions and studied its
applications in mathematical program with equilibrium
constraints. Mishra and Sharma [18] derived the
Hermite-Hadamard type inequalities for higher-order
strongly convex functions.
To be more precise, a function F on the closed convex set
K is said to be a higher-order strongly convex [17], if
there exists a constant µ ≥ 0, such that

F((u + t(v− u))≤ (1− t)F(u)+ tF(v)

−µϕ(t)‖v− u‖p
,∀u,v ∈ K, t ∈ [0.1], p ≥ 1, (1)

where

ϕ(t) = t(1− t). (2)

If p = 2, then higher-order strongly convex functions
become strongly convex functions with the same ϕ(t) as
defined in (2).
We have noticed that the function ϕ(.) in (2) is not correct
and must be modified. Characterizations of the
higher-order strongly convex functions discussed in Lin
and Fukushima [17] are not correct. These facts and
observations motivated Mohsen et al [11] to consider
higher-order strongly convex function by modifying the
function ϕ(.). Continuing the same ideas, we introduce a
new class of higher-order strongly convex functions
involving an arbitrary bifunction. Several new concepts of
monotonicity are introduced. We establish the
relationship between these classes and derive some new
results under some mild conditions. The minimum of the
differentiable higher-order strongly-generalized convex
functions is characterized by a class of variational
inequalities, which is called higher-order strongly
variational inequality. Several special cases are discussed
as applications of new results. Higher-order strongly
convex functions can be used to characterize the
uniformly reflex Banach spaces. We have also deduced
the weakly parallelogram laws for the Lp-spaces, which
were discussed in [19,20,21,22,23] from the concept of
higher-order strongly-generalized affine convex functions.
This result can be viewed itself an elegant and interesting
applications of the higher-order strongly-generalized
convex functions.
In this paper, we have introduced and investigated some

∗ Corresponding author e-mail: noormaslam@gmail.com

c© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/140117


134 M. A. Noor, K. I. Noor: Higher order strongly generalized...

properties of the higher-order strongly-generalized
convex functions along with their applications. A new
class of higher-order variational inequalities is
introduced, which is itself an open problem. The
interested researchers may develop some numerical
methods for solving these variational inequalities.

2 Formulations and basic facts

Let K be a nonempty closed set in a real Hilbert space H.
We denote by 〈·, ·〉 and ‖ · ‖ be the inner product and norm,
respectively.

Definition 1.[11,19] A set K in H is said to be a convex set, if

u+ t(v−u) ∈ K, ∀u,v ∈ K, t ∈ [0,1].

We now introduce some new classes of higher-order strongly

convex functions and higher-order strongly-generalized affine

convex functions.

Definition 2. A function F on the convex set K is said to be
higher-order strongly-generalized convex with respect to the
bifunction ξ (., .), if there exists a constant µ > 0, such that

F(u+ t(v−u))≤ (1− t)F(u)+ tF(v)

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p
,∀u,v ∈ K, t ∈ [0,1], p ≥ 1. (3)

A function F is said to higher-order strongly-generalized
concave with respect to the bifucntion ξ (.− .), if and only if,
−F is higher-order strongly-generalized convex function with
respect to the bifucntion ξ (.− .).

If t = 1
2 , then

F

(

u+ v

2

)

≤
F(u)+F(v)

2
−µ

1

2p
‖ξ (v−u)‖p

,∀u,v ∈ K, p ≥ 1. (4)

The function F is said to be higher-order strongly
J-convex function.

Definition 3. A function F on the convex set K is said to
be a higher-order strongly-generalized affine convex
function with respect to the bifucntion ξ (.− .), if there
exists a constant µ > 0, such that

F(u+ t(v−u)) = (1− t)F(u)+ tF(v)

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖2
,∀u,v ∈ K, t ∈ [0,1], p ≥ 1. (5)

Note that if a function is both higher-order

strongly-generalized convex and higher-order

strongly=generalized concave, then it is higher-order

strongly-generalized affine convex function.

A function F is called higher-order strongly-generalized
quadratic equation with respect to the bifucntion ξ (.− .),
if there exists a constant µ > 0, such that

F

(

u+ v

2

)

=
F(u)+F(v)

2

−µ
1

2p
‖ξ (v− u)‖p

,∀u,v ∈ K, t ∈ [0,1]. (6)

This function F is also called higher-order
strongly-generalized affine J-convex function.
We now discuss some special cases.
I. If p = 2, then the higher-order strongly-generalized
convex function becomes strongly convex functions, that
is,

F(u+ t(v−u)) ≤ (1− t)F(u)+ tF(v)

−µt(1− t)‖ξ (v−u)‖2
,∀u,v ∈ K, t ∈ [0,1].

Such type of strongly convex functions were studied by
Adamek [6]. For the properties of the strongly convex
functions in variational inequalities and equilibrium
problems, see Noor [13] and the references therein.

Definition 4. A function F on the convex set K is said

to be higher-order strongly-generalized quasi convex with

respect to the bifucntion ξ (.− .), if there exists a constant

µ > 0 such that

F(u+ t(v− u) ≤ max{F(u),F(v)}

−µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p
,

∀u,v ∈ K, t ∈ [0,1].

Definition 5. A function F on the convex set K is said to

be higher-order strongly-generalized log-convex with

respect to the bifunction ξ (.− .), if there exists a constant

µ > 0 such that

F(u+ t(v− u)) ≤ (F(u))1−t(F(v))t

−µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p
,

∀u,v ∈ K, t ∈ [0,1],

where F(·)> 0.

From the above definitions, we have

F(u + t(v− u))≤ (F(u))1−t
,(F(v))t

−µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p

≤ (1− t)F(u)+ tF(v)

−µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p

≤ max{F(u),F(v)}

−µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p
.p ≥ 1.

This shows that every higher-order strongly-generalized
log-convex function is a higher-order
strongly-generalized convex function and every
higher-order strongly-generalized convex function is a
higher-order strongly-generalized quasi-convex function.
However, the converse is not true.
For appropriate and suitable choice of the arbitrary
bifuction ξ (v− u) one can obtain several new and known
classes of strongly convex functions and their variant
forms as special cases of higher-order
generalized-strongly convex functions. This shows that
the class of higher-order generalized-strongly convex
functions is quite broad and a unifying one.

Definition 6. An operator T : K → H is said to be:
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1.higher-order strongly monotone, if and only if, there
exist an arbitrary bifunction ξ (., .) and a constant α >

0 such that

〈Tu−T v,u−v〉 ≥ α{‖ξ (v−u)‖p +‖ξ (u−v)‖p},∀u,v ∈ K.

2.higher-order strongly pseudomonotone, if and only if,

there exist an arbitrary bifunction ξ (., .) and a

constant ν > 0, such that

〈Tu,v− u〉+ν‖ξ (v− u)‖p ≥ 0

⇒

〈T v,v− u〉 ≥ 0,∀u,v ∈ K.

3.higher-order strongly relaxed pseudomonotone, if and

only if, there exist an arbitrary bifunction ξ (., .) and

constant µ > 0, such that

〈Tu,v− u〉 ≥ 0

⇒

−〈T v,u− v〉+ µ‖ξ (v− u)‖p ≥ 0,∀u,v ∈ K.

Definition 7. A differentiable function F on the convex
set K is said to be higher-order strongly pseudo convex
function with respect to the bifucntion ξ (.− .), if and only
if, if there exists a constant µ > 0, such that

〈F ′(u),v−u〉+µ‖ξ (v−u)‖p ≥ 0 ⇒ F(v)≥ F(u),∀u,v ∈ K.

3 Main results

In this section, we consider some basic properties of
higher-order strongly-generalized convex functions.

Theorem 1. Let F be a differentiable higher-order

strongly-generalized convex function on the convex set K

and let the bifunction ξ (., .) be homogeneous. Then the

function F is higher-order strongly-generalized convex

function, if and only if,

F(v)−F(u)≥ 〈F ′(u),v− u〉+ µ‖ξ (v− u)‖p
,∀v,u ∈ K.(7)

Proof. Let F be a higher-order strongly-generalized
convex function on the convex set K. Then

F(u+ t(v−u)) ≤ (1− t)F(u)+ tF(v)

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p
,∀u,v ∈ K,

which can be written as

F(v)−F(u) ≥ {
F(u+ t(v− u)−F(u)

t
}

+{t p−1(1− t)+ (1− t)p}‖ξ (v− u)‖p
.

Taking the limit in the above inequality as t → 0,, we have

F(v)−F(u)≥ 〈F ′(u),v− u)〉+ µ‖v− u‖p
,∀u,v ∈ K.

which is (7), the required result.

Conversely, let (7) hold. Then, ∀u,v ∈ K, t ∈ [0,1],

vt = u+ t(v− u)∈ K.

Since the function ξ (., .) is homogeneous, we have

F(v)−F(vt) ≥ 〈F ′(vt),v−vt )〉+µ‖ξ (v−vt )‖
p

= (1− t)F ′(vt),v−u〉+µ(1− t)p‖ξ (v−u)‖p
.(8)

In a similar way, we have

F(u)−F(vt) ≥ 〈F ′(vt),u− vt)〉+ µ‖ξ (u− vt)‖
p

= −tF ′(vt),v− u〉+ µt p‖ξ (v− u)‖p
. (9)

Multiplying (8) by t and (9) by (1 − t) and adding the
resultant, we have

F(u+ tη(v,u)) ≤ (1− t)F(u)+ tF(v)

−µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p
,

∀u,v ∈ K, t ∈ [0,1],

showing that F is a higher-order strongly-generalized
convex function.

Theorem 2. Let F be differentiable higher-order

strongly-generalized convex function on the convex set K.

Then F ′(.) is a higher-order strongly monotone operator.

Proof.Let F be a higher-order strongly-generalized convex
function on the convex set K. Then, from Theorem 1. we
have

F(v)−F(u)≥ 〈F ′(u),v−u〉+µ‖ξ (v−u)‖p
, ∀u,v ∈ K. (10)

Changing the role of u and v in (10), we have

F(u)−F(v)≥ 〈F ′(v),u−v)〉+µ‖ξ (u−v)‖p
,∀u,v ∈ K. (11)

Adding (10) and (11), we have

〈F ′(u)−F ′(v),u− v〉 ≥ µ{‖v− u‖p+ ‖ξ (u− v)‖p}, (12)

∀u,v ∈ K,

which shows that F ′(.) is a higher-order strongly
monotone operator.

We remark that the converse of Theorem 2 is not true. In
this direction, we have the following result.

Theorem 3.Let the differential operator F ′(.) of a

differentiable higher-order strongly-generalized convex

function F be a higher-order strongly monotone operator.

If the bifunction ξ (.− .) be symmetric and homogeneous,

then

F(v)−F(u) ≥ 〈F ′(u),v− u〉

+2µ
1

p
‖v− u‖p

,∀u,v ∈ K. (13)

Proof.Let F ′(.) be a higher order strongly monotone
operator. Then, from (12), we have

〈F ′(v),u−v〉 ≥ 〈F ′(u),u−v)〉

+ µ{‖ξ (v−u)‖p +‖ξ (u−v)‖p},∀u,v ∈ K. (14)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1],
vt = u + t(v − u) ∈ K. Taking v = vt in (14). Since the
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bifunction ξ (., .) is symmetric and homogeneous, we
have

〈F ′(vt),u− vt〉 ≤ 〈F ′(u),u− vt〉− 2µ‖ξ (v− u)‖p

= −t〈F ′(u),v− u〉− 2µt p‖ξ (v− u)‖p
,

which implies that

〈F ′(vt),v− u〉 ≥ 〈F ′(u),v− u〉+ 2µt p−1‖ξ (v− u)‖p
. (15)

Consider the auxiliary function

g(t) = F(u+ t(v− u),∀u,v∈ K,

from which, we have

g(1) = F(v), g(0) = F(u).

Then, from (15), we have

g′(t) = 〈F ′(vt ,v−u〉 ≥ 〈F ′(u),v−u〉+2µt p−1‖ξ (v−u)‖p
.(16)

Integrating (16) between 0 and 1, we have

g(1)− g(0 ) =

∫ 1

0
g′(t)dt

≥ 〈F ′(u),v− u〉+ 2µ
1

p
‖ξ (v− u)‖p

.

Thus it follows that

F(v)−F(u)≥ 〈F ′(u),v− u〉+ 2µ
1

p
‖ξ (v− u)‖p

,

which is the required (13).

We note that, if p = 2, then Theorem 3 can be viewed
as the converse of Theorem 2.

We now give a necessary condition for higher-order
strongly-generalized pseudo-convex function.

Theorem 4. Let F ′(.) be a higher-order strongly

relaxed pseudomonotone operator. If the bifunction ξ (., .)
is homogeneous, then F is a higher-order

strongly-generalized pseudo-connvex function.

Proof. Let F ′(.) be a higher-order strongly relaxed
pseudomonotone operator. Then, ∀u,v ∈ K,

〈F ′(u),v− u〉 ≥ 0.

implies that

〈F ′(v),v− u〉 ≥ µ‖ξ (v− u)‖p
,∀u,v ∈ K. (17)

Since K is a convex set, ∀u,v ∈ K, t ∈ [0,1],
vt = u+ t(v− u)∈ K.

Taking v = vt in (17), we have

〈F ′(vt),v− u〉 ≥ µt p−1‖ξ (v− u)‖p
. (18)

Consider the auxiliary function

g(t) = F(u+ t(v− u)) = F(vt), ∀u,v ∈ K, t ∈ [0,1].

Then, using (18), we have

g′(t) = 〈F ′(vt),v− u)〉 ≥ µt p−1‖ξ (v− u)‖p
.

Integrating the above relation between 0 to 1, we have

g(1)− g(0) =

∫ 1

0
g′(t)dt ≥

µ

p
‖ξ (v− u)‖p

,

that is,

F(v)−F(u)≥
µ

p
‖|ξ (v− u)‖p),∀u,v ∈ K,

showing that F is a higher-order strongly-generalized
pseudo-convex function.

Definition 8. A function F is said to be sharply higher-

order strongly-generalized pseudo convex with respect to

the bifucntion ξ (.− .), if there exists a constant µ > 0,
such that

〈F ′(u),v− u〉 ≥ 0

⇒

F(v)≥ F(v+ t(u− v))

+µ{t p(1− t)+ t(1− t)p}‖ξ (v− u)‖p
,∀u,v ∈ K, p ≥ 1.

Theorem 5. Let F be a sharply higher-order strongly-

generalized pseudo convex function on K with a constant

µ > 0. Then

〈F ′(v),v− u〉 ≥ µ‖ξ (v− u)‖p
,∀u,v ∈ K.

Proof. Let F be a sharply higher-order
strongly-generalized pseudo convex function on K. Then

F(v) ≥ F(v+ t(u−v))

+ µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p
,∀u,v ∈ K, t ∈ [0,1],

from which, we have

{
F(v+ t(u− v)−F(v)

t
}+µ{t p−1(1− t)+(1− t)p}‖ξ (v−u)‖p ≥ 0.

Taking limit in the above inequality, as t → 0, we have

〈F ′(v),v− u〉 ≥ µ‖ξ (v− u)‖p
,∀u,v ∈ K,

which is the required result.

Definition 9. A function F is said to be a pseudo convex
function, if there exists a strictly positive bifunction B(., .),
such that

F(v)< F(u)

⇒

F(u+ t(v−u)) < F(u)+ t(t −1)B(v,u),∀u,v ∈ K, t ∈ [0,1].

Theorem 6. If the function F is higher-order strongly-

generalized convex function such that F(v) < F(u), then

the function F is higher-order strongly-generalized pseudo

convex.
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Proof. Since F(v)<F(u) and F is higher-order strongly-
generalized convex function, then
∀u,v ∈ K, t ∈ [0,1], we have

F(u+ t(v−u)) ≤ F(u)+ t(F(v)−F(u))

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p

< F(u)+ t(a− t)(F(v)−F(u))

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p

= F(u)+ t(t −1)(F(u)−F(v))

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p

< F(u)+ t(t −1)B(u,v)

−µ{t p(1− t)+ t(1− t)p}‖v−u‖p
,∀u,v ∈ K,

where B(u,v) = F(u)− F(v) > 0, which is the required
result.

We now discuss the optimality for the differentiable
higher-order strongly-generalized convex functions,
which is the main motivation of our next result.

Theorem 7. Let F be a differentiable higher-order

strongly-generalized convex function with modulus µ > 0.
If u ∈ K is the minimum of the function F, then

F(v)−F(u)≥ µ‖ξ (v− u)‖p
, ∀u,v ∈ K. (19)

Proof. Let u ∈ K be a minimum of the function F. Then

F(u)≤ F(v),∀v ∈ K. (20)

Since K is a convex set, so, ∀u,v ∈ K, t ∈ [0,1],

vt = (1− t)u+ tv∈ K.

Taking v = vt in (20), we have

0 ≤ lim
t→0

{
F(u+ t(v− u))−F(u)

t
}

= 〈F ′(u),v− u〉. (21)

Since F is differentiable higher-order strongly-generalized
convex function, so

F(u+ t(v−u)) ≤ F(u)+ t(F(v)−F(u))

−µ{t p(1− t)+ t(1− t)p}‖ξ (v−u)‖p
,∀u,v ∈ K,

from which, using (21), we have

F(v)−F(u) ≥ lim
t→0

{
F(u+ t(v− u))−F(u)

t
}

+µ{t p−1(1− t)+ (1− t)p}‖ξ (v− u)‖p

= 〈F ′(u),v− u〉+ µ‖ξ (v− u)‖p
,

which is the required result (19).

Remark: We would like to mention that, if

〈F ′(u),v− u〉+ µ‖ξ (v− u)‖p ≥ 0, ∀u,v ∈ K, p > 1,(22)

then u ∈ K is the minimum of the function F.

The inequality of the type (22) is called the higher-order

strongly variational inequality, which appears to be new
one. It is an open problem to develop the numerical
methods for solving higher-order strongly variational
inequalities.

It is well known that each strongly convex functions is
of the form f + ‖.‖2, where f is a convex function.
Similar result can be proved for the higher-order
strongly-generalized strongly convex functions using the
technique of Noor and Noor [14].

Theorem 8. Let f be a higher-order

strongly-generalized affine function. Then F is a

higher-order strongly-generalized convex function, if and

only if, G = F − f is a convex function.

4 Applications

In this section, we show that the characterizations of
uniformly Banach spaces involving the notion of strong
convexity are given.

Bynum [20] and Chen et al [21,22,23] have studied
the properties and applications of the parallelogram laws
for the Banach spaces. Xu [19] obtained some
characteristics of p-uniform convexity and q-uniform
smoothness of a Banach space via the convex functions
‖.‖p and ‖.‖q, respectively. We show that these results
follow directly from the definitions of the higher order
strongly convex functions, which can be viewed as novel
application.
Setting F(u) = ‖u‖p, ξ (v − u) = v − u in Definition2

with t = 1
2
, we have

‖u+ v‖p+ µ‖v− u‖p = 2p−1{‖u‖p+ ‖v‖p},∀u,v ∈ K,(23)

which is known as the parallelogram for the lp-spaces.
For the applications of the parallelogram laws for Banach
spaces in prediction theory and applied sciences, see [11,
19,20,21,22,23] and the references therein.

5 Conclusion

In this paper, we have introduced and studied a new class
of convex functions with respect to an arbitrary function,
which is called higher-order strongly-generalized convex
function. It is shown that several new and known classes
of strongly convex functions can be obtained as special
cases of these higher-order strongly-generalized convex
functions. We have studied the basic properties of these
functions. We have shown that one can derive the
parallelogram laws for Banach spaces, which have
applications in prediction theory and stochastic analysis.
These parallelogram laws can be used to characterize the
uniform convexity and uniform smoothness of Banach
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spaces. The interested readers may explore the
applications and other properties of the higher-order
strongly-generalized convex functions in various fields of
pure and applied sciences.
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