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1 Introduction

Fractional differential equations have gained
importance and popularity during the past three decades
or so, mainly due to the feature of these equations to
accurately describe nonlinear phenomena. As a result,
these equations have several applications in science and
engineering. For example, the nonlinear oscillation of an
earth quake can be modeled using fractional derivatives.
The use of fractional derivatives in the fluid dynamics
traffic model eliminates the deficiency arising from the
assumption of continuous traffic flow. Fractional
differential equations are also used in modeling chemical
processes, signal processing, hydraulics of dams,
temperature field problems in oil strata, diffusion
problems, waves in liquids and gases [1,2,3,4,5,6,7].
Thus, several researchers have been trying to develop new
way which is easier to work with definitions of fractional
derivatives, like the Riemann-Liouville, Caputo and
Grunwald-Letnikov, for details, see [8,9] and references
cited therein.

Recently, a well-behaved limit-based derivative called
the conformable fractional derivative was suggested in
Khalil et al., [10] in this direction have grown rapidly, day
by day. Some of these studies are cited in the references
[10,11,12,13,14].

Over the years, the development of oscillation theory
has played a major role in the physical sciences and
engineering. Well-known applications of the theory of
oscillations include the oscillations in buildings and
machines, self- excited vibrations in synchrotron
accelerators, the vibrations in the operation of rocket
engines, electro magnetic vibration in radio technology
and optical science, the complicated oscillation in
chemical reaction and also the work in lossless
transmission lines in high speed computer networks [15,
16]. All these different phenomena share a common
theoretical foundation in oscillation theory. They all can
be described by an oscillatory differential equation. There
are many books on oscillation theory. We choose to refer
to [17,18].

For studies in the oscillation theory of fractional
differential equations with the Liouville right-sided
definition see [19,20,21,22,23,24]. While for studies of
fractional partial differential equations with Riemann-
Liouville fractional left-sided derivative see [25,26,27].

To the best of author’s knowledge, it seems that there
has been no work done on conformable and
Riemann-Liouville left sided fractional derivatives
appearing in the mixed fractional order differential
equations.
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The authors motivated by this gap have initiated the
following oscillation problem of a class of mixed
fractional order nonlinear differential equation of the
form

Tα3

[

1

r2(t)
f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))]

+F

(

t,

∫ t

0
(t − s)−α1x(s)ds

)

= 0,

t ≥ t0 > 0,0 < αi < 1, i = 1,2,3. (1)

We assume that the following conditions are satisfied:
(A1)
r1(t) ∈Cα2+α3([t0,∞),R+)),r2(t) ∈Cα3([t0,∞),R+));
(A2) fi ∈ Cα2+α3(R,R) is an increasing odd function and

there exist positive constants δi and δ
′
i such that

δi
′ ≥ x

fi(x)
≥ δi > 0 for x fi(x) 6= 0, i=1,2 and δ = δ1δ2;

(A3) (a) f−1
1 ∈ C(R,R) with u f−1

1 (u) > 0 for u 6= 0, and
there exist some positive constants λ1 such that
f−1
1 (uv)≤ λ1 f−1

1 (u) f−1
1 (v) for uv 6= 0,

(b) f−1
2 ∈ C(R,R) with u f−1

2 (u) > 0 for u 6= 0, and
there exist some positive constants λ2 such that
f−1
2 (uv) ≥ λ1 f−1

2 (u) f−1
2 (v) for uv 6= 0, i=1,2 and

λ = λ1λ2;
(A4) F(t,K) ∈ C1([t0,∞) × R,R+)) and there exist a

function Q(t) ∈C1([t0,∞),R+)) such that
F(t,K)

f2(K)
≤ Q(t)

for K 6= 0 whereas f2(k) and Q(t) are of the same sign.

By a solution of Eq.(1), we mean a function x(t)
defined on some ray [Tx,∞),Tx ≥ t0 such that
∫ t

0(t − s)−α1 x(s)ds ∈ C1([Tx,∞),R), 1
r1(t)

f1

(

D
α1
+ x(t)

)

∈
Cα2+α3([Tx,∞),R), which satisfies Eq.(1) for any t ≥ Tx.

From this point onward, we will always assume that
solutions of Eq.(1) existing on some half-line
[Tx,∞),Tx ≥ t0. We restrict our attention only to the
nontrivial solutions of Eq.(1), i.e, the solutions x(t) such
that sup {|x(t)| : t ≥ T} for all T > Tx.

A nontrivial solution of Eq.(1) is called oscillatory if
it has arbitrary large zeros, otherwise it is called
nonoscillatory. Eq.(1) is called oscillatory if all of its
solutions are oscillatory.

Our main objective in this paper is to obtain new
oscillation criteria for the class of nonlinear mixed
fractional differential equations defined by Eq. (1) and
provide a detailed discussion of the main results by
making use of the generalized Riccati technique and the
integral averaging method.

Having these ideas in mind, this paper is organized as
follows: In Section 2, we recall the basic definitions of the
Riemann-Liouville derivative and the conformable
fractional derivatives together with basic lemmas
concerning the above set of operators. In Section 3, we
present new sufficient conditions for the oscillation of the
solutions of Eq.(1). In Section 4, we provide examples to
illustrate the main results.

2 Preliminaries

Before starting our analysis of Eq.(1), we have to explain
the function of the operators Dα

+x(t) and Tα( f )(t). First,
we introduce some core concepts and results about the
Riemann-Liouville and Khalil’s conformable fractional
derivative. We start by defining the Riemann-Liouville
operator.

Definition: 2.1.[8] The Riemann-Liouville fractional
derivative of order α of x(t) is defined by

Dα
+x(t) =

1

Γ (1−α)

d

dt

∫ t

0
(t − s)−αx(s)ds, t ∈ R+ = (0,∞),

here Γ (.) is the gamma function defined by
Γ (t) =

∫ ∞
0 e−sst−1ds, t ∈ R+.

Lemma: 2.1.[25] Let x(t) be a solution of Eq.(1) and

K(t) =

∫ t

0
(t − s)−αx(s)ds f or α ∈ (0,1) (2)

where t > 0. Then

K′(t) = Γ (1−α)Dα
+x(t). (3)

Next, we provide the definition of the conformable
fractional derivative proposed by Khalil et al.[10],

Definition: 2.2. Given a function f : [0,∞)→R. Then the
conformable fractional derivative of f of order α, is
defined by

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)

ε

for all t > 0,α ∈ (0,1). If f is α- differentiable in some

(0,a),a > 0,and limt→0+ f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

We will sometimes write f (α)(t) for Tα( f )(t), to denote
the conformable fractional derivatives of f of order α.

Some properties of conformable fractional
derivative:

Let α ∈ (0,1] and f and g be α - differentiable at a point
t > 0. Then
(P1) Tα(t

p) = pt p−α for all p ∈ R.

(P2) Tα(λ ) = 0, for all constant functions f (t) = λ .
(P3) Tα( f g) = f Tα (g)+ gTα( f ).

(P4) Tα(
f
g
) = gTα ( f )− f Tα (g)

g2 .

(P5) If, in addition, f is differentiable, then

Tα( f )(t) = t1−α d f
dt
(t).
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Definition: 2.3.[24] Let α ∈ (0,1] and 0 ≤ a < b. A
function f : [a,b] → R is α-fractional integrable on [a,b]
if the integral

∫ b

a
f (x)dα x :=

∫ b

a
f (x)xα−1dx

exists and is finite.

Remark 2.1

Ia
α( f )(t) = Ia

1 (t
α−1 f ) =

∫ t

a

f (x)

x1−α
dx, (4)

where the integral I1 is the usual Riemann improper
integral, and α ∈ (0,1].

Lemma: 2.2.[11] Let f : (a,b)→ R be differentiable and
0 < α ≤ 1. Then, for all t > a we have

Ia
αT a

α ( f )(t) = f (t)− f (a). (5)

3 Main Results

We begin this section with the following lemmas that are
essential to the proofs of our main theorems.

Lemma: 3.1. Assume that x(t) is an eventually positive
solution of Eq.(1) and

∫ ∞

t0

1

f2
−1

(

1

r2(s)

)dα2
s = ∞, (6)

∫ ∞

t0

r1(s)ds = ∞, (7)

∫ ∞

t0

f−1
1

[

r1(τ)

∫ ∞

τ
f−1
2

(

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

)

dα2
ξ

]

dτ = ∞.

(8)

Then there exists a sufficiently large T such that

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

> 0 on [T,∞) or limt→∞ K(t) = 0.

Proof. Let t1 > t0 such that x(t) > 0 on [t1,∞), so that

K(t)> 0 on [t1,∞). From Eq. (1), we get

Tα3

[

1

r2(t)
f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))]

=−F

(

t,

∫ t

0
(t − s)−α1x(s)ds

)

≤−Q(t) f2(K(t))< 0, (9)

t ≥ t1. Then 1
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

is strictly

decreasing on [t1,∞). Thus,

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

is eventually of one sign. For

t2 > t1 sufficiently large, we claim

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

> 0 on [t2,∞). Otherwise, assume

that there exists a sufficiently large t3 > t2 such that

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

< 0 on [t3,∞). Then

1
r1(t)

f1

(

D
α1
+ x(t)

)

is strictly decreasing on [t3,∞). Taking

the α3- integral from t3 to t, we have

1

r1(t)
f1

(

D
α1
+ x(t)

)

− 1

r1(t3)
f1

(

D
α1
+ x(t3)

)

=

∫ t

t3

Tα2

(

1

r1(s)
f1

(

D
α1
+ x(s)

)

)

dα2
s

≤ f−1
2

[

1

r2(t3)

]

Tα2

(

1

r1(t3)
f1

(

D
α1
+ x(t3)

)

)

×
∫ t

t3

1

f−1
2

[

1
r2(s)

]dα2
s. (10)

By Eq.(6), we have limt→∞
1

r1(t)
f1

(

D
α1
+ x(t)

)

= −∞. So

there exists a sufficiently large t4 with t4 > t3 such that
D

α1
+ x(t)< 0, t ∈ [t4,∞).

Furthermore D
α1
+ x(t) = K

′
(t)

Γ (1−α1)
< 0.

1

Γ (1−α1)
[K(t)−K(t4)] =

1

Γ (1−α1)

∫ t

t4

K
′
(s)ds

≤ 1

Γ (1−α1)

K
′
(t4)

r1(t4)

∫ t

t4

r1(s)ds.

By Eq.(7), we deduce that limt→∞ K(t) = −∞, which
contradicts the fact that K(t) is an eventually positive

solution of Eq.(7). So Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

> 0 on

[t2,∞). Thus, eventually, D
α1
+ x(t) becomes of one sign.

Now, we assume that D
α1
+ x(t) < 0, t ∈ [t5,∞), for some

sufficiently large t5 > t4. Since furthermore, K
′
(t)> 0, we

have limt→∞ K(t) = β ≥ 0. We claim that β = 0.
Otherwise, assume that β > 0. That K(t) ≥ β on [t5,∞)
and for t ∈ [t5,∞) by Eq.(1) we have,

Tα3

[

1

r2(t)
f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))]

≤−Q(t) f2(β )< 0. (11)
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α3- integrating from t to ∞ and using (A3) yields,

∫ ∞

t
Tα3

[

1

r2(s)
f2

(

Tα2

(

1

r1(s)
f1

(

D
α1
+ x(s)

)

))]

dα3
s

≤−
∫ ∞

t
Q(s) f2(β )dα3

s,

−
[

1

r2(t)
f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))]

≤− f2(β )

∫ ∞

t
Q(s)dα3

s,

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

)

> λ2β f−1
2

[

r2(t)

∫ ∞

t
Q(s)dα3

s

]

. (12)

α2 - integrating both sides of Eq.(12) from t to ∞ and using
(A3) we get

∫ ∞

t
Tα2

(

1

r1(s)
f1

(

D
α1
+ x(s)

)

)

dα2
s

> λ2β

∫ ∞

t
f−1
2

[

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

]

dα2
ξ ,

D
α1
+ x(t)

<− f−1
1

(

r1(t)λ2β

∫ ∞

t
f−1
2

[

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

]

dα2
ξ

)

,

K
′
(t)

Γ (1−α1)
<−λ2λ1 f−1

1 (β )

× f−1
1

(

r1(t)

∫ ∞

t
f−1
2

[

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

]

dα2
ξ

)

. (13)

Again integrating Eq.(13) from t5 to t, yields

K(t)≤ K(t5)−λΓ (1−α1) f−1
1 (β )

×
∫ t

t5

f−1
1

(

r1(τ)
∫ ∞

t
f−1
2

[

r2(ξ )
∫ ∞

ξ
Q(s)dα3

s

]

dα2
ξ

)

dτ.

(14)

Letting t → ∞, from Eq.(8), we get limt→∞K(t) = −∞,

which is a contradiction with D
α1
+ x(t) > 0. This

completes the proof.
Lemma: 3.2. Assume that x(t) is an eventually positive

solution of Eq.(1) such that

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

)

> 0,D
α1
+ x(t)> 0 (15)

on [t1,∞), where t1 > t0 is sufficiently large. Then we have

K′(t)≥
δΓ (1−α1)R1(t1, t)r1(t) f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

r2(t)
,

(16)

K(t)≥
δΓ (1−α1)R2(t1, t) f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

r2(t)
,

(17)

where
R1(t1, t) =

∫ t
t1

r2(s)dα2
s,R2(t1, t) =

∫ t
t1

r1(s)R1(t1,s)ds for
t1 > t0.

Proof. By Eq.(9), 1
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

is a

strictly decreasing function on [t1,∞). So ,

1

r1(t)
f1

(

D
α1
+ x(t)

)

≥
∫ t

t1

r2(s)Tα2

(

1
r1(s)

f1

(

D
α1
+ x(s)

)

)

r2(s)
dα2

(s),

f1

(

D
α1
+ x(t)

)

≥ r1(t)

r2(t)
Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

)

R1(t1, t).

From (A2) we obtain,

D
α1
+ x(t)≥ δR1(t1, t)

r1(t)

r2(t)
f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))

.

Therefore,

K′(t)≥ Γ (1−α1)δR1(t1, t)
r1(t)

r2(t)

× f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))

and thus

K(t)≥
δΓ (1−α1)R2(t1, t) f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

r2(t)
.

Hence the proof is complete.

Next, we will give some new oscillation criteria,
through the following theorems.

Theorm: 3.1. Assume that (6)-(8) hold and suppose that
f ′2(v) exists such that f ′2(v) ≥ µ for some µ > 0 and for
all v 6= 0. If there exist two functions
φ(t) ∈ Cα3 ([t0,∞),R+) ,η(t) ∈ Cα3 ([t0,∞), [0,∞)) such
that

∫ ∞

T

(

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

−
[

2η(s)φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)+φ ′(s)

]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)

)

ds

= ∞, (18)

for sufficiently large T, where R1(T,s) is defined by
Lemma 3.2, then every solution of Eq.(1) is oscillatory or
satisfies limt→∞K(t) = 0.
Proof. Suppose to the contrary that x(t) is a

nonoscillatory solution of Eq.(1). Then without loss of
generality, we can assume that there is a solution x(t) of
Eq.(1) such that x(t) > 0 on [t1,∞), where t1 is
sufficiently large. By Lemma 3.1, we have D

α1
+ x(t) > 0,
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and Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

> 0 on [t2,∞), where t2 is

sufficiently large. We define the following generalized
Riccati function

w(t) = φ(t)





1
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

f2(K(t))
+η(t)



 .

(19)

Thus, w(t)> 0 on [t2,∞). α3 - differentiating, we have,

Tα3
w(t) = Tα3

φ(t)

×





1
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

f2(K(t))
+η(t)





+φ(t)Tα3





1
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

f2(K(t))





+φ(t)Tα3
η(t).

Then, making use of Eq.(9) and Eq.(16), we get

w′(t)≤ φ ′(t)
φ(t)

w(t)−φ(t)Q(t)tα3−1 +φ(t)η ′(t)

−φ(t)
1

r2(t)
f2

(

Tα2

(

1

r1(t)
f1

(

D
α1
+ x(t)

)

))

t1−α3 µ

×
δΓ (1−α1)R1(t1, t)

r1(t)
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

f2(K(t))2

w′(t)≤ φ ′(t)
φ(t)

w(t)−φ(t)Q(t)tα3−1 +φ(t)η ′(t)

−φ(t)µt1−α3δΓ (1−α1)R1(t1, t)r1(t)

(

w(t)

φ(t)
−η(t)

)2

,

w′(t)≤−φ(t)Q(t)tα3−1

+φ(t)η ′(t)−φ(t)r1(t)t
1−α3 µδΓ (1−α1)R1(t1, t)η

2(t)

+

[

2η(t)φ(t)r1(t)t
1−α3 µδΓ (1−α1)R1(t1, t)+φ ′(t)

]2

4r1(t)φ(t)t1−α3 µδΓ (1−α1)R1(t1, t)
.

(20)

Integrating the above inequality from t2 to t, we obtain,

∫ t

t2

(

φ(s)Q(s)sα3−1

−φ(s)η ′(s)+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)

)

ds

≤ w(t2).

By letting t → ∞, we get a contradiction to Eq.(18). The
proof of the theorem is complete.

The following theorem, even though it is similar to
the previous one, nevertheless, involves a slight variation
in the definition of the Riccati Eq.(22).

Theorm: 3.2. Assume that (6)-(8) hold. If there exist two
functions
φ(t) ∈ Cα3 ([t0,∞),R+) ,η(t) ∈ Cα3 ([t0,∞), [0,∞)) such
that
∫ ∞

T

(

φ(s)Q(s)sα3−1

δ
′
2

−φ(s)η ′(s)

+φ(s)r1(s)δΓ (1−α1)R1(T,s)η
2(s)

− [2η(s)φ(s)δΓ (1−α1)R1(T,s)r1(s)+φ ′(s)]2

4r1(s)φ(s)δΓ (1−α1)R1(T,s)

)

ds

= ∞, (21)

for sufficiently large T, where R1(T,s) is defined by
Lemma 3.2, then every solution of (1) is oscillatory or
satisfies limt→∞K(t) = 0.
Proof. Suppose to the contrary that x(t) is nonoscillatory

solution of Eq.(1). Then without loss of generality, we
may assume that there is a solution x(t) of Eq.(1) such
that x(t) > 0 on [t1,∞), where t1 is sufficiently large. By
Lemma 3.1, we have D

α1
+ x(t) > 0, and

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

> 0 on [t2,∞), where t2 is

sufficiently large. We define the following generalized
Riccati function

w(t) = φ(t)





1
r2(t)

f2

(

Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

))

K(t)
+η(t)



 .

(22)

Then w(t) > 0 on [t2,∞). The rest of the proof is similar
to the proof of Theorem 3.1 and hence the details are
omitted.

Next, we establish new oscillation criteria for Eq.(1)
using the integral average method.

Let D0 = {(t,s) : t > s ≥ t0} and
D = {(t,s) : t ≥ s ≥ t0}. There exists a function
H ∈C′(D;R) which is said to belong to the class P if
(T1) H(t, t) = 0 for t ≥ t0,H(t,s)> 0 on D0,
(T2) H has a continuous and nonpositive partial derivative
on D0 with respect to the second variable.

Theorm: 3.3. Assume (6)− (8) hold.

limsup
t→∞

1

H(t, t0)

∫ t

t0

H(t,s)

[

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)

]

ds

= ∞, (23)
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for all sufficiently large T, where φ and η are defined as
in Theorem 3.1, then every solution of (1) is oscillatory or
satisfies limt→∞K(t) = 0.
Proof. Suppose to the contrary that x(t) is a

nonoscillatory solution of Eq.(1). Then without loss of
generality, we can assume that there is a solution x(t) of
Eq.(1) such that x(t) > 0 on [t1,∞), where t1 is
sufficiently large. By Lemma 3.1, we have D

α1
+ x(t) > 0,

and Tα2

(

1
r1(t)

f1

(

D
α1
+ x(t)

)

)

> 0 on [t2,∞) where t2 is

sufficiently large. Let w(t) be defined as in Theorem 3.1.
By Eq.(20), we have

φ(t)Q(t)tα3−1 −φ(t)η ′(t)

+φ(t)r1(t)t
1−α3 µδΓ (1−α1)R1(t2, t)η

2(t)

−
[

2η(t)φ(t)t1−α3 µδΓ (1−α1)R1(t2, t)r1(t)+φ ′(t)
]2

4r1(t)φ(t)t1−α3 µδΓ (1−α1)R1(t2, t)

≤−w′(t). (24)

Multiplying both sides by H(t,s) and then integrating from
t2 to t yields

∫ t

t2

H(t,s)

[

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(t2,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)

]

ds

≤−
∫ t

t2

H(t,s)w′(s)ds ≤ H(t, t2)w(t2)≤ H(t, t0)w(t2).

Then,

∫ t

t0

H(t,s)

[

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(t2,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)

]

ds

≤ H(t, t0)

∫ t2

t0

∣

∣

∣

∣

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(t2,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)

∣

∣

∣

∣

ds

+H(t, t0)w(t2).

Taking limit supremum on both sides, we have

limsup
t→∞

1

H(t, t0)

∫ t

t0

H(t,s)

[

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(t2,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(t2,s)

]

ds

< ∞,

which contradicts (23). The proof of the theorem is
complete.

In Theorem 3.3, if we take H(t,s) to have the form of

some special functions such as (t − s)m or log
( t

s

)

, then

we obtain the following corollaries.

Corollary: 3.1.Assume that (6)-(8) hold. Furthermore,
suppose that

limsup
t→∞

1

(t − t0)m

∫ t

t0

(t − s)m

[

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)

]

ds

= ∞,

for sufficiently large T. Then every solution of Eq.(1) is
oscillatory or satisfies limt→∞K(t) = 0.

Corollary: 3.2. Assume that (6)-(8) hold. Furthermore,
suppose that

limsup
t→∞

1

logt − logt0

×
∫ t

t0

(logt − logs)

[

φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)

]

ds

= ∞,

for sufficiently large T. Then every solution of Eq.(1) is
oscillatory or satisfies limt→∞K(t) = 0.

4 Examples

We conclude this paper with three examples to illustrate
our main results.

Example: 4.1. Consider the mixed fractional differential
equation

T1
6

[

1

t
2
3

(

T1
3

(

D
1
2
+x(t)

))]

+
t

5
6 sin(t + π

4
)√

2π[sin tC(x)− costS(x)]

×
∫ t

0
(t − s)−

1
2 x(s)ds = 0 (25)

for t ≥ 1. This corresponds to Eq.(1) with

r2(t) = t
2
3 ,r1(t) = 1,α1 = 1

2
,α2 = 1

3
,α3 = 1

6
, f1(x) =

f2(x) = x,Q(t) =
t

5
6 sin(t+ π

4 )√
2π[sin tC(x)−cos tS(x)]

,R1(T,s) = (s − t)

and C(x),S(x) are the Fresnel integrals namely

C(x) =
∫ x

0
cos(

1

2
πt2)dt, S(x) =

∫ x

0
sin(

1

2
πt2)dt.
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Take |C(x)| ≤ π and |S(x)| ≤ π . Now, consider

∫ ∞

1

1

f2
−1

(

1

r2(s)

)dα2
s

=

∫ ∞

1

1

f2
−1

(

1

r2(s)

) sα2−1ds =

∫ ∞

1
ds = ∞.

∫ ∞

1
f−1
1

[

r1(τ)

∫ ∞

τ
f−1
2

(

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

)

dα2
ξ

]

dτ

=

∫ ∞

1
f−1
1

[

r1(τ)

∫ ∞

τ
f−1
2

×
(

r2(ξ )

∫ ∞

ξ
Q(s)sα3−1ds

)

ξ α2−1dξ

]

dτ

=

∫ ∞

1

[

∫ ∞

τ

(

∫ ∞

ξ

s
5
6 (sins+ coss)s

−5
6

2π
√

π(sins− coss)
ds

)

dξ

]

dτ = ∞.

Let η = 2,φ(s) = 1,φ
′
(s) = 0,µ = δ = 1. For any T ≥ 1,

∫ ∞

T
φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

− [2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)r1(s)+φ ′(s)]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)
ds

=

∫ ∞

T

s
5
6 (sin s+ coss)s

−5
6

2π
√

π [sins− coss]
+ s

5
6
√

π(s− 1)4

− [4s
5
6
√

π(s− 1)]2

4s
5
6
√

π(s− 1)
ds → ∞.

Thus all the conditions of Theorem 3.1 are satisfied.
Therefore, every solution of Eq.(25) is oscillatory. In fact,
x(t) = sin t is one such solution of Eq.(25).

Example: 4.2. Consider the fractional differential
equation

T1
7

[

1

t
12
5

(

T3
5

(

1

t−2
D

1
2
+x(t)

))]

+

√
π

t
8
7

√
2π[sin tC(x)− costS(x)]

×
∫ t

0
(t − s)−

1
2 x(s)ds = 0,

(26)

for t ≥ 1 which has the form of Eq.(1) with

r2(t) = t
12
5 ,r1(t) = t−2,α1 = 1

2
,α2 = 3

5
,α3 = 1

7
, fi(x) =

x, i = 1,2,Q(t) =
√

π

t
8
7
√

2π[sin tC(x)−costS(x)]
while C(x) and

S(x) are defined as in Example 4.1.

We have

∫ ∞

1
r1(s)ds =

∫ ∞

1
s−2ds < ∞.

∫ ∞

1
f−1
1

[

r1(τ)

∫ ∞

τ
f−1
2

(

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

)

dα2
ξ

]

dτ

≥
∫ ∞

1
τ2

[

∫ ∞

τ
ξ 2

(

∫ ∞

ξ

s
−6
7

s
8
7 (sins− coss)π

√
2

ds

)

dξ

]

dτ

= ∞.

Let η = 0,φ(s) = 1,φ ′(s) = 0,µ = δ = 1. For any T ≥ 1,

∫ ∞

T
φ(s)Q(s)sα3−1 −φ(s)η ′(s)

+φ(s)r1(s)s
1−α3 µδΓ (1−α1)R1(T,s)η

2(s)

−
[

2η(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)r1(s)+φ ′(s)
]2

4r1(s)φ(s)s1−α3 µδΓ (1−α1)R1(T,s)
ds

≥
∫ ∞

T

[

s
1
7−1

π
√

2s
8
7 [sins− coss]

]

ds ≥ 1

π2
√

2
.

We observe that some of the conditions of Theorem 3.1
are not satisfied. In fact, Eq.(7) and Eq.(18) are not
satisfied. Hence, Eq.(26) has a nonoscillatory solution

x(t) = (t − s)
1
2 .

Example: 4.3. Consider the fractional differential
equation

T1
7

[

1

t
4
5

(

T1
5

(

D
1
2
+x(t)

))]

+
t

6
7 sin(t + π

4
)√

2π[sin tC(x)− costS(x)]

∫ t

0
(t − s)−

1
2 x(s)ds = 0

(27)

for t ≥ 1. This corresponds to Eq.(1) with

r2(t) = t
4
5 ,r1(t) = 1,α1 = 1

2
,α2 = 1

5
,α3 = 1

7
, f1(x) =

f2(x) = x,Q(t) =
t

6
7 sin(t+ π

4 )√
2π[sin tC(x)−costS(x)]

while C(x) and S(x)

are defined as in Example 4.1. Now, consider

∫ ∞

1
r1(s)ds =

∫ ∞

1
ds = ∞.

∫ ∞

1
f−1
1

[

r1(τ)

∫ ∞

τ
f−1
2

(

r2(ξ )

∫ ∞

ξ
Q(s)dα3

s

)

dα2
ξ

]

dτ

=

∫ ∞

1

[

∫ ∞

τ
ξ

−8
5

(

∫ ∞

ξ

s
6
7 (sins+ coss)s

−6
7

2π
√

π(sins− coss)
ds

)

dξ

]

dτ = ∞.
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Let η = 1,φ(s) = 1,φ ′(s) = 0,µ = δ = 1. For any T ≥ 1,

∫ ∞

T

(

φ(s)Q(s)sα3−1

δ
′
2

−φ(s)η ′(s)

+φ(s)r1(s)δΓ (1−α1)R1(T,s)η
2(s)

− [2η(s)φ(s)δΓ (1−α1)R1(T,s)r1(s)+φ ′(s)]2

4r1(s)φ(s)δΓ (1−α1)R1(T,s)

)

ds

=

∫ ∞

T

[

s
6
7 (sins+ coss)s

−6
7

2π
√

π[sins− coss]

]

ds → ∞.

Thus all the conditions of Theorem 3.2 are satisfied.
Therefore, every solution of Eq.(27) is oscillatory. In fact,
x(t) = sin t is one such solution of Eq.(27).

5 Conclusion

In this present paper, we have derived some new
oscillation results for a certain class of nonlinear mixed
fractional order differential equations with the
Conformable fractional derivative and the
Riemann-Liouville left-sided fractional derivative, by
using the generalized Riccati technique and the integral
averaging method. Our newly-derived oscillation results
extend and improve numerous findings in the recent
publications on classical literature to mixed fractional
differential equations. We believe that this research work
would lead to further work on the mixed fractional
differential equations.
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