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Abstract: The regularization method is one of the important schemes to solve the ill-posed problems. In this work, by combining the

Wazwaz’s regularization method and the homotopy analysis method, a new and robust approach is presented to solve integral equations

which is called the homotopy-regularization method. The solution which is produced by the homotopy-regularization method depends

on the regularization parameter. In order to find the optimal value of this parameter, the Controle et Estimation Stochastique des Arrondis

de Calculs method is applied which is based on the stochastic arithmetic. A theorem is presented to show the accuracy of the proposed

approach. Also, in order to implement the algorithm, the Control of Accuracy and Debugging for Numerical Applications library is

applied to perform the Controle et Estimation Stochastique des Arrondis de Calculs method in the stochastic arithmetic automatically.

Some examples of the singular and ill-posed integral equations are illustrated. The numerical results show the abilities of the Controle

et Estimation Stochastique des Arrondis de Calculs method to find the optimal regularization parameter and the optimal approximation

of the homotopy-regularization method.

Keywords: Regularization method, Homotopy analysis method, Stochastic arithmetic, CESTAC method, CADNA library, Integral

equation

1 Introduction

The integral equation (IEs) of the first kind are appeared in
many fields of engineering such as image processing and
electromagnetic which can be considered in the class of
ill-posed problems [1]-[7]. In last decade, the authors used
different methods to solve the IEs of the first kind such as
Galerkin method [3,8,9,10], collocation method [11,12],
homotopy analysis method [13,14] and others [15]-[21].

The regularization method (RM) is one of powerful
and important methods to solve the IEs of the first kind.
Tikhonov [22,23] and Phillips [24] applied the RM to
solve incorrectly-posed problems. Also, the RM is
generalized by Wazwaz in [20,25] and others [11,17,19,
26,27,28,29]. Many methods such as the homotopy
analysis method (HAM) [13,14,30,31,32,33,34,35,36,
37,38], collocation method [11,12,39], integral mean
value method [19,40,41] can be combined by the RM to

solve the first kind IEs. The results of the mentioned
studies are usually based on the common computer
arithmetic by using packages like Matlab, Maple or
Mathematica. We apply the Wazwaz’s RM and the HAM
to solve the singular and ill-posed IEs by means of the
stochastic arithmetic (SA) in place of the floating-point
arithmetic (FPA). The solution of the
homotopy-regularization method (HRM) depends on the
regularization parameter. When this parameter leads to
zero, the approximate solution can be obtained [20,25].

Now, an important question can be made. What is the
optimal value of the regularization parameter and how
can we find this value? In this paper, the Controle et
Estimation Stochastique des Arrondis de Calculs
(CESTAC) method [42]-[46] is applied to find the optimal
value of regularization parameter. This method is based
on the SA [47]-[52]. In order to implement the CESTAC
method the Control of Accuracy and Debugging for
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Numerical Applications (CADNA) library is applied
[53]-[66]. It can convert the common FPA to the SA on a
code automatically. For this purpose, the program must be
written by C, C++, FORTRAN or ADA and run in Linux
operating system [67,68]. Finding the best step of
numerical methods, determining the validation of results
and neglecting the unnecessary iterations are some
abilities of the SA in comparison with the FPA.

The present study is formed by the following
organizations: at first the HRM is presented to solve the
first kind IEs in section 2. The CADNA library and the
CESTAC method are explained briefly in the section 3.
Also, a theorem is proved which allows us to apply the
CESTAC method and show the accuracy of the proposed
approach. Three examples of the first kind IEs are
presented in section 4 by means of the proposed
algorithm to find the optimal value of the regularization
parameter. Finally, the last section is conclusion.

2 The homotopy-regularization method

Consider the following non-linear IE of the first kind

g(v) = λ

∫ z2(v)

z1(v)
K(v,s)F(Y (s))ds, (1)

where g(v),K(v,s) and λ are given, Y (v) is the unknown
function and F is a nonlinear operator. When z1(v) and
z2(v) are constant, Eq. (1) is called the Fredholm IE and
when z1(v) is constant and z2(v) = v ≤ b, Eq. (1) is called
the Volterra IE. The first kind IE (1) has appeared in many
physical and engineering models such as radiography,
image and signal processing and so on. Also, we note that
IE (1) can be an ill-posed problem which is either without
solution or with alternative solutions.

By using transformation ψ(v) = F(Y (s)), and
applying the RM proposed by Wazwaz the following
second kind IE is obtained as

αψα(v) = g(v)−λ

∫ z2(v)

z1(v)
K(v,s)ψα(s)ds, (2)

where α > 0 is the regularization parameter. From Eq. (2),
we get

ψα(v) =
1

α
g(v)− 1

α
λ

∫ z2(v)

z1(v)
K(v,s)ψα (s)ds. (3)

Let

N̂
[
Ψα(v;ℓ)

]

=Ψα(v;ℓ)− 1
α g(v)+ 1

α λ
∫ z2(v)

z1(v)
K(v,s)Ψ α(s;ℓ)ds,

is an operator of non-linear form where the homotopy
parameter is shown by ℓ ∈ [0,1] and Ψ α(v;ℓ) is an
unknown function.

The following zero-order deformation equation can be
produced by the prevalent homotopy method [32,33] as

(1− ℓ)L̂ [Ψα(v;ℓ)−ψα
0 (v)] = ℓh̄Ĥ(v)N̂ [Ψα(v;ℓ)] ,

(4)
where the non-zero auxiliary parameter which is called
convergence-control parameter is demonstrated by h̄, the

auxiliary function is displayed by Ĥ(v) 6= 0, the auxiliary

operator of linear form is shown by L̂ , the primary
conjecture of ψα(v) is shown by ψα

0 (v) and Ψα(v;ℓ) is
an unknown function. By putting ℓ = 0,1 into Eq. (4),

since h̄ 6= 0 and Ĥ(v) 6= 0 we get Ψ α(v;0) = ψα
0 (v) and

Ψα(v;1) = ψα(v) respectively. The following relation is
obtained from Taylor’s theorem as

Ψα(v;ℓ) = ψα
0 (v)+

∞

∑
d=1

ψα
d (v)ℓ

d , (5)

where

ψα
d (v) =

1

d!

∂ dΨ α(v;ℓ)

∂vd

∣∣∣∣
ℓ=0

.

In order to study the convergence of series (5) at ℓ = 1,

we assume that h̄, Ĥ(v),ψα
0 (v) and L̂ are so correctly

selected. Therefore, the following series solution can be
obtained:

ψα
d (v) =Ψα(v;1) = ψα

0 (v)+
∞

∑
d=1

ψα
d (v). (6)

According to [13,14,32,33], the d-th order
deformation equation is defined as follows

L̂
[
ψα

d (v)−υdψα
d−1(v)

]
= h̄Ĥ(v)

[
ℜd(ψ

α
d−1)

]
, (7)

where

ℜd(ψ
α
d−1)

= ψα
d−1(v)+

1
α λ

∫ z2(v)
z1(v)

K(v,s)ψα
d−1(s)ds− (1− χd)

1
α g(v),

and

χd =





0, d ≤ 1,

1, d > 1.

By choosing L̂ ψα = ψα , Ĥ(v) = 1 and h̄ = −1, the
following successive relations are produced





ψα
0 (v) =

1

α
g(v),

ψα
d (v) =− 1

α
λ

∫ z2(v)

z1(v)
K(v,s)ψα

d−1(s)ds, d ≥ 1.

(8)
The j-th order of regularized approximate solution can be
estimated by

ψα
j (v) =

j

∑
d=0

ψα
d (v). (9)
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Tikhonov [22,23] and Phillips [24] proved that the
solution of IE (3) can be obtained when α leads to zero.
Finally, the transformation Y = F−1(ψ) is applied to find
the exact solution of Eq. (1).

3 CESTAC method-CADNA library

Let F be a set of real values which are reproduced by
computer and the arbitrary value θ is demonstrated as
Θ ∈ F . In the personal computer (PC), Θ with the binary
FPA, ρ mantissa bits and the rounding error term is given
by:

Θ = θ − ε2E−ηρ , (10)

where 2−ηρ is the missing segment of mantissa which is
obtained from round-off error, ε is the sign of θ , E is the
binary power of the outcome and ρ is a random parameter
on [−1,1] which is distributed uniformly and is applied to
perturb on the last mantissa bit of θ . Therefore, the
random result of Θ can be calculated where mean (µ) and
standard deviation (σ) are applied to guarantee the
precision of results. The details of the SA can be found in
[47-52].

In PC, for η = 23,52, the results can be obtained by
single or double accuracies respectively. By n times
performing the process for Θi, i = 1, ...,n, their
distribution is presented in the quasi Gaussian form.
Therefore, the mean of them is equal with the exact value
of θ and the values of µ and σ can be estimated by these
n samples. In the following algorithm which is based on
the CESTAC method the value of T distribution with
n− 1 freedom’s degree is shown by τδ for the confidence
interval 1− δ .

Algorithm 1:

Step 1- Apply the perturbation technique to find n

samples of Θ as Φ = {Θ1,Θ2, ...,Θn}
Step 2- Compute Θave =

∑n
i=1 Θi

n
.

Step 3- Calculate σ2 =
∑n

i=1(Θi −Θave)
2

n− 1
.

Step 4- Compute CΘave,Θ = log10

√
n |Θave|
τδ σ

, as

estimation of the common significant digits between Θ
and Θave.

Step 5- If CΘave,Θ ≤ 0 or Θave = 0, then write
Θ =@.0.

The CADNA library can create a new environment to
calculate the more precisely approximations by using the
random arithmetic. CADNA can be used to check
numerical instabilities and find the number of unstable
operations.

CADNA enables us to create new numerical types of
data with other operators such as ADA, C/C++ or
FORTRAN. The codes of CADNA library are similar to
programs which are produced by these operators and by

minor variations. Hence, we can apply and run CADNA
programs. When the informatical zero’s sign @.0 is
shown, the process of CADNA’s algorithm will be
stopped. This sign shows that the number of common
significant digits between two successive approximations
of iterative methods is almost equal with the number of
common significant digits between exact and numerical
solutions.

The advantages of using the CADNA library based on
the SA and the CESTAC method are:
1) The CADNA library is able to identify the optimal
iteration and optimal approximation.
2) The accuracy of any numerical result is estimated,
during the performance of a code.
3) The numerical instabilities are detected and the
branching in an algorithm are checked.
4) Unnecessary iterations are eliminated through which
the FPA is not able to distinguish them. In some cases, the
termination criterion of iterative methods is not suitable
so that the implementation of the algorithm is continued
without improvement in the accuracy of the result. In the
SA, instead of the termination criterion, a criterion that
directly reflects the mathematical condition, is replaced,
that must be satisfied by the solution.
5) It is an effective and powerful tool that helps us to
achieve the validation of scientific programs and gives
them a reliability.

Further information to study are presented in
www.cadna.lib6.fr.

Definition 1.[53,55] The number of common significant

digits between two real numbers ω1 and ω2 is defined in

the following form





Cω1,ω2
= log10

∣∣∣ ω1+ω2

2(ω1−ω2)

∣∣∣

= log10

∣∣∣∣
ω1

ω1 −ω2

− 1

2

∣∣∣∣ , ω1 6= ω2,

Cω1,ω1
=+∞.

(11)

Theorem 1. Let ψ
αk

d (v) =
d

∑
i=0

ψ
αk
i (v) and

ψ
αk+1

d (v) =
d

∑
i=0

ψ
αk+1

i (v) be the d-th order approximate

solution of Eq. (3) and αk, αk+1 for k = 0,1,2, . . . are two

successive regularization parameters, then

C
ψ

αk
d

,ψ
αk+1
d

=C
ψ

αk
d

,ψ
+ log10

∣∣∣∣1+O(
1

d!
)

∣∣∣∣ . (12)
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Proof: Applying Definition 1 as

C
ψ

αk
d

,ψ
αk+1
d

−C
ψ

αk
d

,ψ

= log10

∣∣∣∣∣
ψ

αk

d +ψ
αk+1

d

2(ψ
αk

d
−ψ

αk+1

d
)

∣∣∣∣∣− log10

∣∣∣∣∣
ψ

αk

d +ψ

2(ψ
αk

d −ψ)

∣∣∣∣∣

= log10

∣∣∣∣∣
ψ

αk

d +ψ
αk+1

d

ψ
αk

d +ψ

∣∣∣∣∣+ log10

∣∣∣∣∣
ψ

αk

d −ψ

ψ
αk

d −ψ
αk+1

d

∣∣∣∣∣

= log10

∣∣∣∣∣
ψ

αk

d +ψ
αk+1

d

ψ
αk

d +ψ

∣∣∣∣∣+ log10

∣∣∣∣∣1+
ψ

αk+1

d −ψ

ψ
αk

d −ψ
αk+1

d

∣∣∣∣∣ .

(13)
According to the HAM, we can write:

ψαk

d
−ψ

αk+1

d

=
d

∑
i=0

ψαk

i −
d

∑
i=0

ψ
αk+1

i =
d

∑
i=0

h̄ℜi(ψ
αk

i )−
d

∑
i=0

h̄ℜi(ψ
αk+1

i )

= h̄
d

∑
i=0

[
1

(i)!

∂ iN[Ψ αk(v;ℓ)]

∂ℓi

∣∣∣∣
ℓ=0

− 1

(i)!

∂ iN[Ψ αk+1(v;ℓ)]

∂ℓi

∣∣∣∣
ℓ=0

]

= O(1).
(14)

Also

ψ
αk+1

d −ψ

=
d

∑
i=0

ψ
αk+1

i −
∞

∑
i=0

ψ
αk+1

i =−
∞

∑
i=d+1

ψ
αk+1

i

=−
∞

∑
i=d+1

h̄L̂
−1

[
Ĥ(v)

1

(i− 1)!

∂ i−1N[Ψ αk+1(v;ℓ)]

∂ℓi−1

∣∣∣∣
ℓ=0

]

= O(
1

d!
).

(15)
First term of Eq. (13) leads to zero because for proper

value of d the approximate solution ψ
αk

d and ψ
αk+1

d are
close to the exact solution ψ . By substituting Eqs. (14) and
(15) into second term of Eq. (13) the following relation is
obtained as

C
ψ

αk
d

,ψ
αk+1
d

−C
ψ

αk
d

,ψ

= log10

∣∣∣∣∣1+
ψ

αk+1

d −ψ

ψ
αk

d −ψ
αk+1

d

∣∣∣∣∣

= log10

∣∣∣∣∣1+
O( 1

d!
)

O(1)

∣∣∣∣∣= log10

∣∣∣∣1+O(
1

d!
)

∣∣∣∣ ,

(16)

and as d increases, the right hand side of Eq. (16) leads to
zero and we conclude by

C
ψ

αk
d

,ψ
αk+1
d

≈C
ψ

αk
d

,ψ
.� (17)

Eq. (17) shows that the number of common significant

digits between ψ
αk

d ,ψ is almost equal with ψ
αk

d ,ψ
αk+1

d .
This theorem was presented for fixed value of iteration d.
Also, by using two successive regularization parameters
αk and αk+1 we can find the optimal value of α .

4 Numerical examples

In many iterative methods based on the FPA applied to
solve the linear and non-linear problems, the general
absolute error or other equivalent conditions can be used
to show the efficiency of method as follows

∣∣ψ −ψ
αk

d

∣∣ , (18)

where ψ is an exact solution and ψ
αk

d shows the
regularized approximate solution of iteration d. This
condition can not be acceptable. It depends on the exact
solution. Also, condition (18) should be applied for
special iteration of iterative methods or it should depend a
parameter like ε for stopping the numerical algorithms
such as ∣∣ψ −ψ

αk

d

∣∣≤ ε, (19)

which can not be acceptable too. If ε is chosen very large,
the iterations are stopped before getting access to a suitable
approximation. If ε is chosen very small, then unnecessary
iterations are done without improving the accuracy of the
results.

In order to modify these problems the following
criterion based on the SA is applied as

∣∣∣ψαk

d −ψ
αk+1

d

∣∣∣= @.0, (20)

where ψ
αk

d and ψ
αk+1

d are the approximate solutions for
fixed iteration d and two successive regularized parameters
αk and αk+1. By condition (20) we do not need to have
the exact solution and apply the parameter ε . Theorem 1
permits to apply the condition (20) instead of (18) or (19).

In this section, some applicable examples of the linear
and non-linear first kind IEs are presented. Several tables
of numerical results are presented to find the optimal
value of regularization parameter α based on Algorithm
2. This algorithm is written by CADNA library with C++
on Linux operating system.

Algorithm 2:
Step 1- Enter ψα(v),∆α,v and initial value α0.
Step 2- Let k = 1.
Step 3- Do the following steps while |ψαk −ψαk−1 | 6= @.0

{
Step 3-1- Print k,αk,Y (v),ψ

αk(v),
|ψαk(v)−ψαk−1(v)| , |ψ(v)−ψαk−1(v)|.
Step 3-2- αk+1 = αk +∆α .

}
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Example 1: Consider the following linear Fredholm
IE of the first kind [20,25]

π

2
cosv =

∫ π

0
cos(v− s)Y(s)ds. (21)

Now, the RM is applied to transform the first kind IE
(21) to the second kind as follows

αψα(v) =
π

2
cosv−

∫ π

0
cos(v− s)ψα(s)ds,

and we can write

ψα(v) =
π

2α
cosv− 1

α

∫ π

0
cos(v− s)ψα(s)ds. (22)

By using Eq. (8) the following relations can be obtained





ψα
0 (v) =

1

α
g(v) =

π

2α
cosv,

ψα
1 (v) =− 1

α

∫ π

0
cos(v− s)ψα

0 (s)ds =− π2

4α2
cosv,

ψα
2 (v) =− 1

α

∫ π

0
cos(v− s)ψα

1 (s)ds =
π3

8α3
cosv,

...

ψα
d (v) =− 1

α

∫ π

0
cos(v− s)ψα

d−1(s)ds, d ≥ 3,

(23)
and the regularized series solution is in the following form

ψα(v)

=
∞

∑
d=0

ψα
d (v)

=
π

2α
cosv− π2

4α2
cosv+

π3

8α3
cosv+ · · ·= π cosv

2α +π
.

(24)
The numerical results for v = 0.2 and tolerance

αk −αk−1 = −0.0000001 are presented in Table 1. When
the number of significant digits between
|ψαk(v)−ψαk−1(v)| and |ψ(v)−ψαk (v)| is zero then the
CADNA library is stopped and denoted by @.0 which is
called the informatical zero. This step is the optimal value
of α . In this example, we have αopt = 0.0009997.

Therefore the approximate solution of IE (21) is
Y α4(v) = π cosv

2(0.0009997)+π
.

Example 2: The following non-linear IE [19,20]

v ln2 =

∫ π
3

0
vY 4(s)ds, (25)

is considered. By putting ψ(v) = Y 4(v) and applying the
RM, the non-linear IE (25) can be transformed to the

following regularized linear IE

ψα(v) =
1

α
v ln2− 1

α

∫ π
3

0
vψα(s)ds. (26)

The series solution of the regularization-homotopy method
is obtained as

ψα(v)

=
∞

∑
d=0

ψα
d (v) =

v ln2

α
− π2v ln2

18α2
+

π4v ln2

324α3
+ · · ·

=
18v ln2

π2 + 18α
.

Now the CESTAC method is applied to find the
optimal regularization parameter α . According to Table 2,
optimal α of the HRM for v = 0.8 and ∆α = −0.000001
is αopt = 0.000918. The approximate solution of IE (26)

is ψα83(v) = 18v ln2
π2+18(0.000918)

. Therefore

Y (v)≈ 4
√

ψα83(v) = 4

√
18v ln2

π2+18(0.000918)
.

Example 3: Consider the non-linear Abel IE [21]

4

3
v

3
2 =

∫ v

0

ln(Y (s))√
v− s

ds. (27)

By variations

ψ(v) = ln(Y (v)), Y (v) = eψ(v),

and applying the RM, the IE (27) can be converted to linear
and second kind IE

ψα(v) =
4

3α
v

3
2 − 1

α

∫ v

0

ψα(s)√
v− s

ds. (28)

By applying the HAM and the following iteration
formulas





ψα
0 (v) =

1

α
g(v) =

4

3α
v

3
2 ,

ψα
1 (v) =− 1

α

∫ v

0

ψα ,0(s)√
v− t

ds =− πv2

2α2
,

ψα
2 (v) =− 1

α

∫ v

0

ψα ,1(s)

v
3
2

ds =
8πv

5
2

15α3
,

...

ψα
d (v) =− 1

α

∫ v

0

ψα ,d−1(s)

v
3
2

ds, d ≥ 3,
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Table 1: The numerical results of example 1 for v = 0.2 and tolerance ∆α =−0.0000001.

k αk Y (v) ψαk(v) |ψαk(v)−ψαk−1(v)| |ψ(v)−ψαk−1(v)|
1 0.0010000 0.9800665E +000 0.9794430E +000 0.9794430E +000 0.6235E −003

2 0.0009999 0.9800665E +000 0.9794430E +000 0.5960464E −007 0.6234E −003

3 0.0009998 0.9800665E +000 0.9794431E +000 0.5960464E −007 0.6234E −003

4 0.0009997 0.9800665E +000 0.9794432E +000 @.0 0.6233E −003

Table 2: The numerical results of example 2 for v = 0.8 and tolerance ∆α =−0.000001.

k αk ψ(v) ψαk(v) |ψαk(v)−ψαk−1(v)| |ψ(v)−ψαk−1(v)|
1 0.001000 0.101131E +001 0.1009477E +001 0.1009477E +001 0.1841E −002

2 0.000999 0.101131E +001 0.1009479E +001 0.1E −005 0.1839E −002

3 0.000998 0.101131E +001 0.1009481E +001 0.1E −005 0.1837E −002
...

...
...

...
...

...

40 0.000961 0.101131E +001 0.1009549E +001 0.1E −005 0.1769E −002

41 0.000960 0.101131E +001 0.1009551E +001 0.1907348E −005 0.1767E −002

42 0.000959 0.101131E +001 0.1009553E +001 0.1788139E −005 0.1765E −002
...

...
...

...
...

...

80 0.000921 0.101131E +001 0.1009623E +001 0.1E −005 0.1695E −002

81 0.000920 0.101131E +001 0.1009624E +001 0.1E −005 0.1693E −002

82 0.000919 0.101131E +001 0.1009626E +001 0.1E −005 0.1692E −002

83 0.000918 0.101131E +001 0.100962E +001 @.0 0.169E −002

Table 3: The numerical results of example 3 for v = 0.5 and tolerance ∆α =−0.000001.

k αk ψ(v) ψαk(v) |ψαk(v)−ψαk−1(v)| |ψ(v)−ψαk−1(v)|
1 0.0001000 0.5000000E +000 0.4999624E +000 0.4999624E +000 0.375E −004

2 0.0000990 0.5000000E +000 0.4999628E +000 0.3E −006 0.372E −004

3 0.0000980 0.5000000E +000 0.4999631E +000 @.0 0.368E −004

the regularized series solution of IE (28) can be
produced as

ψα(v)

=
∞

∑
d=0

ψα
d (v)

=
4

3α
v

3
2 − πv2

2α2
+

8πv
5
2

15α3
+ · · ·= 1.33v

3
2

(
1

α + 1.33v
1
2

)
.

The numerical results of regularized solution ψα(v)
for different values of α and ∆α = −0.000001 are
presented in Table 3. These results are obtained based on
the SA and the CADNA library. The optimal value of α is
αopt = 0.0000980, therefore the approximate solution is
in the following form

Y (v) = exp(ψα3(v)) = exp

(
1.33v

3
2

(
1

0.0000980+1.33v
1
2

))
.

5 Conclusion

An approach based on a stochastical process is presented
to find the optimal regularization parameter of the HRM
for solving the IEs of the first kind. To this end, the
CESTAC method is applied based on the SA. Also,
instead of applying the common mathematical packages,
the CADNA library is applied to validate the results and
find the optimal solution. The presented theorem
illustrates the accuracy of the approach and to apply the
optimal termination criterion in the proposed algorithm.
Some sample singular IEs of the first kind are presented
to show the efficiency and importance of using the
CESTAC method and the proposed algorithm.
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