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Abstract: Algebraic Geometry is a branch of mathematics applied in so many disciplines including Coding Theory. This paper focuses

on the construction, performance evaluation and practical implementation of encoding and decoding processes of codes constructed

from Hermitian Curves. These codes also known as Hermitian codes are types of Algebraic Geometric codes. In this work, performance

of the code is done by simulating the (4096, 815, 3162) hermitian code constructed from a hermitian curve using techniques from

algebraic geometry with a (255,153,103) Reed-Solomon code from the same GF(256) . The decoding process uses Berlekamp-Massay-

Sakata (BMS) algorithm, Majority Voting and Forney algorithm. The stages and algorithm were also implemented using the Python

programming language.
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1 Introduction

Whenever data is transmitted across a channel, errors are
likely to occur. It is the goal of coding theory to find
efficient ways of encoding the data so that these errors
can be detected, or even corrected. Algebraic Geometric
Codes have close connections to other mathematical
structures such as Lattice, modular forms, topology and
sphere packing and algebraic curves. In [1] it was
discovered that there is a beautiful connection between
codes and algebraic curves over finite fields. Codes
constructed using these methods are called Goppa Codes
or Algebraic Geometric codes. Algebraic Geometric
codes constructed from an affine line and curves are used
in common applications, such as compact discs (CD),
digital versatile discs (DVD), barcodes and in
communication systems like wireless, mobile and satellite
communications, digital television and radio and
asynchronous digital subscriber lines (ADSL). A lot of
research is still ongoing from Goppa’s work and in the
field of coding theory especially finding an efficient
decoding algorithms and also constructing codes of
higher dimension and codes of longer distance is a hot
area of research.

In [2] a linear code based on curves over finite fields
with many rational points was constructed. Today they are

called Algebraic Geometric codes or Goppa’s Geometry
codes. In particular, the Gilbert-Varshamov bound was
broken by Algebraic Geometric codes constructed in [3]
and [4]. In Goppa’s construction, one has to choose a
divisor and rational points, then evaluate functions at
rational points to form a code. In [5] a simplified
construction of Algebraic-Geometric codes that does not
require much knowledge of algebraic geometry but still
produces the same codes as the conventional (ie. Goppa
construction) method was presented. In [5], a decoding
algorithm was included based on the well-known
Peterson Algorithm for decoding
Bose-Chaudhuri-Hocquenghem(BCH) and
Reed-Solomon codes but it was not feasible to implement
with long codes due to its worst-case decoding
complexity of O(n3), where n is the code length. Sakata
[6] published a follow-up paper using the same simplified
construction but replacing the Peterson-based decoding
algorithm with the Sakata algorithm an extension of the
Berlekamp-Massay algorithm to two or more dimensions,

which reduced the decoding complexity to O(n7/3) for
algebraic codes construction from the class of hermitian
curves. Feng and Rao [7] made an important contribution
for increasing the error-correcting capacity of the
decoding algorithms by introducing the majority-voting
schemes, which determine the value of unknown
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syndromes. Johnston and Carasco [8] presented a
simulation results for hermitian code whose performance
was close to a Reed-Solomon code of the same code rate
and finite field for the A White Gaussian Noise Channel
(AWGN) and Rayleigh fading channel. Heegard, Little
and Saints [9] again extended the hermitian curves
defined over finite field up to GF(26). with length 64 and
512 symbols and simulated their results over AWGN and
Reyleigh fading channels which had a significant
improvement as compared with Reed-Solomon codes.

In this apaper we employ Justesen construction
technique to construct (4096, 815, 3162) hermitian code.
Results of this construction can be found in section 2 and
3. Comparison with Reed Solomon code over a White
Gaussian Noise Channel and Reyleigh Fading Channel
can be found in section 4 and 5. In section 6 we discuss
our results and section 7 concludes the work.

2 Justesen Simplified Construction

Hermitian Curve are defined over finite field Fq as

C(x,y) = xr+1 + yr + 1. (1)

Hermitian Curves with degree m = r + 1 where q =
number of elements in the field and r =

√
q are well

known from literature. To define the message length (k)
and the minimum hamming distance(d∗), all points that
cause the curve to vanish(C(x,y) = 0) must be found(ie.
Rational points). The number of Rational Points can be
computed with n = r3. The genus of the curve (the
number of holes in the curve) is calculated as

g =
(m− 1)(m− 2)

2
, (2)

where m is the degree of the polynomial(the curve). To
construct an Algebraic Geometric code using Justesen’s
construction a non-negative integer j is first chosen and is
bounded by

m− 2 ≤ j ≤ ⌊n− 1

m
⌋. (3)

The dimension of the code (k) can be found as

k = n−m j+ g+ 1 (4)

and the designed distance d∗ is also given by

d∗ = m j− 2g+ 2. (5)

3 Implemenatation

Given equations (1) to (5) the Hermitian code parameters
are obtained as

H(x,y) = xr+1 + yr − 1

r =
√

q =
√

256 = 16

H(x,y) = x17 + y16 − 1

g = 120

m = 17

n = 4096

15 ≤ J ≤ 240 when j = 200 where j ∈ J

k = 4096− 17(200)+120−1= 815

d∗ = 17(200)− 2(120)+ 2= 3162.

This gives (4096,815,3162) Hermitian Code with
code rate(k/n) of 815/4096= 0.1989.

Table 1: Hermitian and Reed-Solomon code over GF(16) and

GF(64)

Name of Code Code Parameters Code Rate (R = k/n)

Hermitian Code (64,8,28) 0.125

Reed-Solomon Code (63,42,23) 0.65

Table 2: Hermitian code and Reed-Solomon code over GF(256)

Name of Code Code Parameters Code Rate (R = k/n)

Hermitian Code (4096,815,3162) 0.1989

Reed-Solomon Code (255,153,103) 0.60

Given a message f (x,y), encoding using hermitian
code is done by evaluating the message at the various
rational points Ci = fi(Pi). Table 1 above is an example
using a GF(16) and GF(64).

Example using GF(22) for the Hermitian curve
H(x,y) = xx+1 + yr + 1
We have

–q = 4,
–m = r+1 =3,
–r =

√
q =

√
4 = 2,

–n = 8,
–k = 5,
–d∗ = 3,

Since q = 4 we have 4 elements (0,1,α,α2). There will be
5 monomials because k = 5 (1,x,y,x2,xy). Number of
rational points on the curve will be 8 since n = 8 where
P1(0,0), P2(0,1), P3(1,α), P4(1,α

2), P5(α,α),P6(α,α2),
P7(α

2,α), P8(α
2,α). Given a string of message to be

encoded, we then convert it to message polynomial
f (x,y) = 1 + y + x2. Then we encode each symbol as
Ci = f (Pi).

C1 = f (P1) = f (0,0) = 1+ 1+ 1= 1
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Fig. 1: AWGN simulation over GF(256).

Fig. 2: AWGN simulation over GF(64) and GF(16).

C2 = f (P2) = f (0,1) = 1+ 1+ 0= 0

C3 = f (P3) = f (1,α) = 1+ 1+α
2 = α

2

C4 = f (P4) = f (1,α2) = 1+ 1+α
4 = α

C5 = f (P5) = f (α,α) = 1+α + 1 = 0

C6 = f (P6) = f (α,α2) = 1+α
2 + 1 = 1

C7 = f (P7) = f (α2,α) = 1+α
4 + 1 = 1

C8 = f (P8) = f (α2,α2) = 1+α
2 +α

4 = 0

So the encoded message is 1,0,α2,α,0,1,1,0.

4 Simulation over A White Gaussian Noise

(AWGN) channel

A simulation results evaluating the performance of
Hermitian code in comparison with Reed-Solomon code
over GF(256) are presented. Algebraic Geometric codes

have been constructed from Hermitian curves GF(256) in
Table 2 with the various parameters and code rates. The
performance of these codes are compared with
Reed-Solomon codes over the same finite field. Figure 1
shows the simulation of the newly-constructed hermitian
code over A White Gaussian Noise Channel (AWGN)
using Binary Phase Shift Keying (BPSK) modulation.
The results that we got from the AWGN channel shows
that the newly-constructed hermitian code has a higher
coding gain as compared with Reed-Solomon code.
Because the Bit Error Rate (BER) of the constructed code
has a closer distance to the Shannon limit that the existing
Reed-Solomon code. Other comparisons are also done but
over GF(16) and GF(64). It was realised that the coding
gain of the Reed-Solomon code has got closer to the
hermitian code even with lower finite field (GF(16) and
GF(64)) but still the newly-constructed code was closer
to the Shannon limit done the Reed-Solomon code.
Figure 2 shows simulation results of Hermitian code over
GF(64) and Reed-Solomon code over GF(256). It can be
seen that the coding gain of Reed-Solomon code has got
closer to the Hermitian code.

5 Simulation over Reyleigh Fading Channel

The performance of the newly-constructed codes were
compared with Reed-Solomon from the same finite field.
Figure 3 shows the simulation of the hermitian code over
the a Reyleigh Fading Channel using Binary Phase Shift
Keying (BPSK) modulation. The results from the
Reyleigh fading channel shows that the hermitian code
has a higher coding gain as compared with Reed-
Solomon codes. Other comparisons are also done but over
different finite field (GF(16) and GF(64)) especially a
lower one for the Reed-Solomon code as was done in the
first simulation. We have realised that the coding gain of
the Reed-Solomon code has got closer to the hermitian
code.(ie. finite field for Reed-Solomon is GF(64) and
finite field for Hermitian code is GF(16). Figure 4 and
Figure 3 show simulation results of the Hermitian code
over GF(64) with Reed-Solomon code over GF(256). It
can be seen that the coding gain of Reed-Solomon code
has got closer to the Hermitian code.

6 Discussion

Algebraic Geometric Codes constructed from affine
points of a projective curve and a set of rational points
defined on that curve can be very long which gives them
very large hamming distance. Reed-Solomon codes can
be described as an Algebraic Geometric Code constructed
from affine points of the projective line which makes it
similar to Algebraic Geometric Codes and comparable.
Consequently Reed-Solomon codes are very short (as
indicated that given the same finite field of 256 Algebraic
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Fig. 3: Reyleigh simulation over GF(256).

Fig. 4: Reyleigh simulation over GF(64) and GF(16).

Geometric Codes produced 4080 n whiles Reed-Solomon
codes produced 255 n) in block length and there are not
many Reed- Solomon codes that can be constructed from
a particular finite field compared with Algebraic
Geometric codes which has more construction given a
particular field. However Reed-Solomon codes are
Maximum Distance Seperable (MDS) codes unlike
Algebraic Geometric Codes, where the genus of the curve
reduces the actual minimum hamming distance. Despite
the genus penalty, Algebraic Geometric codes still have
much larger minimum distance than Reed-Solomon codes
defined over the same finite field and consequently
Algebraic Geometric codes can correct more errors and
also encode a larger block of code at a given time. A
disadvantage of Algebraic Geometric codes is their higher
decoding complexity. Sakata’s algorithm is more complex
than Berekamp-Massey algorithm used in decoding
Reed-Solomon codes.

The widespread use of Reed-Solomon code in today’s
systems is rapidly being replaced in communication
systems with more powerful coding schemes such as
turbo codes, LDPC codes etc. As storage density
increases and consequently the effects of ISI become
more severe, Reed-Solomon will not be good enough and
they will need to be replaced . Algebraic Geometric codes
could be a possible alternatives for the error correcting
schemes in the future data storage devices and
communication systems.

7 Conclusion

(4096,815,3162) Algebraic Geometric code has been
constructed from a Hermitian curve of a higher
dimension. Finally same simulation results have been
presented on the AWGN channel, showing how a
hermitian curve defined over GF(256) can outperform a
Reed-Solomon code defined over the same finite field. An
algebraic structure also has a major role to play in the
efficiency of a hermitian code.
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