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Abstract: In this paper, we propose an auto adaptive time-step finite volume scheme for a class of two-time reaction-diffusion models

of spatially structured population dynamics. Under specific assumptions, we prove that the privileged scheme preserves, at the discrete

level, the main features of the continuous problem, namely the non-negativity of the solutions, monotonicity and boundedness. Finally,

we present some numerical results to illustrate the efficiency of the proposed algorithm and the behaviour of the model and of the

scheme.
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1 Introduction

Recently, there has been a lot of interest in spatial
dynamics of ecological systems (see [1–3], among
others). Ecological modellers, supported by the fast
development of computers, produce a new generation of
ecological models with more complexity and details,
leading to large dynamical systems involving lots of
variables, and thus hard to handle analytically. In
population dynamics, as a branch of ecology, we often
examine the asymptotic behavior of the dynamics of those
models to describe population distribution in the long
term (extinction, coexistence, or extinction of species and
coexistence of others). Thus, there is a need to present a
practical algorithm in terms of computational cost for the
numerical resolution of such model to extract mainly
information about its dynamics without losing the
accuracy of simulations. Indeed, if we use a fixed-time
algorithm, we will either do a lot of useless calculations
or lose the main features of the numerical solution.
Therefore, the use of an adaptive algorithm is inevitably
required in order to reduce the computational cost without
losing the accuracy of solutions.

Adaptive strategy is becoming an important issue in
many areas of engineering. In other words, a large
number of theoretical results and numerical experiments
provided in many studies suggesting its viability and
efficiency for practical calculations. In the literature, we

find different types of adaptive algorithms; in space, time,
and both in space and time. Adaptive algorithms in space,
that are often based on a posteriori error estimation
techniques, have become an indispensable tool in large
scale scientific computation and a lot of studies have been
done for different discretization techniques of many
problems (see for instance [4–7]). Also, adaptive time
stepping is an important tool to find an approximate
solution in terms of computational cost. It helps to control
the error and the accuracy of simulations and allows
preserving the main features of the continuous solution as
well, more particularly existence, uniqueness, stability,
non-negativity and boundedness.

Many formulas have been presented to introduce a
time-step size control for error in a lot of work in adaptive
algorithm framework. An adaptive time step control could
be used either for controlling error or for preserving main
features [8, 9]. As far as controlling error is concerned it
needs some error indicator which the next time step
length is based on. This error indicator proposes a new
time step size to achieve a given accuracy. However, the
adaptive time-step for controlling main features is based
on the auto determination of a time-step that ensures the
preservation of the main features of continuous solution.

In this paper, we are interested in properties of the
approximate solution to a two-time reaction-diffusion
equation of spatially structured population dynamics, and
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we aim at proposing an auto adaptive time-step algorithm
for preserving main features of finite volume scheme.

Finite volume method is a discretization method in
space, which is appropriate for the numerical simulation
of various types of conservation laws e.g elliptic,
parabolic or hyperbolic, [10–13]. It may be used on
arbitrary geometries; structured or unstructured meshes,
and it accordingly leads to robust schemes. The choice of
this method for our problem is due to the conservative
aspect of the method that is suitable for the conservation
law of our problem (3) (see [14–16]).

The rest of the paper is organized as follows; the
problem is introduced in Section 2. In Section 3, we
define some notations for the finite volume discretization,
and we present our proposed scheme. In section 4, we
introduce the existence, uniqueness and main features of
solutions to the discrete problem. Finally, we implement
an auto adaptive time step algorithm that ensures
L∞-stability of the mentioned scheme and preserves the
main features of the approximate solution, and then
numerical results are provided to illustrate the behavior of
the scheme and the efficiency of the implemented
algorithm, in Section 5.

2 Statement of the problem

An accurate description of systems in population
dynamics requires a combination of different processes
that are often linked to multiple time scales (see [17, 18]).
In this work, we consider a two-time reaction-diffusion
model of spatially structured population dynamics which
governs the evolution of a population n. Population
density n(x, t) at position x and at time t is subjected to
diffusion and local demography (growth, mortality, etc.).
The diffusion takes place at a faster time scale than local
growth, whose dynamics at a fast time scale is

∂n

∂ s
(x,s) = div(D(x)∇n(x,s))+ ε f (x,n(x,s)). (1)

The first and the second terms of the second member
describe, respectively, the fast and slow processes. The
parameter ε is a small positive constant representing the
ratio between time scales.

We note s and t = εs, respectively, the time variable in
the fast and the slow time units. Then, a change of time
scales is performed in order to use them explicitly in the
model. Re-scaling the time as t = εs in Eq. (1), we obtain
the dynamics at a slow time scale:

∂nε

∂ t
(x, t) =

1

ε
div(D(x)∇nε(x, t))+ f (x,nε(x, t)). (2)

We consider a population living in a spatial region
Ω ⊂ R

p (p ≥ 1) where Ω is a non-empty bounded, open
and connected set with smooth boundary ∂Ω ∈Ck, k ≥ 1.

We assume that the demography is given by a
nonlinear reaction term f (x,n) that satisfies the following
regularity conditions:

Hypothesis 1. The function f : Ω ×R→ R is continuous,

and there exists a real-valued continuous positive function

h defined on Ω ×R×R such that:

| f (x,u)− f (x,v)| ≤ h(x,u,v) |u− v| , ∀x ∈ Ω , ∀(u,v) ∈R
2

We also assume a linear diffusion process in Ω for the
population, with coefficient D ∈ C2(Ω), D(x) > d∗ > 0,
that occurs at a fast time scale. We consider the following
two-time reaction-diffusion equation for the population
density:



















∂nε

∂ t
(x, t) =

1

ε
div(D(x)∇nε)+ f (x,nε), x ∈ Ω , t > 0

∂nε

∂ν
(x, t) = 0, x ∈ ∂Ω , t > 0

nε(x,0) = n0(x), x ∈ Ω
(3)

where Neumann boundary condition indicates that the
spatial domain is isolated from the external environment.

In addition, we suppose the following condition that is
sufficient to eliminate blow-up of non-negative solutions:

Hypothesis 2. The function f : Ω ×R → R satisfies the

following:

i) f (x,0) = 0, ∀x ∈ Ω

ii) There exists a constant C f > 0 such that ∀x ∈ Ω and

∀u ∈ R with |u| ≥C f , we have f (x,u)≤ 0.

The previous hypotheses are ecologically feasible.
Indeed, the population grows nowhere indefinitely; its
growth is limited by the finite amount of food available
for example. Also, there is no spontaneous generation of
individuals.

The existence and boundedness of global
non-negative solutions to the problem (3) are proved
in [19]. Assuming the previous hypotheses and the
additional ones, we will prove that numerical solution to
(3), obtained by using a finite volume method, preserves
the non-negativity, monotonicity and boundedness of its
exact one.

3 Finite Volume discretization

In this section, we will present a finite volume scheme
applied to the problem (3). Since the problem (3) arises
from conservation laws we will establish an
approximation of equation by using a vertex-centered
finite volume method. The finite volume scheme is
obtained by integrating the equation of the problem on a
given control volume of a mesh descretization, and by the
divergence formula we obtain an integral formulation of
the flux on the boundary which will be discretized with
respect to the discrete unknowns (see [12, 20, 21]).

Let Ω be an open polygonal bounded subset of R
p,

with p = 2 or p = 3, and T > 0 fixed. We denote
Th = (K)K∈Th

a regular triangulation of Ω with
h = maxhK and hK is the diameter of the triangle K of
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Th. The partition Th satisfies that there exists a positive
constant C > 0 such that

C−1h2
6 |K|6Ch2, ∀K ∈ Th,

|K| is the Lebesgue measure of the triangle K. We denote
Vh the dual partition of Ω , that is based on the
triangulation Th and formed by control volumes
(V )i=1,..,M , M = card(Vh), obtained by connecting the
midpoints of the edges of Th and circumecenters of each
neighbouring triangles having xV as a vertex (see Fig. 1).

Fig. 1: Vertex centered control volume

We denote by ET the set of interior edges γ of Th and
EV the set of interior edges of the dual decomposition Vh.

To simplify, we set nε = u. Integrating (3) over each
control volume V of Vh, we write

∫

V

∂u

∂ t
(x, t)dx−

1

ε

∫

V
div(D(x)∇u(x, t))dx

=

∫

V
f (x,u(x, t))dx. (4)

The time discretization may be performed with a
variable time step; we introduce a partition of the interval
[0,T ] into sub-intervals [tn, tn+1], n ∈ N

∗ and
0 6 n 6 N − 1, such that 0 = t0 < t1 < ... < tN = T . We
denote by τn the length tn+1 − tn.

As it is known, the stability condition for an explicit
time discretization of a parabolic equation requires the
time step to be limited by a power two of the space step,
which is generally a too strong condition in terms of
computational cost. Therefore, a semi-implicit time
discretization is highly required. It is obtained by taking
t = tn+1 in the left hand side of (4) to rise up the large
diffusivity of the problem, and replacing ∂u/∂ t(x, t) by

∂u

∂ t
(x, t)≈

un+1(x)− un(x)

τn

.

For the right hand side of (4) we take f (x,un(x)). This
gives :

∫

V

un+1(x)− un(x)

τn

dx−
1

ε

∫

V
div

(

D(x)∇un+1(x)
)

dx

=

∫

V
f (x,un(x))dx.

Applying Green’s formula, we obtain

∫

V

un+1(x)− un(x)

τn

dx−
1

ε ∑
γ∈∂V∩EV

∫

γ
D(x)∇un+1(x)·−→n γds

=

∫

V
f (x,un(x))dx, (5)

where −→n denotes the unit outer-normal vector on the
boundary ∂V .

We denote by un+1
V

, 0 6 n 6 N − 1 and V ∈ Vh, an
approximation of u in control volume V and at time tn+1,
satisfying:

|V |

τn

(

un+1
V − un

V

)

−
1

ε ∑
γ∈∂V∩EV

∫

γ
D(x)∇un+1(x) ·−→n γds

= |V | fV (u
n
V ), (6)

with fV (u
n
V ) = f (xV ,u

n
V ).

For each control volume V ∈ Vh, we denote by γ the
common edge between the control volume V and its
neighboring one W . We use a centered finite difference
approximation for the flux

∫

γ D(x)∇un+1(x) · −→n γds, we

have:
∫

γ
D(x)∇un+1(x) ·−→n γds ≈

|γ|

dγ
Dγ

(

un+1
W − un+1

V

)

, (7)

where −→n γ denotes the unit normal vector on the edge γ ,
(

un+1
V

)

V∈Vh
are the discrete unknowns, dγ is the distance

between xV and xW , |γ| is the Lebesgue measure of the
edge γ and

Dγ =
D(xV )+D(xW )

2
.

Using the flux approximation (7) in (6) and taking into
account Neumann boundary condition, we obtain

|V |

τn

(

un+1
V − un

V

)

−
1

ε ∑
γ∈∂V∩EV

|γ|

dγ
Dγ

(

un+1
W − un+1

V

)

= |V | fV (u
n
V ).

Hence, bearing in mind the initial condition yields the
following semi-implicit finite volume scheme for the
discretization of (3):

|V |

τn

(

un+1
V − un

V

)

−
1

ε ∑
γ∈∂V∩EV

|γ|

dγ
Dγ

(

un+1
W − un+1

V

)

= |V | fV (u
n
V ), (8)
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for all V ∈ Vh and n ∈ {0, ...,N − 1}.

Initial conditions can be taken into consideration in
different ways, depending on the regularity of the data u0.
It is possible to take

u0
V =

1

|V |

∫

V
u0(x)dx, V ∈ Vh,

or

u0
V = u0(xV ), V ∈ Vh. (9)

The finite volume scheme (8) could be written as a
linear system as follows:

AUn+1 = bn, n ∈ {0, ...,N − 1},

where bn = (bn
V )V∈Vh

and bn
V := un

V + τn fV (u
n
V ), A is a

square matrix.

Generally, semi-implicit scheme is an appropriate one
to find an approximate solution in terms of computational
cost, because it leads to a linear system that is very easy
to implement, and takes less execution time. However,
implicit finite volume scheme leads to a non-linear
system that generally requires numerical methods to solve
it; those methods are time consuming and their
convergence is not ensured, especially for large system.

4 Study of semi-implicit finite volume scheme

We proceed, in this section, to study semi-implicit finite
volume scheme (8) by concentrating on non-negative
approximate solution. Moreover, we give a monotonicity
result, a L∞-estimate and global existence of non-negative
approximate solution.

4.1 Existence and uniqueness

Lemma 1. Let Ω be an open polygonal bounded subset

of R
p. Assuming (1) and (2), there exists a unique

approximate solution (un+1
V )V∈Vh

satisfying (8) for a

given (un
V )V∈Vh

with (9).

Proof. Equations of the semi-implicit scheme (8) for a
given (un

V )V∈Vh
lead to a linear system of M equations with

M unknowns, (un+1
V )V∈Vh

. Since (un+1
V )V∈Vh

satisfies this
linear system (8) we can write:

AUn+1 = bn,

where bn = (bn
V )V∈Vh

and bn
V := un

V + τn fV (u
n
V ), A is a

square matrix M×M.

To ensure the existence and uniqueness of solution
(un+1

V )V∈Vh
to (8), we prove that A is positive definite

matrix. Multiplying the linear part of each equation with

respect to (un+1
V )V∈Vh

in (8) by un+1
V , and summing all

equations over V , we get

L = ∑
V∈Vh

|V |(un+1
V )2

−
τn

ε ∑
V∈Vh

∑
γ∈∂V∩EV

|γ|

dγ
Dγ(u

n+1
W − un+1

V )un+1
V .

Reordering the summation over the set of the interior
edges and thanks to the conservation of the flux on each
interior edge, we get

L = ∑
V∈Vh

|V |(un+1
V )2 +

τn

ε ∑
γ∈EV

|γ|

dγ
Dγ (u

n+1
W − un+1

V )2.

The positivity of the function D completes the proof of
the existence and uniqueness of solution to (8).

4.2 Non-negativity, monotonicity and

boundedness

The study of some properties of the approximate solution
such as non-negativity, monotonicity and boundedness,
needs additional hypothesis on the time step length τn

giving what follows,

Hypothesis 3. We assume that the time step τn in the

semi-implicit finite volume scheme (8) should satisfy the

following:

τn < τmax
n ,∀n ∈ {0, ...,N − 1},

where τmax
n presents a time step size limit at the (n+1)-th

iteration.

In our model, the time step influences the features of
the approximate solution; if time steps τn are chosen less
than τmax

n the approximate solution preserves the
non-negativity, monotonicity and boundedness of the
continuous one. We notice that the preservation of each
property may require a specific assumption on time step
length τn.

For (un
V )V∈Vh

∈ R
M and (wn

V )V∈Vh
∈ R

M ,
n ∈ {0, ...,N}, we denote by

Θun,wn = sup
V∈Vh

h(xV ,u
n
V ,w

n
V ),

where h is the function defined in Hypothesis 1.
In the following lemma, we give some results about

non-negativity of approximate solution:

Lemma 2. Let Ω be an open polygonal bounded subset

of R
p. Under the assumptions (1), (2), (3) with

τmax
n = Θ−1

un,0, ∀n ∈ {0, ...,N − 1}, and if the vector of the

initial data (u0
V )V∈Vh

satisfies u0
V > 0, ∀V ∈ Vh. Then the

approximate solution (un+1
V )V∈Vh

of (8) verifies

un+1
V > 0, ∀V ∈ Vh and ∀n ∈ {0, ...,N − 1}.
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Proof. Let us assume that un
V > 0, ∀V ∈ Vh and prove that

uV := un+1
V > 0, ∀V ∈ Vh.

For this, we multiply (8) by (un+1
V )− and sum over V , we

get:

∑
V∈Vh

|V |uV u−V −
τn

ε ∑
V∈Vh

∑
γ∈∂V∩EV

|γ|

dγ
Dγ(uW − uV )u

−
V

= ∑
V∈Vh

|V |φ(un
V )u

−
V ,

where we have introduced the notations:

φ(un
V ) := τn fV (u

n
V )+ un

V

and

(uV )
−

:= max(0,−uV ),

that gives

∑
V∈Vh

|V |
(

u−V
)2

−
τn

ε ∑
γ∈EV

|γ|

dγ
Dγ (uW − uV )

(

u−W − u−V
)

=− ∑
V∈Vh

|V |φ(un
V )u

−
V .

Bearing in mind that

(uW − uV )
(

u−W − u−V
)

6 0, (10)

for all γ ∈ EV ; γ is the common edge for the control
volumes V and W .

Using the assumptions (1), (2)-(i), (3) and the
non-negativity of (un

V )V∈Vh
; un

V > 0, ∀V ∈ Vh, we get:

φ(un
V ) = τn fV (u

n
V )+ un

V

> (1− τnΘun,0)u
n
V

> 0,

for all V ∈ Vh.

This estimation together with (10) yields

∑
V∈Vh

|V |
(

u−V
)2

6 0,

which leads to u−V = 0, ∀V ∈ Vh. We conclude that

un+1
V > 0, ∀V ∈ Vh as we wanted to prove.

Unfortunately, we have given a constraint on the time
step size limit τmax

n but this one is not a too strong
condition in terms of computational cost. This choice can
be in range for many two-time reaction-diffusion
equations in population dynamics.

The above arguments, with a modification, lead to the
following monotonicity result:

Lemma 3. Let Ω be an open polygonal bounded subset of

R
p. Under assumptions (1), (2) and (3) with

τmax
n = Θ−1

un,wn , ∀n ∈ {0, ...,N − 1}. Let (uV )V∈Vh
and

(wV )V∈Vh
be two approximate solutions to (8)

corresponding to initial data (u0
V )V∈Vh

and (w0
V )V∈Vh

respectively such that u0
V > w0

V , ∀V ∈ Vh. Then,

un+1
V > wn+1

V , ∀V ∈ Vh and ∀n ∈ {0, ...,N − 1}.

Proof. Let’s assume that (uV )V∈Vh
and (wV )V∈Vh

are two
approximate solutions to (8) corresponding to initial data
(u0

V )V∈Vh
and (w0

V )V∈Vh
respectively such that

u0
V > w0

V , ∀V ∈ Vh. Then, the vector

(yV )V∈Vh
:= (uV −wV )V∈Vh

satisfies the following system, together with a
non-negative initial data (y0

V )V∈Vh
:= (u0

V −w0
V )V∈Vh

,

|V |yn+1
V −

τn

ε
∑

γ∈∂V∩EV

|γ|
dγ

Dγ

(

yn+1
W − yn+1

V

)

= |V |Φ(un
V ,w

n
V ),

V ∈ Vh, n ∈ {0, ...,N − 1},

where we denote

Φ(un
V ,w

n
V ) := τn( fV (u

n
V )− fV (w

n
V ))+ un

V −wn
V .

Let us assume that yn
V > 0, ∀V ∈ Vh, and prove that

yV := yn+1
V > 0, ∀V ∈ Vh. For this, we multiply (8) by y−V

and sum over V , we get:

∑
V∈Vh

|V |yV y−V −
τn

ε ∑
V∈Vh

∑
γ∈∂V∩EV

|γ|

dγ
Dγ (yW − yV )y

−
V

= ∑
V∈Vh

|V |Φ(un
V ,w

n
V )y

−
V ,

that gives

∑
V∈Vh

|V |
(

y−V
)2

−
τn

ε ∑
γ∈EV

|γ|

dγ
Dγ (yW − yV )

(

y−W − y−V
)

=− ∑
V∈Vh

|V |Φ(un
V ,w

n
V )y

−
V .

Taking into account that

(yW − yV )
(

y−W − y−V
)

6 0,

for all γ ∈ EV ; γ is the common edge for the control
volumes V and W .

Using the assumptions (1), (2)-(i), (3) and the
non-negativity of (yn

V )V∈Vh
; yn

V > 0, ∀V ∈ Vh, we get:

Φ(un
V ,w

n
V )> (1− τnΘun,wn)yn

V > 0,

for all V ∈ Vh.
We proceed in the same manner as in the proof of the

previous lemma, we find

∑
V∈Vh

|V |
(

y−V
)2

6 0,

which leads to y−V = 0, ∀V ∈ Vh. We conclude that

un+1
V > wn+1

V , ∀V ∈ Vh.
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Now, we can prove the result concerning the
boundedness of approximate solution:

Lemma 4. Let Ω be an open polygonal bounded subset of

R
p. Let (uV )V∈Vh

be an approximate solution to (8)

corresponding to non-negative initial data (u0
V )V∈Vh

.

Under the assumptions (1), (2), and (3) with τmax
n = Θ−1

n

where

Θn = max{Θun,C,Θun,0}, ∀n ∈ {0, ...,N − 1}.

Then, there exists a positive constant C only depending on

u0 and C f ; C f is the constant mentioned in Hypothesis (2)-

(ii), such that

sup{|un+1
V |,V ∈ Vh,n ∈ {0, ...,N − 1}}6C.

Proof. Let’s assume that (uV )V∈Vh
is an approximate

solution to (8) corresponding to non-negative initial data
(u0

V )V∈Vh
and set

C > max{C f ,max{|u0
V |, V ∈ Vh}}> 0,

where C f > 0 is the constant mentioned in Hypothesis (2)-
(ii). All the assumptions of Lemma 2 are satisfied, and thus
its conclusion holds, |un

V |= un
V , V ∈ Vh,n ∈ {1, ...,N}.

We proceed using mathematical induction; clearly
sup{u0

V ,V ∈ Vh} 6 C, for this we assume that
sup{un

V ,V ∈ Vh}6C.

Multiplying in both sides of (8) by

(un+1
V −C)+ := max(0,un+1

V −C)

and summing over V , similar calculations to those in the
proof of Lemma 1 lead to

∑
V∈Vh

|V |
(

(un+1
V −C)+

)2
+

τn

ε ∑
γ∈EV

|γ|

dγ
DγBγ

= ∑
V∈Vh

|V |φ(un
V )(u

n+1
V −C)+,

where

Bγ := (un+1
W − un+1

V )
(

(un+1
W −C)+− (un+1

V −C)+
)

and

φ(un
V ) := τn fV (u

n
V )+ un

V −C.

Taking into account that

Bγ > 0, ∀γ ∈ EV ;

γ is the common edge for the control volumes V and W .
That gives

∑
V∈Vh

|V |
(

(un+1
V −C)+

)2
6 ∑

V∈Vh

|V |φ(un
V )(u

n+1
V −C)+.

Using the assumptions (1), (2)-(i), (3) and un
V −C 6

0, ∀V ∈ Vh, we get:

φ(un
V ) = τn fV (u

n
V )+ un

V −C

6 (1− τnΘn)(u
n
V −C)+ τn f (xV ,C)

6 0,

for all V ∈ Vh, that leads to

∑
V∈Vh

|V |
(

(un+1
V −C)+

)2
6 0,

which gives (un+1
V −C)+ = 0 and then un+1

V 6C, ∀V ∈ Vh.
This completes the proof.

In this work, we have established sufficient conditions
to preserve the main features of the approximate solution
and ensure L∞-stability of semi-implicit finite volume
scheme (8) applied to Problem 3. In fact, under the
assumptions of Lemma 4, the semi-implicit scheme (8) is
conditionally L∞-stable according to the existence of a
positive constant C only depending on u0 and C f such that

sup{|un
V |,V ∈ Vh,n ∈ {1, ...,N}}6C,

which means that the approximate solution is bounded in
L∞ by a positive constant independent to the mesh Th and
the final time T . Therefore, in the scheme (8), no
additional hypothesis on the mesh Th is required to
ensure the L∞-stability, which justifies the use of such
scheme. Thus, instability phenomenon is only caused by
temporal discretization. Moreover, since the constant C is
independant of the final time T the global existence of
approximate solution is guaranteed.

5 Auto adaptive time step algorithm and

numerical results

5.1 Auto adaptive algorithm

Semi-implicit scheme is widely used to find an
approximate solution for linear diffusion models in terms
of computational cost. In our model, the time step
influences the main features of the solution. Indeed, the
approximate solution preserves the non-negativity,
monotonicity and boundedness of the exact one when
time step τn is chosen less than τmax

n at the (n+1)-th
iteration. The preservation of each property requires a
specific assumption on time step length. Also, an efficient
time step control that preserves all the features of the
continuous solution is hard to achieve. For this reason, we
present in this section a practical algorithm for the
numerical implementation of automatic adaptive time
step length control. This algorithm will be useful to
ensure the L∞-stability of the scheme and preserve the
most important features; namely the non-negativity and
boundedness.
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A strategy for controlling the time step length
adaptively with semi-implicit finite volume scheme (8)
consists of introducing a tolerance parameter θ , θ ∈]0,1[,
with a time step size limit τmax

n to control the time step
length, at the (n+1)-th iteration. The time step size is
proposed to be τn = θτmax

n .
The proposed algorithm may be summarized in the

following steps:

1.Prepare the pre-processing data such as: space
discretization data, initial data, etc...

2.Calculate the time step size limit τmax
n at (n+1)-th

iteration using the information at the previous
iteration by the formula

τmax
n = (max{Θun,C,Θun,0})

−1.

3.Choose a value for θ and use τn = min{θτmax
n ,τ}

where τ is the desired maximum time step length.
4.Calculate rigidity matrix for the linear system (8) and

solve the latter, using the chosen time step length τn.
5.Repeat steps 2, 3 and 4.

In step 3, other formula may be introduced if we want
to introduce an error time step size control τerr

n in the
algorithm, we can set τn = min{θτmax

n ,τerr
n ,τ}.

5.2 Numerical results

Under the assumptions (1), (2) and (3), we have shown
that the semi-implicit finite volume scheme (8) is
L∞-stable and it admits a unique approximate solution,
even more it preserves the main features of its exact one.
In this case, assumptions (1) and (2) ensure the existence
and uniqueness of solution to (8), however the additional
assumption (3) is used to ensure stability and preserve the
non-negativity and boundedness of exact solution.

This work is about investigating the influence of an
adaptive time step control on the main features of
solutions and the accuracy of simulations. To verify this
numerically, we present numerical results for a spatially
distributed population growing logistically with fast
diffusion. More particularly, we consider the model,



























∂u

∂ t
(x, t) =

D

ε
∆u(x, t)+ f (x,u(x, t)),

x = (x1,x2) ∈ Ω =]0,1[×]0,1[, t ∈ (0,T )
∂u

∂ν
(x, t) = 0, x ∈ ∂Ω , t ∈ (0,T )

u(x,0) = n0(x), x ∈ Ω

(11)

where u(x, t) represents the population density at position
x and at time t. The reaction term is given by the function
f , representing the population growth, defined by

f (x,u(x, t)) = r(x)u(x, t)

(

1−
u(x, t)

K(x)

)

,

where r and K are real-valued continuous functions
defined on Ω , r(x) > 0 and K(x)> 0 for all x ∈ Ω , which
represent respectively the growth rate and the capacity
caring of the environment. More precisely, f satisfies
Hypothesis 1 and 2. Furthermore, we can easily see that
the function h in Hypothesis 1, is given by

h(x,u,v) = r(x)

∣

∣

∣

∣

1−
u+ v

K(x)

∣

∣

∣

∣

.

We use the semi-implicit finite volume scheme (8) to
give numerical results for (11). We consider triangular
mesh of Ω =]0,1[×]0,1[ with maximum edge length
h = 0.05. We perform the numerical experiments with
ε = 0.1 and D = 0.5. We denote the monotonicity
indicator between (uV )V∈Vh

and (wV )V∈Vh
at time tn by

IndΩ (tn) := min
V∈Vh

(wn
V − un

V ),

where (uV )V∈Vh
and (wV )V∈Vh

are two approximate

solutions to (11) corresponding to initial data (u0
V )V∈Vh

and (w0
V )V∈Vh

respectively. Clearly, if IndΩ (tn) keeps the
same sign over time, the monotonicity between (uV )V∈Vh

and (wV )V∈Vh
is preserved.

Fig. 2 and 3, represent numerical results to (11) using
predefined constant time step, and show that the
L∞-stability of semi-implicit finite volume scheme
applied to (11) is not ensured for an arbitrary constant
time step length. However, when the time step τ stays
below τmax = min{τn

max;n ∈ {0, ...,N}}; τmax ≈ 2 in Fig. 2
and τmax ≈ 0.5 in Fig. 3, the main features of the
approximate solution are preserved. Moreover, we see in
Fig. 2-(c) and 3-(c) that IndΩ (t) keeps the same sign over
time only if the time step τ < τmax. Then, in this case, the
monotonicity is preserved. Finally, we have confirmed
numerically that the approximate solution preserves the
non-negativity, monotonicity, and boundedness of its
exact one when the time step is chosen less than τmax.
Nevertheless, using a fixed time step algorithm, a lot of
unnecessary computational work has to be done when
τmax is too small.

As shown in Fig. 4 and 5, using auto adaptive
time-step algorithm, the approximate solution preserves
the boundedness and non-negativity of the exact one. In
addition, in Fig. 4-(c) and Fig. 5-(c), we present the
evolution of the used adaptive time step length that is
automatically and entirely determined by the expression
of the function h in each iteration. The influence of an
adaptive time step algorithm has revealed in the
numerical simulations to preserve the main features of the
continuous solution, the accuracy of the results, and the
efficiency of the simulations in terms of computational
cost.
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Fig. 2: Plot of max{uV , V ∈ Vh}, (A), min{uV , V ∈ Vh},

(B), for the approximate solution corresponding to initial data

u0(x) = 2(cos(πx1)+cos(πx2)+3)−1 , and the monotonicity

indicator IndΩ (t) between the approximate solutions

corresponding to initial data u0 and w0 = u0 +10−3 , (C),

with respect to time t for different values of constant time step τ
where r = 0.5 and K = 4.
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Fig. 3: Plot of max{uV , V ∈ Vh}, (A), min{uV , V ∈ Vh}, (B),

and the monotonicity indicator IndΩ (t), (C), with respect to time,

using the same parameters as Fig. 2, r = 1, and K = 4.
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Fig. 4: Plot of min{uV , V ∈Vh}, (A), and max{uV , V ∈Vh}, (B),

with respect to time for the approximate solution corresponding

to different values of the initial data u0; u01(x) = x2 sin(πx1)+2,

u02(x) = 4x2
1 +2x2

2 +1, and u03(x) = (x1+x2 +1)−1, using auto

adaptive time-step algorithm with tolerance parameter θ = 0.75

where r(x) = x1x2 + 0.5 and K(x) = sin(πx1x2)+ 4. In (C) the

evolution of the time step length used in auto adaptive algorithm.
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Fig. 5: Plot of min{uV , V ∈ Vh}, (A), and max{uV , V ∈ Vh},

(B), with respect to time, corresponding to initial data

u0(x) = (x1 + x2 + 0.5)−1 for different expressions of functions

r and K, r1(x) = sin(π(x1 +x2))+1, r2(x) = x1x2 +0.5,

K1(x) = x2
1 +x2

2 +4, and K2(x) = sin(πx1x2)+3. In (C) the

evolution of the time step length used in auto adaptive algorithm

with θ = 0.75.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


50 A. EL HARRAK et al.: Preserving finite-volume schemes for two-time...

6 Conclusion

In this work, we conclude that semi-implicit scheme is
L∞-stable, and even more it preserves at the discrete level
the main features of the continuous problem; namely the
non-negativity, monotonicity and boundedness, when the
assumptions are satisfied. The numerical study is related
to the influence of using an adaptive time step control
with respect to computational cost and the accuracy of the
results in terms of preserving the main features of the
continuous solution. Summarizing, auto adaptive time
step algorithm is an effective tool to obtain accurate
solutions with less computational cost.
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certaines équations paraboliques non linéaires, RAIRO.
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