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Abstract: We introduce the use of matrix analysis as a method for describing the operation of a packet switch in this paper. Matrix

analysis may be used to statistically describe how incoming traffic is switched from inputs to outputs according to the architecture of

the switch and the selection of packets for forwarding. This method finds a direct application on throughput analysis of a packet switch,

defined by the switch architecture and configuration scheme. We show the applicability of this method on different known switch

architectures, as examples, and show that the results are consistent with their reported performance in the literature. Specifically, the

method is applied to single- and multi-stage switches using load-balancing or matching and arbitration schemes in their configuration

process. Moreover, the method is used to obtain the throughput of a switch and its corresponding configuration scheme for a given

doubly stochastic input matrix.
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1 Introduction

The operation of a packet switch (or just switch for
brevity) is to forward Internet packets from inputs to
outputs. An N × N switch may have its inputs indexed
by 0 ≤ u ≤ N − 1 and its outputs by 0 ≤ v ≤ N − 1.
Different packet switch architectures require different
configuration schemes. These schemes have a direct
effect on the operation of switching traffic from inputs to
outputs and, therefore, on the performance of the switch.
Performing switch analysis is a critical tool to which
designers resort to determine the worthiness of a switch
architecture. Moreover, these tools can be specifically
targeted at identifying a performance metric, such as
stability, throughput, or delay among the most demanded.
However, analyzing the different performance metrics of
the switch also requires different tools, some of which
sometimes come at the expense of high complexity or
render complex to apply.

Here, we consider that a packet switch may receive
variable length Internet packets and segment them into
fixed-size cells for internal switching, and re-assembling
them before packets depart the switch. In this way, the
time it takes to switch a cell from inputs to outputs is also
fixed, and it is referred to a time slot.

The performance of a switch may be determined by
different metrics. Some of the more sought after are:

Throughput. In general, throughput of a switch is
conveniently represented as a normalized estimate; that is,
the ratio of the number of cells that left the outputs of the
switch to the arrived cells at the inputs of the switch. The
throughput of a switch is one the the most important
performance metrics as it enables us to evaluate other
parameters, such a delay. The delay of a cell (or packet)
can be evaluated only if the throughput of a switch for a
given input load is full; that is, the number of cells leaving
the switch equals that entering the switch. The throughput
of a switch may be estimated by computer simulation,
probabilistic analysis, direct estimation, or tight or loose
bound estimation for cases where absolute estimation is
complex [1–9]. In the particular case 100% throughput is
expected under 100% input load (full load that inputs may
sustain), stability of the queues, and therefore, the switch
may be analyzed as binary test [10–18].

Stability. A switch is considered to be stable if for any
admissible input traffic, the switch is capable of
forwarding the incoming traffic to the respective
output(s), such that the queue occupancy of the switch
does not grow infinitely.

∗ Corresponding author e-mail: ots5@njit.edu

c© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/140103


20 O. T. Sule, R. Rojas-Cessa: Modeling of network Packet switches Using...

We define admissible traffic as:

N−1
∑

u=0

λu,v ≤ 1,
N−1
∑

v=0

λu,v ≤ 1 (1)

where λu,v is the arrival rate of traffic from input u to
output v of a switch. Such admissibility is considered
here under independent and identically-distributed (i.i.d.)
traffic conditions.

In this case, the queue occupancy is not expected to
grow if the input is admissible. However, some queueing
may occur for short periods of time but as long as the
average profile of the input load remains admissible,
queues are not expected to grow infinitely, if input buffers
have sufficient capacity [12–15]. The finite queue
occupancy of a switch can be evaluated by computer
simulation [19], modeling the queueing system of the
switch [20], by using a fluid model to determine its
stability [11], or by using a stability criteria such as
Lyapunov analysis. For a switch with queue occupancy
matrix L(n) at time n, state vector

Y (n) = (L(n), X(n)) (2)

where X(n) is an integer vector, and a Lyapunov function

V (L(n)) = L(n) Z L(n)T (3)

If there is a symmetric copositive, an N × N matrix B is
copositive if L B LT ≥ 0 ∀ L ∈ R

+N matrix Z ∈ R
N×N ,

and two positive numbers ǫ ∈ R
+ and U ∈ R

+, such that:

E[V (L(n+ 1)− V (L(n)|L(n)] < −ǫ||L(n)|| ∀ Y (n) :

||L(n)|| > U (4)

the switch is considered to be stable [12–15, 21–24].

Queueing delay. The queueing delay, or just delay, is the
time a cell waits in a queue before being forwarded to the
destination output. This waiting time may depend on both
the presence of other cells in other queues contending to
be forwarded to the output and on the scheme used to
select the next cell to be forwarded. Then, the average
queueing delay of a switch is the average estimate on the
cells passing through the switch. For analysis of a switch
under i.i.d. traffic, the average switch delay of switch is
equivalent to that experienced by traffic coming through
one of the outputs.

The average queueing delay of a switch may be
measured through computer simulation or by modeling
the queues as a Markov process model and analyzing the
model, or queueing analysis [2, 20, 22, 23, 25–29].
However, the last option is difficult to adapt for various
switch architectures, traffic types, and selection schemes.

These issues raise the question, can the throughput of
a switch be analyzed using a simpler method that provides

insight into the switching fabric and numeric throughput
values?

We propose the use of matrix analysis as a tool for
analyzing the operation of a switch on the incoming
traffic and thus, to analyze the performance of a switch.
Matrix analysis provides a deep insight into the operation
of the switching fabric, and also with this analysis we
may obtain a numeric throughput.

The use of matrix decomposition as a configuration
scheme, has been previously applied to a few switching
architectures. In [30], a matrix decomposition algorithm
was presented to route cells in a rearrangeable three-stage
Clos network by performing a row-wise matrix
decomposition. In [31, 32], a scheduling algorithm that
uses the results from Birkhoff decomposition [33] and
von Neumann algorithms [34] for a doubly substochastic
matrix was proposed for an input buffered crossbar
switch.

Different from those applications, our objective is to
apply matrix analysis in modeling the operation of the
switch on the incoming traffic and to estimate the
performance of the switch. In this paper, we show that
matrix analysis can be applied to both single and
multi-stage switch architectures that use either
pre-determined or random arbitration schemes.

The remainder of this paper is organized as follows:
Section 2 introduces our matrix analysis approach in
general terms. Section 3 describes several application
cases, from single to multi-stage switches that may use
load-balancing functions or other configuration schemes.
In this examples, we estimate the switch throughput or
verify that a switch achieves 100% throughput. Section 4
presents our conclusion.

2 Throughput Analysis through Matrix

Analysis

For any single or multistage switching architecture the
internal configuration of the switch can be represented by
a compound permutation P, or a set of permutations
P1, · · · ,Pγ−1. where γ > 1 and it is the number of
stages in the multistage architecture.

Let’s consider that the traffic incoming to a switch, or
input matrix R1, is defined as:

R1 = [λu,v] (5)

where R1 is admissible.
The traffic at the output port of a single-stage switch,

R2, is:
R2 = R1αP (6)

where α is defined by the configuration of the switch and
P is the connection provided by the configuration.
Moreover, for a multistage switch architecture with γ
stages, the matrix at the output port, Rγ , is:

Rγ = (((R1αP1)αP2) · · ·αPγ−1) (7)
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The throughput of a single-stage or multi-stage switch
with input R1 and output R2 or Rγ , respectively, is
calculated by dividing the sum of the columns in R2 or
Rγ by the sum of the columns in R1. For an output
matrix, RO, or:

RO = [βµ,v] (8)

where RO = R2 for a single-stage, RO = Rγ for a
multi-stage switch, and βµ,v is the traffic arrival rate to
output port v of the switch from an input µ. The
throughput of the switch is calculated by:

Throughput =

N−1
∑

v=0

N−1
∑

µ=0

βµ,v

N−1
∑

v=0

N−1
∑

u=0

λu,v

(9)

3 Application Examples of Matrix Analysis

on Switch Architectures

In this Section, we apply this technique to an output
queued (OQ), input-queued, and load-balancing
Birkhoff-von-Neumann (LBvN) switches, which can be
classified as single (e.g., OQ and IQ) and multi-stages
switches (e.g., LBvN and MMeM), with deterministic
(e.g., LBvN) and non-deterministic configuration
patterns. These switches are selected because of their high
performance and herein, we show that the proposed
approach can be used to estimate the switch performance.
The architecture of the switches used in the examples are
shown in Figure 1.

3.1 Output-queued (OQ) Switch

In this section we analyze the performance of an
output-queued (OQ) switch. An OQ switch has queues at
the outputs. Figure 1(a) shows the architecture of an OQ
switch.

Let us denote the traffic coming to the input ports and
then leaving to the output ports of the OQ switch as R1,
R2, respectively. Here, R1 and R2 are N ×N matrices.

Here, R1 is obtained from (5), the configuration of the
OQ switching fabric at time slot t that connects IP (i) to
OP (j) is represented as an N × N permutation matrix,
Π(t) = [πu,v], and the matrix element:

πu,v =

{

1 if u connects to v

0 otherwise.
(10)

The configuration of the OQ switch can be represented
as a compound permutation matrix, P, as follows,

P =
∑

t

Π(t) (11)

(a) OQ switch

(b) IQ switch

(c) LBvN switch

(d) MMeM switch

Fig. 1: Switch architectures of example switches.
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While R2 is:

R2 = (R1 ◦P) (12)

where ◦ denotes element- and position-wise
multiplication.

As an example, we calculate the throughput for a 4×4
OQ switch for any input traffic pattern. Let the input traffic
matrix be:

R1 =







λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3







From (11), the compound permutation matrix of the
OQ switch is:

P =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







Using (12), we get R2, the traffic matrix at the output
ports:

R2 =







λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3






(13)

From (13), we see that R1 = R2 and this is achieved
over one time slot, which implies a speedup of N . By
using (9), it is easy to see that the OQ switch attains 100%
throughput under admissible traffic and this result is
equivalent to the well-known performance of this switch.

3.2 Input-queued Switch with iterative Round

Robin Matching (iRRM)

In this section, we analyze an input queue (IQ) switch
which uses iterative round robin matching (iRRM) as the
configuration scheme [35]. An IQ switch has queues at
the inputs and usually virtual output queues (VOQs)
which are used to queue cells for each destination output.
Figure 1(b) shows the architecture of an IQ switch. iRRM
works as follows: at time slot t, all the unmatched IPs
with one or more queued cells for an OP sends a request
to the OP.
The OP chooses the request that appears next in a
round-robin schedule starting from the OP with the
highest priority, and notifies each requesting IP whether
the request is granted. The round-robin pointer of the OP
is updated to one location beyond the granted IP (modulo
u).
The IP accepts the grant from an OP in a round-robin
schedule starting from the OP with the highest priority
and updates the round-robin pointer to one location
beyond the accepted OP (modulo v).

Let us denote the traffic coming to the input and the
output ports of the IQ switch as R1, R2, respectively, as
N ×N matrices.

The traffic matrix at the input port is obtained from
(5), the configuration of the IQ switch at time t can be
represented as an N × N permutation matrix,
Π(t) = [πu,v], and the matrix element:

πu,v =

{

1 if u connects to v

0 otherwise.
(14)

Because each IP connects to an OP in a round-robin
fashion under the presence of traffic for that OP at the IP,
the configuration of the switch can be represented as a pre-
deterministic sequence of periodic permutations.

P(t) =
∑

Π(t) (15)

A permutation then indicates the connections from an IP
to the OP for which it has traffic. This permutation may
change as a pattern, in a round-robin schedule, each time
slot.

The traffic matrix at the output ports after each time
slot t, RP(t), is:

RP(t) = RP(t− 1)− αtP(t) (16)

where αt is the smallest weight element of RP(t) at
non-zero positions of P(t). In (16), RP(t = 0) is the
input matrix R1. Therefore, the traffic matrix at the
output ports after N time slots, or the matrix for the
matched connections, R2, is:

R2 = R1 −RP(t = N) (17)

where RP(t = N) is the matrix of unmatched
connections.

Example of an IQ Switch with iRRM under

Uniform Traffic

In this example, we consider a uniformly-distributed input
traffic for a 4×4 IQ switch. Let the input traffic matrix be:

R1 =







λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3







R1 is decomposed into R1(t) for each time slot t.
From (15) and (16), we obtain:

RP(1) =







0 λ0,1 λ0,2 λ0,3

λ1,0 0 λ1,2 λ1,3

λ2,0 λ2,1 0 λ2,3

λ3,0 λ3,1 λ3,2 0






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RP(2) =







0 λ0,1 λ0,2 0
0 0 λ1,2 λ1,3

λ2,0 0 0 λ2,3

λ3,0 λ3,1 0 0







RP(3) =







0 λ0,1 0 0
0 0 λ1,2 0
0 0 0 λ2,3

λ3,0 0 0 0







RP(4) =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







where RP(4) is the matrix for unmatched connections, but
by being a null matrix, it indicates that all connections are
matched.

Using (17), we obtain R2, the traffic matrix at the
output ports after N time slots, or:

R2 =







λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3






(18)

As stated above, each IP connects to each OP once
every N time slots. Because R1 is uniformly distributed,
each IP forwards traffic at a rate of 1

N
, which for this

example is represented as:

R1 =







0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25






(19)

Therefore,

R2 =







0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25






(20)

From (18) and (20), we see that R1 = R2. By using (9),
it is clear that this switch achieves 100% throughput under
uniform traffic.

Example of an IQ Switch with iRRM under

Nonuniform Traffic

In this example, we consider a nonuniform input matrix
and show the throughput of IQ with iRRM. Let R1 be:

R1 =







0.4 0.2 0.2 0.2
0.2 0.4 0.2 0.2
0.2 0.4 0.1 0.3
0.2 0 0.5 0.3






(21)

From (15) and (16), we obtain:

RP(1) =







0.3 0.2 0.2 0.2
0.2 0.3 0.2 0.2
0.2 0.4 0 0.3
0.2 0 0.5 0.2







RP(2) =







0.3 0.2 0.2 0
0 0.3 0.2 0.2
0.2 0.2 0 0.3
0.2 0 0.3 0.2







RP(3) =







0.3 0.2 0 0
0 0.3 0.2 0
0 0.2 0 0.3
0.2 0 0.3 0.2







RP(4) =







0.3 0 0 0
0 0.3 0 0
0 0.2 0 0.1
0 0 0.3 0.2







RP(4) is the matrix of unmatched connections.
From (17), we obtain R2, the traffic matrix at the

output ports after N time slots, or the traffic for the
matched connections is:

R2 =







0.1 0.2 0.2 0.2
0.2 0.1 0.2 0.2
0.2 0.2 0.1 0.2
0.2 0 0.2 0.1






(22)

Using (9), we obtain for throughput by summing the
columns of (22), and dividing each sum by the sum of the
same column of R1, and summing the results, or:

Throughput =
0.7 + 0.5 + 0.7 + 0.7

4
= 0.65 (23)

Therefore, the attained throughput is 65% under this
nonuniform traffic and after N time slots.

3.3 Load Balanced Birkhoff-von Neumann

(LBvN) Switch

We consider a Load Balanced Birkhoff-von Neumann
(LBvN) switch [26, 36] in this section. This switch
consists of two stages, the first stage load balances the
input traffic by using periodic permutations in its
configuration, and the second stage which is a
Birkhoff-von Neumann input-queued switch, switches the
load-balanced traffic toward the destinations. Figure 1(c)
shows the architecture of LBvN and the traffic matrix
representation of each stage.

Let us denote the traffic coming to the first stage,
leaving the first stage, entering the second stage, and
leaving the LBvN switch as R1, R2, R3, and R4,
respectively. Here, R1, R2, and R3 are N × N matrices
and R4 is an N × 1 column vector.
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The configuration of the first stage that connects input
port, IP (i), to the output of the first stage, or internal
output port, IOP (i), at time slot t is represented as an
N × N permutation matrix, ΠBvN(t) = [πu,v], and the
matrix element:

πu,v =

{

1 for any u, v = (u+ t) mod N

0 elsewhere.
(24)

The configuration of the first stage can be represented
as a compound permutation matrix, P, which is the sum of
the permutations used on the first stage over N time slots,
as follows:

P =

N
∑

ΠBvN(t) (25)

Because a switch configuration is repeated every N
time slots, the traffic load from the same input going to
each VOMQ is 1

N
of R1. The traffic matrix R2 is

obtained by using:

R2 =
1

N
((R1 ∗ 1) ◦P) (26)

Given that
P = 1

where 1 denotes an N ×N unit matrix. Hence:

R2 =
1

N
(R1 ∗P) (27)

Here, R2 is the aggregate output traffic from the first
stage destined to all OPs. This matrix can be further
decomposed into N N × N matrices, R2(v), each of
which is the aggregate traffic at the input of the second
stage destined to OPv .

R2 =

N−1
∑

v=0

R2(v) (28)

The second stage of this switch runs a sequence of periodic
connection patterns that repeats everyN time slots. Hence,
the configuration of the second stage can be represented as
a compound permutation matrix, P, which is similar to
the compound permutation used by the first stage of the
switch. Therefore, the traffic forwarded to an OP is:

R3(v) = (R2(v) ◦P) ∗ 1 (29)

where 1 is an N × 1 vector of all ones. The traffic
forwarded to all OPs, R3, is:

R3 = [R3(0), · · · ,R3(N − 1)] (30)

The traffic leaving an OP, R4(v) is:

R4(v) = (1)T ∗R3(v) (31)

The traffic leaving all OPs, R4 is:

R4 = [R4(0), · · · , R4(N − 1)]T (32)

Example of a LBvN Switch under Nonuniform

Traffic

We show a 4 × 4 LBvN switch under a nonuniform input
matrix and show the throughput of achieved throughput.
From Section 3.2, it is easy to see that LBvN attains 100%
throughput under uniform traffic. Let R1 be the same used
in (21).

The input traffic into the second stage,R2, is generated
from R1. From (25), the compound permutation matrix of
the first stage is:

P1 =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







This permutation enables connecting each IP to OP and
forwarding at a rate of 1

N
, or 1

4 . Using (27), we get R2,
the input traffic matrix of the second stage:

R2 =
1

4







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







From (28), the traffic matrices at the input of the
second stage destined to OPs are:

R2(0) =







0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05







R2(1) =







0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.025 0.025 0.025 0.025
0 0 0 0







R2(2) =







0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.025 0.025 0.025 0.025
0.125 0.125 0.125 0.125







R2(3) =







0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.075 0.075 0.075 0.075
0.075 0.075 0.075 0.075







The columns ofR2(v) are the traffic at the queues of the IP
of the second stage (IIP), and the rows are the traffic from
the IP of the first stage. Using (29), the traffic forwarded
into the second stage destined for each OP, R3(v) is:

R3(0) =







0.4
0.2
0.2
0.2






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R3(1) =







0.2
0.4
0.4
0







R3(2) =







0.2
0.2
0.1
0.5







R3(3) =







0.2
0.2
0.3
0.3







The rows of R3(v) represent the traffic from IPs
forwarded through an IIP. Using (30), the aggregate traffic
forwarded into the second stage, R3, is:

R3 =







0.4 0.2 0.2 0.2
0.2 0.4 0.2 0.2
0.2 0.4 0.1 0.3
0.2 0 0.5 0.3






(33)

The traffic leaving each OP is obtained from (31):

R4(0) = 1 (34)

R4(1) = 1 (35)

R4(2) = 1 (36)

R4(3) = 1 (37)

The traffic leaving all OPs is obtained from (32):

R4 =







1
1
1
1






(38)

Equation (33) is the output matrix, and by using (9) or
from the output vector (38), it is easy to see that this
switch achieves 100% throughput under nonuniform
traffic. These results are consistent with those presented
in [26, 36].

Non-blocking Memory-Memory-Memory with

Extended Memory (MMeM) Clos-Network

Switch

Now let us focus on a multiple-stage switch as another
example. This switch is the non-blocking
memory-memory-memory with extended memory
Clos-network switch (MMeM) [37–39]. This switch is a
three-stage buffered Clos-network architecture consisting
of k n × m Input modules (IMs), k m × n Output
modules (OMs), and m p × p Central modules (CMs).

There are nN crosspoint buffers in an IM and OM, and
kN crosspoint buffers in a CM. Each switch module has
per-output flow queues to avoid HoL blocking.
Round-robin or longest queue first arbitrations can be
used in the IM, while round-robin is used in the CMs and
OMs. The switch uses round-robin to arbitrate which
queue forwards a cell to the output links of the modules
of all three stages. Let us denote the traffic coming to the
IPs, CMs, OPs, and the traffic leaving MMeM as R1, R2,
R3, and R4 respectively. Here, R1, R2, and R3 are
N ×N matrices and R4 is an N × 1 column vector.

Round-robin arbitration is used in IMs to select th IP
permitted to forward a cell to the to the virtual central
module queue (V CMQ(i, s, r)) at IM(i) that stores
cells from IP (i, s) going through CM(r) to its output
port. This arbitration scheme enables forwarding a cell
from IP (i, s) to the queues in IM, and in turn forwarding
cells from IM(i) to output link LI(i, r) that connects the
IM(i) to CM(r). This interconnection occurs once
every n time slots for a fully-loaded switch. Similar to the
selection of queues in IM, round-robin arbitration is used
at a CM to select the per-output flow queue
(POFQ(i, r, j, d)) that stores cells from LI(i, r) and
destined to OP (j, d). Figure 1(d) shows the architecture
of MMeM.

The specific configurations of the IM and CM are as
follows. At time slot t, IP (i, s) sends a cell to
V CMQ(i, s, r), and this VCMQ is connected to LI(i, r)
in the following time slot, as follows:

r = (s+ t) mod m (39)

Each CM input LI(i, r) is connected to POFQ(i, r, j, d)
and then this queue is connected to LC(r, j) as follows:

j = (r + t) mod k (40)

Then R2 is the traffic forwarded to the CMs and the
product of having R1 switched by the permutations used
in the configurations of IMs. The configuration of the IM
stage at time slot t that interconnects IP (i, s) to
V CMQ(i, r, j), and in turn interconnects to LI(i, r), are
represented as an N × N permutation matrix,
ΠClos(t) = [πu,v], where r is determined from (39) and
the matrix element:

πu,v =

{

1 for any u, v = rk + i

0 otherwise.
(41)

The configuration of the IM stage can be represented as
a compound permutation matrix, P1, which is the sum of
the IM permutations over m time slots as follows,

P1 =

m
∑

ΠClos(t) (42)

Because the configuration repeats every m time slots, the
traffic load from the same input going to each VCMQ is 1

m
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of the traffic load of R1. The traffic matrix R2 is obtained
using:

R2 =
1

m
((R1 ∗ 1) ◦P1) (43)

Here, R2 is the aggregate traffic being forwarded to CMs
destined to all OPs. This matrix can be further decomposed
into N N ×N submatrices, R2(j, d), each of which is the
aggregate traffic at CMs destined to OP (j, d).

R2 =

j=k−1
∑

j=0

d=n−1
∑

d=0

R2(j, d) (44)

The configuration of the CM stage at time slot t that
connects Ic(r, p) to LC(r,j) may be represented as an
N × N permutation matrix, Φ(t) = [φu,v], where j is
determined from (40) and the matrix element:

φu,v =

{

1 for any u, v = jk + r

0 otherwise.
(45)

Similarly, the switching process at the CM stage is
represented by a compound permutation matrix P2,
which is the sum of p permutations of the CM stage over
p time slots. Here,

P2 =

p
∑

Φ(t) (46)

The traffic forwarded to the OMs and queued at the CB of
an OP, R3(j, d) is:

R3(j, d) = (R2(j, d) ◦P2) ∗ 1 (47)

The aggregate traffic forwarded to the OMs, R3 is:

R3 = [R3(0, 0), · · · ,R3(k − 1, n− 1)] (48)

The traffic leaving an OP, R4(j, d), is:

R4(j, d) = (1)T ∗R3(j, d) (49)

The aggregate traffic leaving all OPs, R4, is:

R4 = [R4(0, 0), · · · , R4(p− 1, n− 1)]T (50)

Example of a Buffered Clos-network Switch with

Extended Memory (MMeM) under Nonuniform

Traffic

In this example, we consider a nonuniform input matrix as
the traffic coming into MMeM and calculate the switch
throughput. We only consider nonuniform traffic in this
example because from Section 3.2, it is easy to see that
MMeM attains 100% throughput under uniform traffic. Let
R1 be the that used in (21).

From (42), the compound permutation matrix of the
IM is:

P1 =







1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1







This permutation enables connecting each IP to the output
of the IM. Using (43), we get:

R2 = 1/2







1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1







From (44), the traffic matrix at the CMs destined for
the different OPs are:

R2(0, 0) =







0.2 0 0.2 0
0.1 0 0.1 0
0 0.1 0 0.1
0 0.1 0 0.1







R2(0, 1) =







0.1 0 0.1 0
0.2 0 0.2 0
0 0.2 0 0.2
0 0 0 0







R2(1, 0) =







0.1 0 0.1 0
0.1 0 0.1 0
0 0.05 0 0.05
0 0.25 0 0.25







R2(1, 1) =







0.1 0 0.1 0
0.1 0 0.1 0
0 0.15 0 0.15
0 0.15 0 0.15







From (46), the compound permutation matrix for the CM
stage for this switch is:

P2 =







1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1







From (47), the traffic matrix forwarded to OMs and
queued at the CBs of each OP, R3(0, 0) to R3(1, 1) are
derived:

R3(0, 0) =







0.4
0.2
0.2
0.2







R3(0, 1) =







0.2
0.4
0.4
0







R3(1, 0) =







0.2
0.2
0.1
0.5






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R3(1, 1) =







0.2
0.2
0.3
0.3







From (48), the traffic matrix forwarded to OMs and queued
at the CBs of all OPs, R3 is:

R3 =







0.4 0.2 0.2 0.2
0.2 0.4 0.2 0.2
0.2 0.4 0.1 0.3
0.2 0 0.5 0.3






(51)

Using (49), we obtain the traffic leaving each OP, or:

R4(0) = 1 (52)

R4(1) = 1 (53)

R4(2) = 1 (54)

R4(3) = 1 (55)

Using (50), we obtain the traffic leaving all OPs, or:

R4 =







1
1
1
1






(56)

Equation (51) is the output matrix, and by using (9) or
from the output vector (56), it is clear that this switch
achieves 100% throughput under non-uniform traffic.
These results are consistent with those presented in the
original paper [37–39].

4 Conclusion

We have shown in this paper that the operation of a switch
affects the average traffic coming into the switch and the
overall performance of the switch. These operations can
be represented as matrix operations, which may be used
to estimate the throughput of a switch. We have shown
the application of the proposed approach on examples of
switch architectures with single or multiple stages, and
with different queueing strategies and their corresponding
configuration schemes. The results obtained in the
presented examples are consistent with the known
performance of such switches. By the examples provided,
the tool is shown to be practical and can be used to
analyze the performance of a wide set of packet switches.
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