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Abstract: After a brief introduction that includes some fundamentals of time scales, we lay the foundation for dynamic Gompertz

models. We derive their unique solutions, present examples in the discrete, quantum, and mixed time scale settings, and we compare its

behavior to the solution in the continuous time setting. A discussion of the results and open problems are addressed in the conclusion.
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1 Introduction

In 1825, Benjamin Gompertz formulated a mathematical
population model in [9] based on the assumption that with
age, the mortality increases exponentially, see [13]. The
model reads as

y′(t) =−ry(t) log

(

y(t)

K

)

, (1)

where y : R → R
+
0 represents the population of interest,

the positive constants r and K are the growth rate and
carrying capacity respectively. Other mortality rates have
been discussed for the Gompertz model which led for
example to the Gompertz–Makeham model [8], where an
age-independent mortality component was added.
Equation (1) with initial condition y(t0) = y0 > 0 has the
unique solution

y(t) = K exp
{

log
(y0

K

)

e−r(t−t0)
}

. (2)

The Gompertz model is still used to describe
population dynamics [7], cell development [17],
fermentation of chemical components [14], and microbial
mineralization of growth-sustaining pesticides [12], to
name some of its applications. Especially when applying
the Gompertz model to experimental data, the
discretization is of numerical interest. There have been
formulations regarding a discrete Gompertz model, such
as, in [16],

y(t + 1) =−ry(t) log(y(t)) (3)

which was proposed as a discretization of (1). Another
discretization, presented in [18], is

y(t + 1) = y(t)

(

y(t)

k

)−δ r

. (4)

The model we present in this work differs in the
discrete space from (3) and (4), but exhibits behavior
known from the continuous Gompertz model. The present
Gompertz model is formulated on a general time scale
and is extended by a time-dependence in the growth rate
and carrying capacity.

Before we introduce the dynamic Gompertz model on
time scales, we introduce some time scales fundamentals.

2 Fundamentals of Time Scales

A time scale T is a closed nonempty subset of R.

Definition 1. For t ∈ T, the forward jump operator σ :
T→ T is defined [4, Definition 1.1] by

σ(t) = inf{s ∈ T : s > t}.

Similarly, a backward jump operator ρ : T→ T is defined
by

ρ(t) = sup{s ∈ T : s < t}.

We adopt the convention that inf /0 = supT and
sup /0 = inf T. If σ(t) > t, then we say that t is
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right-scattered; if σ(t) = t, then we say that t is
right-dense. Similarly, left-scattered means ρ(t) < t and
left-dense means ρ(t) = t. We define the function
f σ : T → R by f σ (t) = f (σ(t)). If t ∈ T has a
left-scattered maximum M, then we define Tκ = T\{M};
otherwise, Tκ = T.

Definition 2. A function p : T → R is called

rd-continuous provided p is continuous at t for all

right-dense points t and the left-sided limit exists for all

left-dense points t [5, Definition 1.24]. The set of

real-valued rd-continuous functions f : T→ R is denoted

by Crd =Crd(T) =Crd(T,R).

Definition 3. We define the graininess (or “stepsize”)

function µ : T→ R
+
0 by µ(t) = σ(t)− t.

Definition 4. A function p : T→R is called regressive [4,

Definition 2.25] provided

1+ µ(t)p(t) 6= 0 for all t ∈ T.

The set of real-valued regressive and rd-continuous
functions is denoted by R = R(T) = R(T,R).
Moreover, p ∈ R is called positively regressive, denoted
by R

+, if

1+ µ(t)p(t)> 0 for all t ∈ T.

Note that on the time scale T = R, all functions are
positively regressive because the graininess µ is
identically zero.

Definition 5. Assume f : T → R and t ∈ T
κ . Then the

delta-derivative of f , denoted by f ∆ [4, Definition 1.10],

is the number, such that for all ε > 0 there exists δ > 0,

such that
∣

∣

∣
f (σ(t))− f (s)− f ∆ (σ(t)− s)

∣

∣

∣
≤ ε |σ(t)− s| ,

for all s ∈ (t − δ , t + δ )∩T.

Notably,

f ∆ (t) =







f ′(t), t right-dense

f (σ(t))− f (t)

µ(t)
, t right-scattered.

The delta-integral is defined so that for t,a ∈ T,

(

∫ t

a
f (τ)∆τ

)∆

= f (t), (5)

and
∫ t

a
f ∆ (τ)∆τ = f (t)− f (a).

Also we note that for any a ∈ T,

∫ a

a
f (τ)∆τ = 0. The

following theorem is from [4, Theorem 2.33].

Theorem 1. Let p ∈ R and t0 ∈ T. Then the initial value

problem

y∆ = p(t)y, y(t0) = 1

possesses a unique solution, called the dynamic

exponential function and denoted by ep(·, t0).

Useful properties of the dynamic exponential function
follow [4, Theorem 2.36].

Theorem 2. If p ∈ R and t,s,r ∈ T, then

1. e0(t,s) = 1, and ep(t, t) = 1,

2. ep(t,s) =
1

ep(s,t)
, and the

3. semigroup property holds: ep(t,r)ep(r,s) = ep(t,s).

The following theorem was proven in [6].

Theorem 3. If f is nonnegative with − f ∈ R+, then

1−
∫ t

s
f (τ)∆τ ≤ e− f (t,s)≤ exp

(

−
∫ t

s
f (τ)∆τ

)

. (6)

If f ∈Crd is nonnegative, then

1+

∫ t

s
f (τ)∆τ ≤ e f (t,s)≤ exp

(

∫ t

s
f (τ)∆τ

)

. (7)

We define the “circle-plus” and “circle-minus”
operations which turn (R,⊕) into a group where the
additive inverse of p is ⊖p [5, p. 10].

Definition 6. Define the “circle plus” addition on R for

t ∈ T by

(p⊕ q)(t) = p(t)+ q(t)+ µ(t)p(t)q(t),

and the “circle minus” subtraction by

(p⊖ q)(t) =
p(t)− q(t)

1+ µ(t)q(t)
.

The following theorem can be found in [3, Theorem 3.4].

Theorem 4. Let T be a time scale with supT=∞. If r > 0,

then lim
t→∞

e⊖r(t, t0) = 0.

It is not difficult to show the following identities [4].

Corollary 1. If p,q ∈ R, then for all t,s ∈ T,

a) ep⊕q(t,s) = ep(t,s)eq(t,s),

b) e⊖p(t,s) = ep(s, t) =
1

ep(t,s)
, and

c) if p ∈ R+, then ep(t,s)> 0.

A variation of constants formula was shown in [5,
Theorem 2.1]:

Theorem 5. Suppose p ∈ R and f ∈ Crd. Let t0 ∈ T and

y0 ∈ R. The unique solution of the IVP

y∆ = p(t)y+ f (t), y(t0) = y0,

is given by

y(t) = ep(t, t0)y0 +

∫ t

t0

ep(t,σ(s)) f (s)∆s. (8)
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We also need the definition of a logarithm on time
scales. Some different logarithms have been defined on
time scales (e.g. [11], [2], [15]), but we focus on [2] and
generalize it in the following way.

Definition 7. Let a ∈R and let p be a nonvanishing delta-

differentiable function, then we define the logarithm of p

for a ∈R by

Lp(t, t0;a) = a+
∫ t

t0

p∆ (τ)

p(τ)
∆τ.

Time scale Lp(t, t0;a)

R a+ ln

(
∣

∣

∣

∣

p(t)

p(t0)

∣

∣

∣

∣

)

Z a+
t−1

∑
k=t0

(

−1+
p(k+ 1)

p(k)

)

qN0 ,q > 1 a+

logq(t)−1

∑
k=logq(t0)

(

−1+
p(qk+1)

p(qk)

)

Lemma 1. If p ∈ R and c ∈ R\ {0}, then

Lcep(·,t0)(t, t0;a) = a+

∫ t

t0

p(τ)∆τ.

Proof. Calculate

Lcep(·,t0)(t, t0;a) = a+

∫ t

t0

p(τ)cep(τ, t0)

cep(τ, t0)
∆τ

= a+
∫ t

t0

p(τ)∆τ,

as was to be shown.

The next lemma follows immediately from the
fundamental theorem of calculus.

Lemma 2. If p ∈ R is delta-differentiable and

nonvanishing, then for all t0 ∈ T and a ∈ R,

L∆
p (t, t0;a) =

p∆ (t)

p(t)
.

3 Gompertz model on time scales

3.1 Dynamic Gompertz model

We now consider a time scale analogue of (1),

y′ =−r(t)y ln

(

y

K(t)

)

=−r(t)y
(

ln(y)− K̃(t)
)

,

with y(t0) = y0, namely

y∆ = (⊖r)(t)y
(

Ly(t, t0;a)− K̃(t)
)

(9)

with y(t0) = y0 > 0 where r, K̃ : T → R, r ∈ R, K̃ ∈ Crd,
and a ∈R.

Theorem 6. If a ∈ R, r, p ∈ R, and K̃ ∈ Crd, then the

unique solution to (9) is given by

y(t) = ep(t, t0)y0,

where

p(t) = (⊖r)(t)

(

e⊖r(t, t0)a

−
∫ t

t0

(⊖r)(s)e⊖r(t,σ(s))K̃(s)∆s− K̃(t)

)

.

Proof. We define z(t) = Ly(t, t0;a), then (9) is given by

z∆ = (⊖r)(t)(z− K̃(t)), z(t0) = a,

which is a nonhomogeneous initial value problem, and
Theorem 5 shows its unique solution is given by

z(t) = e⊖r(t, t0)a−
∫ t

t0

(⊖r)(s)e⊖r(t,σ(s))K̃(s)∆s.

Therefore

y∆

y
= z∆ = (⊖r)(t)

[

e⊖r(t, t0)a

−

∫ t

t0

(⊖r)(s)e⊖r(t,σ(s))K̃(s)∆s− K̃(t)

]

,

i.e.,

y∆ = p(t)y, y(t0) = y0,

where

p(t) = (⊖r)(t)

(

e⊖r(t, t0)a

−

∫ t

t0

(⊖r)(s)e⊖r(t,σ(s))K̃(s)∆s− K̃(t)

)

.

The unique solution of this first-order initial value
problem, for p ∈ R, is given by

y(t) = ep(t, t0)y0. (10)
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Conversely, (10) solves (9), since

∫ t

t0

p(s)∆s

= a

∫ t

t0

(⊖r)(s)e⊖r(s, t0)∆s−

∫ t

t0

(⊖r)(s)K̃(s)∆s

−

∫ t

t0

(⊖r)(s)

∫ s

t0

(⊖r)(τ)e⊖r(s,σ(τ))K̃(τ)∆τ∆s

= ae⊖r(t, t0)− a−
∫ t

t0

(⊖r)(s)K̃(s)∆s

−

∫ t

t0

(⊖r)(τ)K̃(τ)

∫ t

σ(τ)
(⊖r)(s)e⊖r(s,σ(τ))∆s∆τ

= ae⊖r(t, t0)− a−
∫ t

t0

(⊖r)(s)K̃(s)∆s

−

∫ t

t0

(⊖r)(τ)K̃(τ) [e⊖r(t,σ(τ))− 1] ∆τ

= ae⊖r(t, t0)− a−

∫ t

t0

(⊖r)(τ)K̃(τ)e⊖r(t,σ(τ))∆τ,

and we have

(⊖r)(t)y(t)
(

Ly(t, t0;a)− K̃(t)
)

= (⊖r)(t)y(t)

(

a+

∫ t

t0

y∆ (s)

y(s)
∆s− K̃(t)

)

= (⊖r)(t)y(t)

(

a+
∫ t

t0

p(s)∆s− K̃(t)

)

= (⊖r)(t)y(t)

(

ae⊖r(t, t0)

−

∫ t

t0

(⊖r)(τ)K̃(τ)e⊖r(t,σ(τ))∆τ − K̃(t)

)

= y(t)p(t),

which is equal to y∆ and the proof is complete.

Example 1. If T= Z, r ∈ R\ {−1}, K̃,a ∈R, y0 > 0, p ∈
R, and t0 = 0, then (9) becomes

∆y(t) =
−r

1+ r
y(t)

×

[

a+
t−1

∑
k=0

(

−1+
y(k+ 1)

y(k)

)

− K̃

]

, y(0) = y0,

and has, by Theorem 6, the solution

y(t) = y0

t−1

∏
k=0

(1+ p(k)),

where

p(k) =
r(K̃ − a)

(1+ r)k+1
.

The same technique can be applied to a different
version of the Gompertz model, that is

y∆ =−r(t)y
(

Ly(t, t0;a)− K̃(t)
)

, y(t0) = y0 > 0, (11)

where r,K : T→ R and a ∈ R.

Theorem 7. If −r, p ∈ R, then the unique solution to (11)
is given by

y(t) = ep(t, t0)y0,

where

p(t) = r(t)K̃(t)− r(t)e−r(t, t0)a

− r(t)

∫ t

t0

e−r(t,σ(s))r(s)K̃(s)∆s.

3.2 Normalized Gompertz dynamic equation

Let a ∈ R. We define the normalized dynamic Gompertz
model for r ∈ R by the initial value problem

y∆ = (⊖r)(t)yLy(t, t0;a), y(t0) = y0 > 0. (12)

This should be considered as the time scales analogue to

y′ =−r(t)y ln(y), y(t0) = y0 > 0,

which is a special case of (1) with K = 1.

Theorem 8. If r, p ∈R, a ∈R, then the unique solution to

(12) is given by

y(t) = y0ep(t, t0), p(t) = a(⊖r)(t)e⊖r(t, t0). (13)

The proof of Theorem 8 follows from Theorem 6 with
K̃ = 0.

Example 2. If T=Z, a ∈R,r ∈R\{−1}, and t0 = 0, then
(12) reads as

∆y(t) =
−r

1+ r
y(t)

[

a+
t−1

∑
k=0

(

−1+
y(k+ 1)

y(k)

)

]

,

with initial condition y(0) = y0 > 0. By Theorem 8, the
solution is

y(t) = y0

t−1

∏
j=0

[

1−
ra

(1+ r) j+1

]

,

see Figure 1 for its behavior.

Example 3. For T = qN0 , a,r ∈ R such that for all t ∈ T,
1+(q− 1)tr 6= 0, and t0 = q0 = 1, (12) reads as

y(qt)− y(t)

t(q− 1)

=
−r

1+(q− 1)tr
y(t)



a+

logq(t)−1

∑
k=0

(

−1+
y(qk+1)

y(qk)

)



 ,

(14)
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Fig. 1: Solutions of (9) for T= Z.

with initial condition y(1) = y0 > 0. By Theorem 8, the
solution is

y(t) = y0

logq(t)−1

∏
i=0

[

1− a
(q− 1)qir

∏i
k=0(1+(q− 1)qkr)

]

.

Example 4. If T= {0}
⋃

∞
⋃

k=1

[

1

2k
,

1

2k− 1

]

, then

µ(t) =







1

(2k− 1)(2k− 2)
, t =

1

2k− 1
,k ∈ {2,3, . . .}

0, otherwise.

If a,r ∈ R such that for all t ∈ T,

1 +
r

(2k− 1)(2k− 2)
6= 0 for k ∈ {1,2,3, . . .} and if

t0 = 0, then for t ∈ {0}
⋃

∞
⋃

k=1

[

1

2k
,

1

2k− 1

)

, (12) reads as

y′(t) =−ry(t)

[

a+
∫ t

0

y∆ (τ)

y(τ)
∆τ

]

,

while for t =
1

2k− 1
,k ∈ {1,2,3, . . .}, (12) reads as

y
(

1
2(k−1)

)

− y
(

1
2k−1

)

1
(2k−1)(2k−2)

=
−r

1+ r
(2k−1)(2k−2)

y(t)

[

a+

∫ t

0

y∆ (τ)

y(τ)
∆τ

]

,

both with initial condition y(0) = y0 > 0. By Theorem 8,
the solution is

y(t) = y0

[

exp

(

a

∫

[0,t]∩T

d

dt
e−rtdt

)

× ∏
0≤ 1

2k−1
<t

(

1+ r
(2k−1)(2k−2)(1− ae⊖r(t,0))

1+ r
(2k−1)(2k−2)

)



 .

We now discuss the limiting behavior of the solution for
constant r.

Theorem 9. If y is given by (13), r > 0, a≥ 0, and p∈R+,

then

y0(1− a)≤ lim
t→∞

y(t)≤ y0e−a
, t ≥ t0.

Proof. Let t ≥ t0. From r > 0, we may conclude r ∈ R+,
so e⊖r(t, t0)> 0. Since a ≥ 0, we see that

p(t) = a(⊖r)(t)e⊖r(t, t0) =−
ar

1+ µ(t)r
e⊖r(t, t0)

is always negative. Therefore −p is nonnegative and
−(−p) = p ∈ R+. Hence by (6),

1+

∫ t

t0

p(τ)∆τ ≤ ep(t, t0)≤ exp

(

∫ t

t0

p(τ)∆τ

)

,

and thus

1+ a(e⊖r(t, t0)− 1)≤ ep(t, t0)≤ exp(ae⊖r(t, t0)− a) .

Multiplying by y0, taking the limit as t → ∞, and applying
Theorem 4 yields

y0(1− a)≤ lim
t→∞

y(t)≤ y0e−a
,

as was to be shown.

Corollary 2. If y is given by (13), r > 0 and 0 ≤ a < 1,

then

0 < lim
t→∞

y(t)≤ y0e−a
.

Note that y0 > 0 as defined in (12).

Theorem 10. If y is defined by (13), r > 0, a < 0, and

p ∈ R, then

y0(1+ |a|)≤ lim
t→∞

y(t)≤ y0 exp(|a|) .
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Proof. Since r > 0 (hence r ∈ R+) and a < 0, we see that

p(t) =
(−a)r

1+ µ(t)r
e⊖r(t, t0) is nonnegative. Since also p ∈

R, (7) implies

1+

∫ t

t0

p(τ)∆τ ≤ ep(t, t0)≤ exp

(

∫ t

t0

p(τ)∆τ

)

.

Thus multiplying by y0, taking the limit as t → ∞, and
applying Theorem 4, we may conclude

y0(1− a)≤ lim
t→∞

y(t)≤ y0e−a
,

or equivalently,

y0(1+ |a|)≤ lim
t→∞

y(t)≤ y0e|a|,

as was to be shown.

Figures 2 and 3 illustrate the similarities and
differences to discretizations (3) and (4) of the classical
Gompertz model.

In Figure 2, we see that for T= Z, the solution to (12)
with a = −0.3,r = 0.9,y0 = 0.8, and δ = 0.1 behaves
similarly as the solutions to (3) and (4). However, when
changing y0 = 0.2, a = −0.3, and δ = −0.1, (3)
converges to a positive population concave down, (12)
converges to a positive population concave up, and (4)
goes extinct.

The similarities of (4) and (12) do not hold, if we
choose y0 = 0.9 as shown in Figure 3: with a positive
growth parameter, equations (1), (12), and (4) behave
similarly while (3) goes extinct. Choosing a negative
growth parameter causes (3) to disappear after finitely
many steps because the logarithm becomes undefined.
The behavior of (4) remains mostly unchanged, but the
behavior of both (12) and (1) goes extinct.

As before, we obtain another form of the normalized
Gompertz model by considering (11) with K̃ = 0.

y∆ (t) =−r(t)y(t)Ly(t, t0;a), y(t0) = y0 > 0. (15)

Theorem 11. If −r, p ∈ R, a ∈R, y0 > 0, then the unique

solution to (15) is given by

y(t) = y0ep(t, t0), p(t) =−r(t)ae−r(t, t0). (16)

Example 5. If T=Z, r ∈R\{1}, a∈R, t0 = 0, and y0 > 0,
then by Theorem 11, the solution of (15) is

y(t) = y0ep(t,0) = y0

t−1

∏
k=0

(

1− ar(1− r)k
)

.

Lemma 3. Let T be unbounded above. If r > 0 with

−r ∈ R+, then

lim
t→∞

e−r(t, t0) = 0.

Fig. 2: Comparing previous discrete models (3) and (4) with the

generalized time scales model (12) on T= Z.

Proof. Since −r ∈ R+, we know that e−r(t, t0)≥ 0. Now
apply (6) with f = r to get

0 ≤ e−r(t, t0)≤ exp(−r(t − t0)).

The limit as t → ∞ of the right-hand side of this inequality
is zero, completing the proof.

Similarly to the proofs of Theorem 9 and Theorem 10,
we can prove the following theorems using Lemma 3.

Theorem 12. Let T be unbounded above, let 0< r <
1

µ(t)
for all t ∈ T, let a ≥ 0, and let p ∈ R+. If y is the solution

to (15) given by (16), then

y0(1− a)≤ lim
t→∞

y(t)≤ y0e−a
.

Corollary 3. Let T be unbounded above, let 0 < r <
1

µ(t)
for all t ∈ T, let 0 ≤ a < 1, and let p ∈ R+. If y is the

solution to (15) given by (16), then

0 < lim
t→∞

y(t)≤ y0e−a
.

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 1, 9-17 (2020) / www.naturalspublishing.com/Journals.asp 15

Fig. 3: Comparing previous discrete models (3) and (4) and the

previous continuous model (1) with the generalized time scales

model (12) on the time scale T= Z.

Theorem 13. Let T be unbounded above, let

0 < r <
1

µ(t)
, let a < 0, and let p ∈ R. If y is the solution

to (15) given by (16), then

y0(1+ |a|)≤ lim
t→∞

ep(t, t0)≤ y0e|a|.

Figure 4 compares (12) to (15). We see that the
solutions are similar under some parameters, but (15)
undergoes damped oscillation.

3.3 Data fitting

The authors in [19] used the solution to the continuous
Gompertz model

H(d) = γc exp
(

βce−αcd
)

, (17)

to fit data of a tree’s height H to its diameter d. Using
the same data as in [19], provided in [20], the nonlinear

Fig. 4: Comparing solutions of (12) to solutions of (15).

optimizer function “optim” in R’s “{stats}” package was
used with 50 randomly chosen initial conditions to obtain
the parameters αc,βc and γc that reduce the least-square
error for (17).

To fit the data to the introduced model for T = Z, the
tree heights and diameters in the data set were multiplied
by 10 to ensure that they take integer values. Using the
same method, parameters αz,βz and γz were calculated to
reduce the least square error of the data to the model (see
Example 2),

H(d) = γz

d

∏
j=1

[

1−
αzβz

(1+βz) j

]

. (18)

Not surprisingly, the values αc,βc,γc were not identical to
αz,βz,γz. The least square errors however were nearly the
same with 255,072 · 103 for the continuous model and
255,113 ·103 for the discrete model. This example shows
that not only can we obtain a closed form solution to our
proposed generalization of the Gompertz model, as in the
continuous case, which even exhibits the same limiting
behavior as the continuous solution, but the model also

c© 2020 NSP
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Fig. 5: Fitting data from [20] to the T= R and T= Z Gompertz

functions.

provides a similar fit to some data. This completes our
claim of having formulated a generalization of the
continuous Gompertz model on time scales.

4 Conclusion

We have presented generalizations of the classical
Gompertz differential equation to time scales with
time-dependent growth rate and carrying capacity. Results
for the long-time stability of the normalized models have
been obtained. We believe that the stability results can be
sharpened and formulated for the general model (9). An
analysis on precisely how K̃ affects the limiting behavior
of the solution of (9) is warranted. It appears that the limit
grows proportionally to K̃. This work lies the foundation
to investigate systems of competing species on time
scales, each following a Gompertz model [21], as well as
fractional Gompertz dynamic equations, see [1] and [10]
for discrete versions.
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