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Abstract: In this paper, we present an algorithm by using the Adomian Decomposition Method (ADM) in order to

solve the time-fractional Nagumo equation (TFNE) based upon the Liouville-Caputo type Caputo-Fabrizio fractional integral

(CFCFI) and the Liouville-Caputo type Atangana-Baleanu fractional integral (ABCFI). We compute the residual error function and

derive remarkably efficient results. By means of graphical representations, we show the behavior of the time-fractional Nagumo

equation (TFNE) for different values of the involved parameters α and µ in our present investigation.
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1 Introduction

In recent years, the theory of fractional calculus has been
used to find the solutions to the equations which model
real-world problems in mathematical, physical, chemical
and engineering sciences. There exist many phenomena
in several fields which are modeled by fractional
differential equations such as those occurring in fluid
mechanics ([1] and [2]), chemistry [3,4,5,6], biology [7],
viscoelasticity (see [8] and [9]), engineering, finance, and
physics [10,11,12]. This has motivated and encouraged
scientists and engineers to give more attention to the fact
that fractional derivatives do arise in physical problems.
In this regard, we may cite the works [13] and [14]. As a
result of the difficulty of finding an analytical solution for
the fractional differential equations analytically, the
approximate methods were used (see, for example, [15,
16,17,18,19,20,21,22,23,24]).

Here, in our present investigation, we begin by
considering the Nagumo equation given by

ψη = ψζζ +ψ(1−ψ)(ψ − µ) (0 ≦ µ < 1). (1)

The exact solution of (1) is known as a solitary wave in the
following form:

ψ(ζ ,η) = a+ b tanh
(

κ(ς −νη)
)

. (2)

There is a family of eight solutions of the form (1) that can
be obtained by Mathematica (Version 9) or otherwise. We
consider the case when

a =
1+ µ

2
, ν =

1+ µ√
2

, b =
1− µ

2
and κ =

µ − 1

2
√

2
. (3)

We mention that the solution (2) constrained by

ψ(−∞,η) = 1 and ψ(∞,η) = µ .

The Nagumo equation (1) has attracted the attention
of many researchers (see, for example, [25,26,27,28,
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29]). This equation has been applied as a model for the
transmission of nerve impulses [30,31]. The equation (1)
is also an important nonlinear reaction-diffusion equation
and has been used in biology and in the areas of
population genetics and circuit theory [32].

Adomian derived a new technique, which is called the
Adomian Decomposition Method (ADM), for computing
the solutions of linear and nonlinear equations (see, for
details, [33] and [35]). Various authors have studied the
convergence of Adomian’s method [36,37,38,39]. This
method is known to be effective and powerful and it can
be applied to ordinary and partial differential equations
and integral equations. (see, for example, [40,41,42,43,
44,45,46,47,48]).

Recently, Caputo and Fabrizio proposed and
developed a (presumably new) concept of fractional
differentiation using the exponential decay as its kernel
instead of the power law which occurs in the
Liouville-Caputo fractional derivative (see [49] and [50]).
On the other hand, Atangana and Baleanu (ABC)
proposed a fractional derivative with non-local kernel. It
is based on the general Mittag-Leffler function Eα ,β (z). A
characteristic of this operator is that it describes many
complex physical issues which follow at the same time
the power and the exponential decay laws (see, for
example, [51] to [69]). This work is organized as follows.
Section 2 is devoted to the essential ideas of the fractional
calculus. Section 3 concentrates upon the background and
preliminaries of the standard ADM. In Section 4, we
apply the ADM based upon on the Liouville-Caputo type
Caputo-Fabrizio and the Liouville-Caputo type
Atangana-Baleanu fractional integrals for modeling and
solving the time-fractional Nagumo equation.
Conclusions are presented in the last section (Section 5).

2 Operators of Fractional Calculus

In this section, we give some basic definitions and
properties of fractional calculus theory [1,2,9].

Definition 1. If ψ(η) ∈ L1(a,b), the set of all integrable
functions on (a,b), and α > 0, then the Riemann-Liouville
fractional integral of order α, denoted by Jα

a+ is defined by

Jα
a+ψ(η) =

1

Γ (α)

∫ η

a
(η − ς)α−1ψ(ς)dς . (4)

Definition 2. For α > 0, the Liouville-Caputo fractional
derivative of order α, denoted by LCDα

a+, is defined by

LC
D

α
a+ψ(η) =

1

Γ (n−α)

∫ η

a
(η − ς)n−α−1

·Dnψ(ς)dς (5)

(n− 1 < α < n; n ∈ N= {1,2,3, · · ·}),
so that

LC
D

α
a+ = Dα (α ∈ N), (6)

where D = d
dη . The Liouville-Caputo fractional derivative

on the whole space R is defined below.

Definition 3. For α > 0, the Liouville-Caputo fractional
derivative of order α on the whole space, denoted by
LCDα

a+, is defined by

LC
D

α
a+ψ(ζ ) =

1

Γ (n−α)

∫ ζ

−∞
(ζ − ς)n−α−1

·Dnψ(ς)dς (7)

(n− 1 < α < n; n ∈ N).

We next introduce the Caputo-Fabrizio-Caputo
fractional integral operator of order α > 0 (see [50]).

Definition 4. The Caputo-Fabrizio-Caputo derivative
operator (CFC) with respect to η , denoted by CFC

0Dα
η , is

defined by

CFC
0 D

α
η ψ(η) =

M(α)

n−α

∫ η

0
exp

(

−α(η − ς)

n−α

)

·Dnψ(ς)dς (8)

(n− 1 < α < n; n ∈ N),

where M(α) is a normalization function such that

M(0) = M(1) = 1.

Definition 5. Losada and Nieto [70] proposed the
fractional integral according to the CFCI as follows:

CFCFIJα
0 ψ(η) =

2(1−α)

(2−α)M (α)
ψ(η)

+
2α

(2−α)M (α)

∫ η

0
ψ(ς)dς , (9)

where

M (α) =
2

2−α
. (10)

The Atangana-Baleanu-Caputo fractional derivative
(ABC) of order α > 0 is defined as follows (see [71]).

Definition 6.The Atangana-Baleanu-Caputo fractional
derivative (ABC) of order α > 0 is defined by

ABC
0 D

α
t ψ(η) =

B(α)

n−α

∫ η

0
Eα

(

−α
(η − ς)α

n−α

)

·Dnψ(ς)dς (11)

(n− 1 < α < n; n ∈ N),

where B(α) is a normalization function and

B(0) = B(1) = 1.

Definition 7. The Atangana-Baleanu-Caputo fractional
integral corresponding to ABC is given by

ABCFIJα
0 ψ(η) =

1−α

B(α)
ψ(η)

+
α

B(α)Γ (α)

∫ η

0
(η − ς)α−1 ψ(ς)dς .

(12)
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3 Preliminary Description of the Adomian

Decomposition Method (ADM)

In this section, we introduce the preliminaries of the
Adomian Decomposition Method (ADM) (see [33] and
[34]) by considering the following nonlinear partial
differential equation:

L
(

ψ(ζ ,η)
)

+R
(

ψ(ζ ,η)
)

+N
(

ψ(ζ ,η)
)

= 0, (13)

together with the initial condition given by

ψ(ζ ,0) = φ(ζ ), (14)

where N denotes a nonlinear operator, R is the remaining
linear operator, and L is the highest-order derivative which
is assumed to be invertible. By operating on both sides of
(13) by the inverse operator L−1, we obtain

ψ(ζ ,η)

= φ(ζ )−L−1

(

R
(

ψ(ζ ,η)
)

+N
(

ψ(ζ ,η)
)

)

. (15)

Let

ψ(ζ ,η) =
∞

∑
m=0

ψm(ζ ,η) (16)

and

N(ψ) =
∞

∑
m=0

χm, (17)

where χm are the Adomian polynomials which depend
upon ψ . In view of the equations (16) to (17), the
equation (15) takes the following form:

∞

∑
m=0

ψm(ζ ,η)

= φ(ζ )−L−1

(

R
(

ψ(ζ ,η)
)

+
∞

∑
m=0

χm

(

ψ(ζ ,η)
)

)

.

(18)

We now set
ψ0(ζ ,η) = φ(ζ ) (19)

and

ψm+1(ζ ,η)

=−L−1

(

R
(

ψ(ζ ,η)
)

+
∞

∑
m=0

χm

(

ψ(ζ ,η)
)

)

(20)

(m ∈ N0 = N∪{0}),
where

χm

(

ψ(ζ ,η)
)

=

[

1

m!

dm

dλ m
N

(

∞

∑
m=0

ψm(ζ ,η)λ
m

)]

λ=0

.

(21)

Hence, clearly, the equations (19) to (20) and (21) lead to
the following recurrence relations:

ψ0(ζ ,0) = φ(ζ ) (22)

and

ψm+1(ζ ,η)

=−L−1

(

R
(

ψ(ζ ,η)
)

+Am

(

ψ(ζ ,η)
)

)

(23)

The solution ψ(ζ ,η) can thus be approximated by the
following truncated series:

ϕk(ζ ,η) =
k−1

∑
m=0

ψm(ζ ,η) and lim
k→∞

ϕk = ψ(ζ ,η). (24)

4 The Time-Fractional Nagumo Equation

In this section, we apply the ADM to find the
approximation solutions for the time-fractional Nagumo
equation. To obtain this equation, we replace ut by uα

t ,
where n− 1 < α ≦ n (n ∈ N), in the Nagumo equation.
We thus obtain the time-fractional Nagumo equation as
follows:

ψα
η = ψζζ +ψ(1−ψ)(ψ − µ) (0 < α ≦ 1). (25)

If we operate upon each member of (25) by (·)Jα
η , where

(·)Jα
η =(CFCI) Jα

η ,

or
(·)Jα

η =(ABCI) Jα
η ,

we find that

ψ(ζ ,η) = ψ(ζ ,0)+(·) Jα
η

(

ψζζ − µψ(ζ ,η)

+ (1+ µ)[ψ(ζ ,η)]2− [ψ(ζ ,η)]3
)

. (26)

Now the ADM solutions and the nonlinear functions
N
(

ψ(ζ ,η)
)

can be presented as an infinite series given
by

ψ(ζ ,η) = ψ0(ζ ,η)+
∞

∑
n=1

ψn(ζ ,η), (27)

and

N
(

ψ(ζ ,η)
)

= (1+ µ)[ψ(ζ ,η)]2 − [ψ(ζ ,η)]3

=
∞

∑
n=0

χn, (28)

where

χn =
1

n!

[

dn

dλ n
N

(

n

∑
k=0

λ kψk(ζ ,η)

)]

λ=0

, (29)
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where χn are called the Adomian polynomials.
Furthermore, the components ψn(ζ ,η) of the solutions
ψ(ζ ,η) will be determined by the following recurrence
relations:

ψ0(ζ ,η) = ψ(ζ ,0) (30)

and

ψn+1(ζ ,η)

=(·) Jα
η

(

(

ψn(ζ ,η)
)

ζζ
− µψn(ζ ,η)+ χn

)

. (31)

In view of (21) and using the software Mathematica

(Version 9), we evaluate the Adomian polynomials χn as
follows:

χ0 = (1+ µ)[ψ0(ζ ,η)]
2 − [ψ0(ζ ,η)]

3
,

χ1 = 2(1+ µ)ψ0(ζ ,η)ψ1(ζ ,η)− 3[ψ0(ζ ,η))]
2ψ1(ζ ,η),

... (32)

Now, in the first iteration, we have

ψ
(CFC)
1 (ζ ,η) =

2(1−α)

(2−α)M (α)

(

ψ0(ζ ,η)
)

ζ ζ
−µ ψ0(ζ ,η)+χ0

+
2α

(2−α)M (α)

∫ η

0

[

(

ψ0(ζ ,ς)
)

ζ ζ
−µ ψ0(ζ ,ς)+χ0

]

dς

(33)

and

ψ
(ABC)
1 (ζ ,η) =

1−α

B(α)

(

ψ0(ζ ,η)
)

ζ ζ
−µ ψ0(ζ ,η)+χ0

+
α

B(α)Γ (α)

∫ η

0

[

(η − ς)α−1
(

ψ0(ζ ,ς)
)

ζ ζ
−µ ψ0(ζ ,ς)+χ0

]

dς . (34)

The initial condition is then taken by setting η = 0 in (2).
We thus find that

ψ(ζ ,0) =
1

2

(

1+ µ − (µ − 1) tanh

[

(µ − 1)ζ

2
√

2

])

. (35)

In view of (30) and (33) to (35), we obtain the first three
approximations as follows:

ψ
(CFC)
1 (ζ ,η) =

α(η − 1)+ 1

4(2−α)µ
(µ − 1)2(µ + 1)

· sech2

(

(µ − 1)ζ

2
√

2

)

, (36)

ψ
(CFC)
2 (ζ ,η) =

α2
(

η2 −4η +2
)

+4α(η −1)+2

(α −2)2[M(α)]2

· (µ −1)3(µ +1)2 sinh4

(

(µ −1)ζ

2
√

2

)

csch3

(

(µ −1)ζ√
2

)

, (37)
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Fig. 1: The plot of the first 4 terms of the CFC and ABC

solutions with µ = 0.8 and η = 7.0: (a) α = 0.3; (b) α = 0.5;

(c) α = 0.9; (d) α = 0.99. Blue color: (CFC); Red color:

(ABC).

ψ
(ABC)
1 (ζ ,η) =

(−αΓ (α)+Γ (α)+ηα)

8B(α)Γ (α)

· (µ − 1)2(µ + 1) sech2

(

(µ − 1)ζ

2
√

2

)

(38)
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Fig. 2: The plot of the first 4 terms of the CFC and ABC

solutions with α = 0.5 and η = 7.0: (a) CFC; (b) ABC. Blue

color: (µ = 0.5); Red color: (µ = 0.7); Green color: (µ = 0.9).

and

ψ
(ABC)
2 (ζ ,η) =

2−2α−1
(√

π αη2α +4α (α −1)Γ
(

α + 1
2

)

[(α −1)Γ (α)−2ηα ]
)

[B(α)]2Γ (α)Γ
(

α + 1
2

)

· (µ −1)3(µ +1)2 sinh4

(

(µ −1)ζ

2
√

2

)

csch3

(

(µ −1)ζ√
2

)

. (39)

The following components:

ψ
(CFC)
3 (ζ ,η), ψ

(CFC)
4 (ζ ,η), ψ

(ABC)
3 (ζ ,η), ψ

(ABC)
4 (ζ ,η), · · ·

were also determined and will be used, but (for the sake
of brevity) are not listed here. The general form of the
approximations is given by (27), that is, by

ψ(CFC)(ζ ,η) = ψ
(CFC)
0 (ζ ,η)+ψ

(CFC)
1 (ζ ,η)

+ψ
(CFC)
2 (ζ ,η)+ · · · (40)

Fig. 3: The plotting of the REF for the first 4 terms of the CFC

and ABC solutions with α = 0.6 and µ = 0.98: (a) CFC; (b)

ABC.

and

ψ(ABC)(ζ ,η) = ψ
(ABC)
0 (ζ ,η)+ψ

(ABC)
1 (ζ ,η)

+ψ
(ABC)
2 (ζ ,η)+ · · · . (41)

In Figure 1, we have shown the first 4 terms of the CFC
and ABC solutions for α = 0.3,0.5,0.9 and α = 0.99 with
µ = 0.8,η = 7.0 in (a) to (d), respectively. In this figure,
as α → 1, the CFC and ABC solutions coincide with each
other. These solutions agree with the known LC solutions
in [72].

In Figure 2, we have shown the effect of the parameter
µ in the CFC and ABC solutions with α = 0.3 and η =
7.0. The solutions still between 1 and µ as we mentioned
in the introduction. Now, for further illustrating our results,
we present the residual error function [72]. The REF is
given by

REF(·) :=
n

∑
j=0

ψ j,η −ψ j,ζζ −ψ j(1−ψ j)(ψ j − µ). (42)

In Figure 3, we have plotted the REF for the CFC and
ABC solutions with n = 3, α = 0.6 and µ = 0.98. It can
be seen from Figure 3 that the order of the REF is 10−5 for
the proposed fractional integrals. By increasing the terms
of the CFC and ABC solutions, we get accurate solutions.
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5 Perspective

In this paper, the Adomian Decomposition Method
(ADM) has been successfully applied efficiently based
upon the Caputo-Fabrizio and the Atangana-Baleanu
fractional integrals in order to obtain the approximate
solutions of the time-fractional Nagumo equation. We
have studied the residual error function (REF) that applies
to the time-fractional Nagumo equation. The residual
error function has been found to be remarkably
satisfactory. Furthermore, the results derived by us
demonstrate that the ADM is sufficiently accurate for
solving the time-fractional Nagumo equation. We can get
any desired accuracy by appropriately increasing the
number of terms. In this paper, we have fruitfully used
Mathematica (Version 9) in all of our calculations.
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[52] J. F. Gómez-Aguilar, Irving-Mullineux oscillator via

fractional derivatives with Mittag-Leffler kernel, Chaos

Solitons Fractals 95 (2017), 179–186.

[53] I. Koca and A. Atangana, Solutions of Cattaneo-Hristov

model of elastic heat diffusion with Caputo-Fabrizio and

Atangana-Baleanu fractional derivatives, Thermal Sci. 21

(2017), 2299–2305.

[54] S. Manjarekar and A. P. Bhadane, Generalized Elzaki-

Tarig transformation and its applications to new fractional

derivative with non singular kernel, Progr. Fract. Differ. Appl.

3 (2017), 227–232.

[55] A. Khan, K. A. Abro, A. Tassaddiq and I. Khan,

Atangana-Baleanu and Caputo-Fabrizio analysis of fractional

derivatives for heat and mass transfer of second grade fluids

over a vertical plate: A comparative study, Entropy 297 (8)

(2017), 1–12.

[56] I. Koca, Analysis of Rubella disease model with non-local

and non-singular fractional derivatives, Internat. J. Optim.

Control: Theory Appl. 8 (2018), 17–25.

[57] A. Coronel-Escamilla, J. F. Gómez-Aguilar, L. Torres and R.
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