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Abstract: The present paper addresses the system of nonlinear fractional differential systems involving Riemann-Liouville and
Hadamard derivatives with different types of initial value conditions. However, these initial value conditions are not equivalent with
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1 Introduction

Fractional calculus, including fractional integral and fractional derivative, has recently become a topic of interest because
of its wide applications in various areas of science and engineering. These phenomena in science and engineering
problems can be effectively described by models using mathematical tools from fractional calculus [1,2,3,4,6,7,8,9]. It
has been shown that the behaviors of many systems can be described using fractional differential systems [11,12,13,14]
for instance, modeling anomalous diffusion [15], time dependent materials and process with long range
dependence [16], dielectric relaxation phenomena in polymeric materials [17], transport of passive tracers carried by
fluid flow in a porous medium in groundwater hydrology [18], viscoelastic behavior [19], transport dynamics in systems
governed by anomalous diffusion [20], self-similar processes such as protein dynamics [21], long-time memory in
financial time series [22] using fractional Langevin equations [23] etc. Recently, fractional order models of happiness
[24] and love [25] have been derived. The authors claim that these models provide a better representation than the
integer-order dynamical systems. In recent years, the study of fractional derivatives has gained a significant development,
but the development of the theory of fractional dynamics is still poor because fractional derivative has weak singularity
and does not obey the semigroup property. Thus the well-established results for ordinary dynamical system cannot
always be applied in the same way [26,27,28,29].

The solution to a fractional differential system cannot define a dynamical system in the sense of semigroup
property because of the history memory induced by the weakly singular kernel. However, we can still explore it in
a similar manner. For example, we can define the Lyapunov exponents for the fractional differential system though
borrowing ideas from the ordinary differential system [27]. Recently, Li. et al. [30] addressed fractional dynamical
system with Caputo derivative and established some results. Motivated by that work, we pose the following question:
Can we establish some results of fractional dynamical system with Riemann-Liouville and/or Hadamard derivatives with
different initial conditions? The present paper presents an appropriate answer.
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The paper is outlined as follows: Section 2, comprises some definitions and previous results that will be used later
on. In Section 3, linearization theorems of the nonlinear fractional differential systems are constructed. Conclusion is
presented in the last section.

2 Preliminaries

In this section, we recall some definitions and results from the theory of ordinary dynamical system [31] and fractional
calculus [1,2,3,4,6,7,8,9,10] which will be frequently used in our main analysis.

First, R denotes the set of real numbers, R™ represents the set of non negative real numbers, R" is the real
n—dimensional Euclidean space, Z indicates the set of integer numbers, Z* denotes the set of non negative integer
numbers, N stands for the set of natural numbers, and C is the set of complex numbers.

Second, we recall the relationship between a vector field and a flow of diffeomorphisms [32]. We restrict the
attention to Euclidean space 2 C R™.

There are several definitions of fractional integrals and derivatives, such as Riemann-Liouville and Hadamard
integrals; Griinwald-Letnikov, Riemann-Liouville, Caputo, Riesz, and Hadamard derivatives, etc. However, they are not
equivalent with each other. In this paper, we only focus on two definitions i.e. Riemann-Liouville and Hadamard
derivatives, which are mostly used in our analysis. Since Riesz derivative is a linear combination of the left
Riemann-Liouville derivative and the right one, it is unnecessary to deal with the Riesz case.

Definition 1. The Riemann-Liouville integral of function f(t) with order a > 0 is defined as

- 1 ! _1
WD () = Fgy [ =9 F0)ds, 1> M
Definition 2. The Riemann-Liouville derivative of function f(t) with order o > 0 is defined as
D (1) = st [ (=5 f(s)a @
rRLDy T am s s)ds,

wheret >ty, andn—1<a <ncZ™.

Definition 3. The Caputo derivative of function f(t) with order o, > 0 is defined as

] 1
cDy f(t) = m[()(t—s)“"f(")(s)ds, 1> 1o, (3)

wheren—1<a<neZr.
Proposition 1. From the above-mentioned definition and integration by parts, we obtain
i| tipij

m
P q _ p+q q—1J
LD, (reDf X (1)) = reDfx(t) — j; {RLDIUJ =ty T(1—p—j)

r—a-J
=ty T(1—q—j)

-

Il
—_

bl (D () = Do) - . [wDf]

J

wheren—1 <p <n,m—1 <gq< m, m, neN,so gD}, (RLDZ)Jx(t)) , RLDP (RLD,’;Jx(t)) , and RLD,’(’;;qx(t) are not
generally equal to each other.

Proposition 2. Suppose that x(t) satisfies the definitions of Riemann -Liouville derivative and Caputo derivative with
order a, n—1 < o0 < n € Z", then they have the following connection

CDg,,x(t) = RLD%,,)C(I) — Z T (t — to)jia, 4)

j=0 (j—(X+1)

cDf x(t) = rLD (x(t) holds if and only if X' (to) = x"(to) = - = x" (1) = 0.
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Remark. Because of Propositions 1 and 2, the Riemann-Liouville and the Caputo fractional differential operators
do not satisfy the classical semigroup property. In most situations, #( is always set to 0. We will not specifically state this
if no confusion appears.

Definition 4. The Hadamard fractional integral of order oo € R" of a function f(x), for all x > a is defined as

X

D%/ (x) = — /X(l" )ailf(mdt >a>0 5)
HYq x x_F((X) , " t,x a -~ V.
Definition 5. The Hadamard derivative of order o € [n— 1,n), n € Z, of function f(x) is given as follows

W% f(x) = 8" (4D, 1" f () ©

where, x > a, 5:)(%, n—1<a<necZ".
Remark. The kernel in Riemann-Liouville integral has the form (x —7) whenever Hadamard integral has the form of In 7.

%, while the Hadamard derivative has (xi)" operator whose

Second, the Riemann-Liouville derivative has the operator T

construction is well suited to the case of the half-axis.

Theorem 1. If n—1<a<nne N, cD§x(t) > ¢D§,y(t), andx*(0) > y*(0), (k= 0,1,--- ,n—1), thenx(t) > y(t).
FParallel , ifn—1 < a <n,n€N, peD§ x(t) > rLDE,y(t), and RLD&;k’Ix(t)h:o > RLD&;"*I)}(;)h:O, (k=0,1,---,n—
1), then x(t) > y(t).

Proof. The proof of this theorem can be referred to [33].

Definition 6. The Mittag -Leffler function of two parameters is defined by

=) Zk

Eqp(2) :kgbm, a,B >0. (7)

Now, we consider the initial value problems (IVPs) of FDEs are in Riemann-Liouville derivative sense

RLD&ty(t) = f(y)7 1>0, ®)
REDG Y (t) ‘[:O =0,
or equivalently,
{ rLDEY (1) = f(), 1> 0, ©
. 1— "
lim, o+ [t a)’(t)},:() = %a
and in Hadamard derivative sense
D y(1) =f0), t>a>0,
-1 (10)
HD ¢ y(t)’,:a = Ya,
or equivalently,
{HDa+y(t) =f(),t>a>0, an
- — Ja
(Inf) “y() iy Tl

respectively, where 0 < a < 1, £(y) = (i(y), -, fu ()T, y € R". We always assume that they have unique solutions
respectively.

Lemma 1. /4] If f(y) is continuous, the IVP (8) is equivalent to the following nonlinear Volterra integral equation of

the second kind
t

(0 = Pt + e 0/ (- &) F(E)ae. (12

In other words, every solution of the Volterra integral equation (12) is also the solution of IVP (8) and vise versa.
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Lemma 2. [4,5] The initial value problem

{RfDog’u(t) = f(t), 1 >0, (13)
t u(t)}lzo = uy,
has following integral form t
u(r) = ur®”" +ﬁb/(t—f)“'f(f)dn (14)
where 0 < ot < 1 and g € C([0,T] x R).
Lemma 3. [4,5] The initial value problem
{RLD&,M(I) = f(t,u), (15)
u(a) =b,t>a>0,
has unique solution in C(R*)NL} _(R") given by
17 a-1 1! 1 a-1
)= |~ Fre 0/(a ~0* ()07 | o+ O/(t — )% f(z,u(t))d, (16)

where 0 < a < 1, f(t,u) € C(RT)NL} (RT) for all (a,b) € RT x R.

Lemma 4. [4,10] Let G be an open setinR and let f : (a,b] x G — R be a function such that f(y) € Cyila,b], 0<y <1,
foranyy € G, y(x) € Ci_q,m[a,b]. Then the IVP (10) is equivalent to the following nonlinear integral equation

0= G b | (n )" @)%, a7

a

Lemma 5. [9] The initial value problem

{HD2‘+u(t)f(t),a<t§b (18)

M(l‘o) = uy, a<ty<bh,
has unique solution. Then

0= (= [ (02)" 02 ) (02)" 7 (02) "  02) s

where 0 < o0 < 1 and u(t) € Cy_q mla,b).

3 The linerarization theorems

Some authors [34,35,36,37] investigated the linearization theorems of dynamical systems with integer orders. However,
this section addresses the linearization theorems of fractional dynamical system defined by fractional differential
equations with Riemann-Liouville and Hadamard derivatives.

Consider the homogenous linear system of FDEs in Riemann-Liouville derivative sense

rLDG, ¥ (1) = Ay(t), t >0, 0
D0 = o,
and in Hadamard derivative sense
uD% y(1) = Ay(t), t >a>0,
ar’ 21
HDa+ y(t)|,:a = Ya;

where A is an n x n constant matrix, 0 < a < 1 and y(r) € R".
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Definition 7. The autonomous systems (20) and (21) are said to be (i) stable if and only if for any yy , y,. Then, there
exists € > 0 such that ||y(t)|| < € for t > 0 respectively and (ii) asymprotically stable if and only if lim,_, ||y(¢)|| = O.

Definition 8. If all the eigenvalues A.(A) of A satisfy: | A(A)| # 0 and |arg(A(A))| # %E, the origin O of the autonomous
systems (20) and (21) are called a hyperbolic equilibrium point.

Now we consider the autonomous nonlinear differential system with Riemann-Liouville derivative

RLDG, Y (1) = f(1)), t>0, o)
wDETH0)| = o,
and Hadamard derivative
HDZ, y(1) = f(1)), t>a>0,
a—1 (23)
HDa+ y(t)’t:a = Ya,

where 0 < o < 1 and f(y) is continuous function.

Definition 9. The y., = 0 is said to be equilibrium point of fractional differential systems (22) and (23) if and only if
J(veq) =0.

Definition 10. Suppose that y., = 0 is an equilibrium points of the systems (22) and (23) and all the eigenvalues
A(Df(veq)) of the linearized matrix Df (yeq) at the equilibrium point yq satisfy: |A(Df (veq))| # 0 and |A(Df(yeq))| #

T2, then we call a hyperbolic equilibrium point.

Definition 11.

(1) The equilibrium pointsy.q, =0 of systems (22) and (23) are said to be: (i) locally stable if for all € > 0, there exists
a & >0 such that Hy(t) fyeqH < g holds forall yy € {z: Hz—yeqH < 0} and for allt > 0andt > a respectively, (ii)
locally asymptotically stable if the equilibrium point is locally stable and imy_, ;o Y(t) = Yeq.

(2) Consider y(t) and (t) are the solutions of systems (22) and (23) with initial values yo(t) and $o(t) respectively.
The solution y(t) is said to be: (i) locally stable if for all € > 0, there exist a § > 0 such that ||y(t) —3(t)| < €
holds for all ||y(t) —5(t)|| < & and for all t > 0 and t > a, respectively; (ii) locally asymptotically stable if the
equilibrium point is locally stable and lim;_, .. (y(t) —(¢)) =0.

Suppose f(x) and g(y) are continuous vector fields defined on U,V C R" and generate flows y; s : U — U,y 4 :
V — V, respectively.

Definition 12. If there is a homeomorphism h:U —V, satisfying: ho y, r(x) = Y goh(x), x € 8(xo,r) CU, xo €U,
f(x) and g(y) are locally topologically equivalent. If the above relation holds in the whole space U, then they are
globally topologically equivalent.

Next, we give the linearization theorems of fractional differential equation with Riemann-Liouville and Hadamard
derivatives. The equilibrium y,, is always in the origin.

Theorem 2. Ifthe origin O is a hyperbolic equilibrium point of Riemann-Liouville fractional differential system (22),
vector field f(y) is topologically equivalent with its linearization vector fieldV f(0)y in the neighbourhood §(0) of the
origin O.

Proof. Let A,A2,---,A, be the eigenvalues of Vf(0), Jarg(A)| > %, i = 1,2,---,n,
larg(A;)| < %F, i = m + 1,n; +2,---,n. Let n = n; + ny, then by non singular linear transformation 7' :
R" = R x R™, y(t) — g(t) = (g1(7),82(7)), (g1(t) € R™, go(r) € R™), fractional differential system (22) can be

transformed into the following system

rLDG,81(t) = Argi(t) + Fi(g1(1),82(2)),
d (24)
RLDG,82(t) = Aoga(t) + Fa(81(1),82(1)),
where the eigenvalues of Aj,A; are 1,42, , Ay, and Ay 41,44, 42, , Ay, respectively. Moreover, ||Eq «(A1)| = a,

(|Ea,a(A2))~" = b. Without loss of generality, suppose b < 1, Fy, F> = o(||g1 (t)|| + [|g2(1) ) as (g1(¢), g2(¢)) — 0.
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The solution y;(g) = (g1(¢),g2(7)) of (24) can be written as

g1(t) = gl* 'Eqa(A1t%) + /(l — )% ' Eq o(A1(t—1)%) Fi(g1(1),82(7)) dt

= gt* "Eqa(A1t%) 4+ Gi(t,8.89),

g2(1) = 85 Eq.a(Axt®) + /(t — 1) Eqa(A2(t —7)%) F2(81(7),82(7)) dt

= g9t 'Eq o (A2t%) + Ga(1,81,83).

Our theorem refers only to the neighbourhood 6(0) of the origin O, when (gl,g2 ¢ 6(0), we set Fi(g9,89) =0,
F(gY,89) =0, consequently, G,G> =0, (g%, 89) ¢ 8(0). Thus omit the case when (g9,9) € 5(0)

Consider the homogenous linear system of (24)

{RLD&Wl(f) = Aywi(t),

RLDE w2 (t) = Agwa (1), (25)

where w(t) = (w(t),wa2(2)) € R™ x R"2, wy(r) € R™, wy(r) € R™. The solution ¢, (w)(¢) = (w;(t),wa(t)) of (25) can
be expressed as

Wl(t) = WltaflEa a(Alta), (26)
wa(1) = wit® ' Eq o(A2t%),

If we can find a homeomorphism /2 : R” — R”, satisfying ho y; = @, oh, then the theorem is true. For this, we divide
the proof into three steps.

Step 1: Fort =1, we find a continuous map #; : R* — R” satisfying
Os0@ 0hy =hjo6;0y, s€(0,1). 27

Suppose that /; which satisfies (27) is expressed by the following coordinate transformation

Wi =U(g1.82), wo = V(s1.8)- (28)
By (27) and (28), we have
esEa,Ot(Al)U(g(l)vg(Z)) = U(e (glEO! a(A1)+G1(1 glagZ)) 0s (g(Z)EOt,O!(AZ)+G2(]7g(1)7g(2))))5 (29)
0,Eq.a(A2)V(g],83) = V(6s(8VEa,a(A1) +Gi(1,87.89)). 05 (83Ea.a(A2) + Ga(1,8), 85 30
s a,(x( 2) (81782)— (s(gl a,(x( 1)+ 1( ,81,82))5 s(gz a,a( 2) + 2( aglng)))v (30)
So V satisfies the following equation
V(1.82) = (6:) ' (Ea.a(A2)) 'V (6:(8Eqar(A1) + G1(1,8Y,83)), 65(82Ew.a(A2) + Go(1,87,83))), G
Next, we use successive approximations to obtain solution to (31). Put
{%@%%zﬁ, (32)
Vi(81.83) = (6,) " (Ea,a(A2)) Vi1 (6:(8}Eca(A1) + Gi1(1,8,89)), 65(89E.a(A2) + Ga(1, 87, 89)));

fork=1,2,---. We get

Vi(g1,83) = (6,) " (Eqa(A2)) ' (65(89Ea.(A2) + Ga(1,87,83))),
= 89+ (En.a(A2)) 'Ga(1,47.89).

Let 8 > 0 enough small, then it is easily known that

r=>b]6]~" (2max{a]|6],2¢6]|,||Ea.c(42)[|16]]})° < 1. (33)
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Since G, =0 Hg, H + ||g(2)H as gl ,gz — 0, there exists a constant L > 0 satisfying

Vi (58,23 — Vo(sD. 83| < Zr (||&9]| + [1s3])° (34

Suppose ||Vi(g7,83) — Vi—1(g7. 85 || <er(||g(1)|| +Hg(2)||) . One has

HVk+1(g(1)782 ghgz H = || Eococ AZ))flvk(es(glEa,oc(Al)+Gl(1,8(1),88))795-(8(2)Eoc,oc(A2)
+G2(1781,gz)))*(9)71(Ea oc(Az))fle 1(9 x (€1Ea,a(A1)
+Gi(1,87,89)),65(83E 0.0 (A2) + Ga(1,87,89)) )|

[Vir1(89.89) = Vi(g?, 8| < I1(Eaa(A)) " 101" L* (|| 6(8VE w0 (A1) + Gi(1,89,89)
+0,(89E 0. (A2) + Ga(1,80,89)))°
< LB |10] 7 (10| (a0 + [|€YEwa (A > [|83]]) +2¢(][2]] + [l2]) H9||
< LAb)|0] " (2max{a 6], 2¢ (|61, IEa.a (421 101}) (|0 + [|3]))°
< LA (9] + 1)
where b < ||6]] < é

So Vi (g%, ¢3) uniformly converges to a continuous function V (g%, ¢9) and we get

V(g7.83) = Vo(s.89) ZVk 83,83) —Vie1(g9.89)]

=gtV (gl,go)
where V* (g1, g3) = o((|s} | + l&3]))-
Furthermore, U satisfies the following equation
6sEa,a(A1)U(81,83) = U(6s(81Ea,a(A1) +Gi(1,87,83)), 6s(83Ea.a(A2) + Ga(1,87,89))),
= U(ul,uz), (35)

and
{ul = 6,(8)Ea,a(A1) +Gi(1,8),83)), (36)
Uy = 95-(g8Ea,a(Az) + Gz(lvg?vg(z)))-

We can prove that there exists the inverse transformation of (36), namely

{g(‘) = (65) N (Eq,a(A1)) " ur + Pi((65) " ur, (65) " 'ua), (37)
80 = (65) " (Eq,a(A2)) 'ua+ Po((65) "y, (85) 'un).

So, function U satisfies
U(ur,u2) = O5Eq,a(AD)U((Ea,a(A1)) 71 (65) ur + Pr((65) w1, (60)~'ua), (Eqr(A2)) " (65) ' ua
+Py((6,) " ur, (65)”w2)). (38)
By successive approximation similar to function V, we obtain the solution of U (g(l)7 g(z)) satisfying
U(stg3) = 81 +U"(s1,89), (39)
where U* (g7, 83) = o([|7| +[|g2))-

It b > 3, namely [|(Eq,a(A1))] = | (Ea.a(A2))];
the solution of (30). If b > %, the process is similar to b < é As a result we get a continuous map h; satisfying
h1(0,0) = (0,0), and when (g9,89) ¢ 5(0), 11 (g9,89) = (g9, 83). Moreover, the uniqueness is easily proved.

Step 2: h; is a homeomorphism, Based on step 1, there also exists a continuous map h, satisfying sy 0 650 ¢ =
0,0 yi0 hs.
hiohyoOs0@Q =hjo60y ohy =050y 0hjohy, (40)
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Os0yi10hyohy =hyo8s0y10hy =hyohyobs0y.

By the uniqueness of 4; and h,, so (hl) = hy, and (hl) is continuous. Therefore, i; is a homeomorphism.

Step 3: Let

h= /(psoh] o (l//])flds.

Fort € R, similar to Step 2, we can prove 4 is a homeomorphism.

141
@oboh= /¢x09zO(Ps—tOh1°(stt)7]ds

t
141

= /q)sohlo(ll’s)ilOll/toeto‘l/sfto(ll/sft)ilds
!
14t

—/(Psohlo(‘l’s) dSOV’t°9t+/‘PsOh1°(‘I’s) dsoy; 06,

—/(Psohlo(‘l’s) dSOV’t°9t+/(Ps+1°hlo(V’s+l) dsoy; 06,

\_

@sohio () dso%09r+/fps09 oprohio(y) o (6) " o(y) dsoyiob,

S v~

@sohyo (l//s)*ldso ;0 6; +/(p5.oh] o (l//s)*ldso ;0 6;
0

@s0ho(yy) 'dsoy; 06, =hoy; o6,

Thus, the conclusion is true.
Remark.

(i) The above theorem is the fractional form of the Hartman theorem [34,35,36,37].

(41)

(42)

(i) The condition hyperbolic equilibrium is necessary. If the origin O is not a hyperbolic equilibrium then the

conclusion does not hold.

Lemma 6. Ifn—1<a <n€N, yDgx(t) >4 D&, y(t), and pDF;* 'x(t)|,_, > uDS " 'y(t)| _, fork=0,1,--

then x(t) > y(t).
Proof. Setting yDg x(t) = o(t) +1 Dg,y(t), and taking the Mellin transform [4] on both sides, one has
(=8)* (Ax) (s) = (A O) () + (=9)* (AY)(s)
dividing by (—s)“ taking the inverse Mellin transform in both sides, one can get
x(1) = y(t) + " (=) (0)(5))

The right hand side of the above equality is positive. This completes the proof.

7”715

Theorem 3. [fthe origin O is a hyperbolic equilibrium point of Hadamard fractional differential system (23), then
vector field f(y) is topologically equivalent with its linearization vector field V f(y) in the neighbourhood 8(0) of the

origin O.
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Proof. Fractional differential system (23) can be transformed into the following system

oD% u(t) = Aquy (1) + Fi (w1 (1), u2(1)), (43)
HDY () = Asun (1) + Fa(us (1), u2(t)),
where the eigenvalues of Aj,A; are Ai,Ap,---,A,, and Ay, 41,442, - , Ay, respectively. Let n = ny + ny, then by non

singular linear transformation 7' : R” — R™ x R™2, y(¢) — u(t) = (u1(¢),ua(t)), (u1(¢) € R, u,(z) € R™). Moreover,
—1 —1 —1
(log1) "™ Eaa [A1 (log1)“] =band ((log})*" Eaa |42 (10g1)"]) =
Without loss of generality, suppose ¢ < 3, Fi,F> = o(|Ju1 ()| + [[u2(¢)|]) as u; (), u2(t) — 0.

The solution W () = (u;(¢),ua(t)) of (43) can be written as
- . t
0 E a—1 5 o / L a—1 L o
ui(t) = uj <loga) Eq.a _Al (loga) | + <log T) Ega |Al (log T) Fi(uy(7),uz(7))dr
a

0 a1 [ £\ O] 0 0
:ul(log—) Eq.a Al(log;) + 81 (t,uj,u3),

ua(t) = u (10g£)a71Ea7a :Az (1og§)a: + / (logé)wam {Az (m%)? By (7),us(7))de

a1 [ £\ 2]
= u(Z) (10g ;) EOC,OC A2 (IOg Z) +S2(ta“(l)a“g)7
Our this theorem refers only to the neighbourhood §(0) of the origin O, when (u?,43) & 5(0), we set Fy(u9,59) =
0, F>(u?,ud) = 0, consequently, S;,5> =0, (u?,u3) ¢ 8(0). So we omit the case when (u?,u9) € §(0).
Consider the homogenous linear system of (43)

HD% wi(t) = Aywy (1),
]_]Dgﬂr wo (t) =Awy (t),

where w(t) = (wy(t),wa(t)) € R" x R™, w;(t) € R™, wy(t) € R"2. The solution ¢ (w)(t) = (w;(t),wa(t)) of (44) can
be expressed as

(44)

wi(r) = w(l) (logé)ailEa’a [Al (logé)a} ,

wa(t) =wh (logé)m*1 Eq.a {Az (logé)a} ,

If we can find a homeomorphism /4 : R” — R”, satisfying i o y; = @ o h, then the theorem is true. For this, we divide
the proof into three steps.

Step 1: For t = 1, we find a continuous map A; : R” — R” satisfying
Os0@ 0h; =hjo60yy, se(0,1). (45)
Suppose that /; which satisfies (45) is expressed by the following coordinate transformation
Wi = U (), wh =V (i, u3). (46)
By (45) and (46), we have
0,108 1) EqalA1 (08 1)IU(f,12) = U (6,(u (log 1)~ Ec[Ax (log 1]+ 81(1,18)18), 0, (s log 1)

1
XEaalAz(log )] + $2(1,u, 43))), (47)

| 1 | 1 | B
6.(10g )" Ecealda(log =)V () = V (6,(uf(log )%~ EqalAi (log )%+ 81 (1,8, 1)), 0, (s log )

1
XEq.alA2(log =)+ Sa(1,u, 13))). (48)
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Next, we use successive approximations to obtain solution to (48). Put

Vo (u,ul) = ul,
Vi ) = (6) (tog ) (Eua(a (108 £) )~ Vi (6 (4 0 8) ™ B[ A1 (l0£) ] a9)

-1
+51(1,0,09)) .6 (12 (tog 1) Eaa [ A2 (10 1) + S2(1,,1) )
for k = 1,we get
1 1oy
Vi(ut,u3) = 3+ (log =)' (EqalAa(log ) )~ S (1,4, ).

Let 6 > 0 enough small, then it is easily known that

1 o—1 1\ ¢
=l max{olo]. 24101 | (toe3 ) Eua[aa (1021 ) || 10117 <1. (50)
Since S = O(HM?H + ||u(2)||) as u(]),u(z) — 0, there exists a constant L > 0 satisfying
Vi) = Vo(ulh )| < L ([ + 3])° ©D

Suppose HVk ul,uz) Vi l(ul,u2 H <er "”0"+"”(2)" . One has

1 o—1 1 o
[Vier1 (u? 1) = Vie(w, ud) || < 16" (log;) Eg,a(A2 (log;) )
1 o—1 1 o
xLr* | |6 u?<1og—) Eg.q {Al <log—) ]+S,(1,uﬁ’,u2)
a a
1 o—1 1 o 6
) (u% <log—> Ega [Az <log—) ]+Sz(1,u?,u8)>||>
a : a

< L*c|lo| =" (]| (b ||

1 o—1 1 o
<10g —) Eqa [Az <10g —) ]
a ’ a

-1

+

[3)) + 24 (||| + 3] 1 €1)°

B 1 a—1 1\ ¢
< whclo] ! max(p o] 24101 | (1og7 ) Ea a2 (1027 ) || 101
o (]+ [l81)°
é

< LA ([ + 2]

where ¢ < [|0]| < 1. So Vi(u?,u3) uniformly converges to a continuous function V (u!,u3) and we get
V(u(l)aug) VO ”1#42 Z Vk ul)”Z — Vi 1(”‘(1)’”8)] = u(2)+v (u(l)aug)
where V*(u),ud) = o(||u]| + ||u3]))-
By successive approximation similar to function V, we obtain the solution of U (u ,u2) satisfying
U (), u3) = uf + U () u3), (52)

where U* (u,u3) = o(|[u || + ||u3]])-

If ¢ > %, namely, , similarly to (47), we can also use successive

(EaalAr (10g3)®)]| = ||(Eaaldz (log 1))
approximation to obtain the solution of (48). For ¢ > %, the process is similar to ¢ < %. Thus we get a continuous map

hy when (uf,u3) ¢ 8(0), hy (uf, u3) = (u},u3). Moreover, the uniqueness is easily proved. Then one can utilize the same
arguments in steps 2 and 3 of Theorem 2 to end this proof.
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4 Conclusion

The present paper has addressed non linear fractional differential systems involving Riemann-Liouville and Hadamard
derivatives with different types of initial value conditions whenever such initial conditions are not equal with each other.
We also have proved the new linearization theorems of those nonlinear fractional differential systems.
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