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Abstract: A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes, is quite common in life-testing. In this
paper,we study the problem of point and interval estimations for the generalized linear exponential distribution (GLED) using type-
II hybrid censored sample.The maximum likelihood (ML) and Bayes methods are utilized for estimating the unknown parameters
as well as some lifetime parameters (reliability, hazard function and reversed hazard function). Also, we apply Markov chain Monte
Carlo (MCMC) technique and Lindely’s approximation technique to carry out a Bayesian estimation. Bayes estimates and the credible
intervals are obtained under the assumptions of informative and non informative priors. Different methods have been compared using
Monte Carlo simulations. Real data set has been studied for illustrative purpose.

Keywords: Hybrid censoring scheme,Generalized Linear Exponential Distribution (GLE) Bayes Estimators, Maximum Likelihood
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1 Introduction

Experiments often terminate before all units on test have failed due to cost and time considerations. In such experiments
failure information is available only on a part of the sample, the data are said to be censored data. The two most regular
censoring schemes are Type-I and Type-II censoring schemes. A mixture of Type-I and Type-II censoring schemes, known
as hybrid censoring scheme. It has been discussed to overcome the disadvantages of those two types separately. This
scheme was first introduced by [1] and [2], and it has been discussed extensively in the reliability literature. In the
Type-I hybrid censoring scheme, the experiment is terminated as soon as a pr-specified number r out of n items has
failed or a pr-fixed time x( on test has been reached. In contrast, in the Type-II hybrid censoring scheme, the life-testing
experiment gets terminated whenever the later of the two stopping rules is reached. Hybrid censored lifetime data have
been discussed by several authors, including [3], [4].[5], [6], [7],[8], [9], [10], [11], [12], [13] and [14].[15] discussed
E-Bayesian method, maximum likelihood and the Bayesian estimation methods of the shape parameter, and the reliability
function from one parameter Burr-X distribution based on generalized type-II hybrid censored data.[16] studied maximum
likelihood, Bayes and percentile bootstrap method for unknown parameter, failure rate function, the survival function and
the coefficient of variation of the exponential Rayleigh distribution with generalized type-II hybrid censored scheme. One
of the disadvantages of Type-I hybrid censoring scheme is that there may be very few failures occurring up to the pr-fixed
time T . Because of this, [17] proposed a new hybrid censoring scheme which can be described as follows. Put n identical
units on test, and then stop the experiment at the random time 7* = MaxT,m where T and m are a prefixed numbers and
Xm:n point to the time of m-th failure in a sample of size n. Under the Type-II hybrid censoring scheme, we have one of
the following three kinds of observations:

Case I: {x1 < ... <Xppn} if Xy > T

Case IL: {x1:y < . <Xgin < T <xgrpppifm<d<nandxg, <T <Xgi1n-

Case IIL: {x}, < ... < Xp < T} Where x,, < ... < X indicate the observed ordered failure times of the experimental
units.
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The analysis of Type-II hybrid censored scheme from generalized linear exponential distribution (GLE) is considered
in this paper.First, we consider the ML of the unknown parameters. Second,Bayes estimator for the unknown parameters
are considered. Lindley’s approximation and MCMC method are considered to approximate the Bayes estimator. A
simulation study to compare the performance of ML and Bayes estimators are executed. Real data are used for
illustrative purpose. The paper is organized as follows. In the first section the probability density function of GLE and its
important. The ML estimators of the unknown parameters, reliability and hazard functions are presented in section 3.
The corresponding approximate confidence interval for the parameters are given. Section 4 deal with description of the
priors, posteriors, Gibbs sampling and Metropolis-Hasting (MH) algorithm. In the same section the proposed hybrid
algorithm with resulting Bayes estimators are discussed. Numerical example and real data sets have been analyzed in
Section 5 and 6. Finally, conclusion in section 7.

2 Generalized Linear Exponential Distribution

This distribution was originally proposed by [18]. The linear exponential distribution, having exponential and Rayleigh
distributions as special cases, is a well-known distribution of reliability and medical studies lifetime data modeling. It is
also models phenomena with increasing failure rate. The linear exponential distribution does not provide a reasonable fit
for modeling phenomena with non-monotonic distributions such as bathtub shaped ones, which are common in reliability
and biological studies; see for example [19]. Models that present bathtub shaped failure rates are very useful in survival
analysis. Many authors have proposed new distributions that generalize exponential, Rayleigh and linear exponential
distributions. [20] proposed a generalization of the exponential distribution. The Burr type X distribution, also known
as the generalized Rayleigh distribution (GRD), was proposed by [21]. [22] introduced the generalized linear failure
rate distribution, while [23] the estimation of the parameters of the generalized linear failure rate distribution. The three
parameter generalized linear exponential distribution has a probability density function (pdf)

9 a-1 u
floa,8,0)=a (AH Exz) (A +6x) e 8)" 5 950 and A >0, ()
cumulative distribution function (cdf)

Flr,o,0,0) =1—e ®+82)" 5 950 and A >0, @)

the survival function R(t)
R(t) =e (M+82)" 15 0, A3)

the hazard function H(t)
0 a—1

H(r) = a(A+61) <At+§t2) >0, )

and the revised hazard function Q(t)

B oA+ 61) (),t_|_ %IZ)G*I e,(h+gt2)a
R 1*97(7”*%12)&

o(t) >0, 5)

3 Maximum Likelihood Estimation

maximum likelihood estimation (ML) is often the most feasible method to use when doing statistical inference. In this
section, we study MLEs of the GLE distribution based on Type-II hybrid censored scheme with pdf given in (1). Also,
we construct Approximate confidence intervals (ACIs) of the parameters of GLE distribution based on Type-II hybrid
censored scheme. The likelihood function in case I is given

n!
(n—R)!

R
L(a,0,1) = [T/ G =F ()" %, (6)
=1
for case 11,

n!

L(a,0,1) = (n_'d)!

d
Hf(xl-) [1—F(T)]", )
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and for case III,

L(e,6.2) fol )

here f(x) is presented in (1). We present likelihood function (6) , (7) and (8) by:

L(a,6,2) (""", )
where
R for case I
r=2< d forcasell , (10)
n for case II1
and
| xren for case I
€= { T for case Il and 11T ~ (11)

By substituting (1) and (2) in Equation (9) and taking the logarithm , the log likelihood function can be written as

log L(at,0,1) = const.+rloga+ (a Z og <,’Lxl+ Ox > +Zlog (A +06x;) (12)

r o a
—i; (),xi + gx,z) —r(n—r) (),x, + gx%) .

Applying the first derivative with respect to ¢, 8 and A and equating by zero, then we get the normal equations as

follows: .
r A a R é
a—l—Zln Ax,—i— x Z Axi+ x2 log lx,-+§xl~2 (13)
5 a
n—r)| Ac+=c? log Ac+—c =0,
2
CRST) ypmm. . TS P T (14)
- = N " — Xi —X; -
i:lZ(kxiqL%xiz) i1 <7L+9xi i=1 b2 2
~ a—1
A 6 2
—or(n—r) (Ach Ecz> S 0,
and

R a1
- Z (ixi + gﬁ) Xi (15)

Since, the Equations (13), (14) and (15) are nonlinear equations in three parameter &, 6 and A.The exact solution is not
easy to compute.Therefore a some numerical methods must be employed.

By invariant property of ML estimators, the ML estimators of reliability function R(t), hazard rate function H(t) and
reversed hazard rate function Q(t) can be obtained by substituting the MLE’s of the parameters ¢, 6 and A4 in (3), (4) and
(5), respectively. Hence,

~ PO (34062 @
R(t,0,0,A) = (he+42) >0, (16)
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A a—1
. AN N
H(t,&,@,k)6{(7L+0t)<7u‘+§t2> >0, (17)
and

>0, (18)

3.1 Approximate confidence interval

The asymptotic variance-covariance matrix of the estimators of the parameters @ = (¢y,...@,) is obtained by inverting
the Fisher information matrix (given by taking the expectation of the second derivative of the log- likelihood functions) in
which elements are negatives. In the present situation, ie seems appropriate to approximate the expected values by their
maximum likelihood (ML) estimates.Accordingly, the approximate variance-covariance matrix is given by [24]

~1

94 94U
a2(P12 e az(pl On
94 94
2 e 202 ~ ~
O*n 50/ (¢),e))

From the log-likelihood equation (12), we get

2 r o 2 ¢ ’
% — _é — Z (Axi + gxlz) (log (lxi + gxlz)) —r(n—r) (lc—i— gcz) (log (kc—i— 202)) ) (19)

(;9_;12 = (o — 1)Zﬁ (%) _;(1:7;2)2—04(05— 1)121 (Axi+gx$)a2 (%?)
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Then, the asymptotic variance-covariance matrix of the estimators of the parameters o, 0 and A is obtained by
inverting the Fisher information matrix given by taking the expectation of Equations (19), (20), (21), (22), (23) and (24)
in which elements are negatives. In the present situation, it seems appropriate to approximate the expected values by
their ML estimates. Accordingly, the approximate variance -covariance matrix is given as

CPUar0)  Plar)  Plar)\

Oua Oup O, P a6 2ok
oo N | 2lare) Pllare) Plaire) 25)
26 Y96 “A ,9%a0 , 0207 L9261 ’
G, Gy Opi _PUad) _PUars) Plare) |
Pa 9202 222/ (6.6.2)

The ACIs for the parameters o, 6 and A are respectively given as:

&iz%\/fiaa, éiz%\/figg and iiZ%\/(rM,

where Z% is the percentile of the standard normal distribution with right tail probability § .

4 Bayesian Estimation of the Parameters

In Bayesian estimation, we study two types of loss functions. The first is the squared error loss function (quadratic
loss) which is classified as a symmetric function and associates equal importance to the losses for over estimation and
underestimation of equal magnitude. However, in most practical circumstances such a limitation may be impractical. For
instance, in the estimation of reliability and failure rate function , an overestimation is usually much more serious than
an underestimation. In this situation, the use of symmetrical loss function might be inappropriate as also highlighted by
[25]. The second is LINEX (linear-exponential) loss function which is asymmetric, was introduced by [26]. These loss
functions was widely used by several authors; among of them [27], [28], [29], [30], [31]. [32] and [33]. This function
rises roughly exponentially on one side of zero and roughly linearly on the other side. It can also be noted here that for
a specific choice of the loss function parameter, the squared error loss function can be obtained as a specific member of
the LINEX loss function. The squared error loss function and the LINEX loss function for a parameter & are as follows,
respectively:

Lgs (6, 3) - (5 - 3)2, (26)

and
LBL(A):a<ehA7hA71) La>0, h#0, 27)

where a and h are shape and scale parameters of the loss function, respectively and A = (5 — 3) denotes the scalar

estimation error in using 5 to estimate §. Generally, the sign and magnitude of # in LINEX loss function affect on the
direction and degree of asymmetry. Further properties of this loss function have been investigated by [34]. For small
values of & (near to zero), the LINEX loss function is almost the same as the squared error loss function and for the choice
of negative or positive values of 7 , the LINEX loss function gives more weight to overestimation or underestimation.

Bayesian estimates of 0 against the squared error loss function and the LINEX loss function are as follows,
respectively:

Sps =E[8 ] ], (28)

and

A 1
8p1. = —-log{E [e*"‘* | x} . (29)

Now we will propose the Bayesian estimator of parameters (&, 0, A) as well as reliability R(t), hazard H(t) and
reversed hazard Q(t) functions of the GLE. It is assumed that ¢, 6 and A have the following independent prior:

szlefotwl

7'[1(06)0(06 w1 >0w >0 a>0,
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M (0) o 074 e e > 0wy >0, >0, (30)

and
T (A) cc A le™ s g > 0,ws >0, 4 >0,

where wy,wy, w3, wyq, ws, wg are chosen to reflect prior knowledge about ¢, 0 and A. When w; = wy = w3 = wy =
ws = wg = 0, there are non-informative priors of o, 6 and A.
From Equations (12) and (30) , the joint prior density function of ¢, 6 and A is of the form

m(0,0,) ac o2 lem @ graTleOws awe—lo=Aws g 950, A >0,

Wi, W2, W3, wg, ws, we > 0.

Then the posterior distribution o, 8 and A can be written as

1 X ) X ) X
T (a,0,A |x) = %awﬁ“'e*‘”‘ grale0ws pwe—1—Aws o 31

r o—1 o o
[1(2n+52)  (h+ompe Grbde omnieste)”

1=1

where

k:/// |:aw2+rflefocw1 9»1/471879»1/3 lw(’ileilwsx
000

r oa—1 o o
H (AXi + gxtz) (A +6x;) e (At §)" o= (=r)(Aet3) 7] 4o 4@ d.
=1

In Bayesian statistics the posterior distribution 7* (@, 0, A | x) contains all information on the unknown parameters
given the observed data. All statistical inference can be deduced from the posterior distribution. We observe that equation
( 31) can not solved explicitly, So two different procedure are introduced Lindley’s approximation and MCMC technique
can be used to obtain the Bayes estimator for ¢, 6 and A and the corresponding credible intervals.

For any function u (¢, 0,4) of o, 6 and A, the Bayes estimates is given by

i(a,0,1)

?T'l—

///u(a,e,A)L(a,e,A)n(a,e,A)dade da. (32)
000

4.1 Lindely approximation

Lindley’s approximation, which introduced by [35] can approximate the Bayes estimators into a form containing no
integral. . For our estimation problem we describe this method below. As noticed the Bayesian estimates involve the ratio
of two integrals, we consider / (x) defined as

[ fu(n,p,p) e tpMnsldydydy
BHY

[ [ [ etmrmtenenldydypdy
BRN

I(x)=Eu(n,n,n)=

where u (Y, %, 7%;) is a function of 9;,7, or 3 only.
L(n,7, 1) is log of likelihood function.

P (71,7,7) is log joint prior of ¥;,7, and ¥;.
Utilizing the Lindley’s method I (x) can be approximated as

I(x) =u(%, %, 1)+ (wiay + urar + uzaz + as +as) +
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[A(u1011 +u2012 +u3013) + B (11621 + U020 + u3023) (33)

| =

+C (41031 + U203+ 13033)]

where
%, %> and 95 are the MLE of of ;, 7 and 73 respectively.

a; = P10;] + P20 +p30;3, i = 1,2,3,

a4 = u12012 +U13013 + U23023,

1
as = 3 (u11011 + U202 +u33033),
A = o11L111 +2012L121 +2013L131 + 20230031 + 022L001 + 033L331,

B = 011L112 +2012L122 +2013L132 + 20231230 + 0201222 + 0331332,

C = o11L113 +2012L123 +20713L133 + 20231233 + 020L023 + 033L333,

and subscripts 1,2,3 on the right-hand sides refer to 1, 7, , 3 respectively and

dp du(n, 1) . Fun,n.m) . .
i = 5. = 5. > :1;2; s Uij— —= 73, » L :1;2;;
p oy " dvi : 3 iy 91:9Y; b 3
’L(y1, %, 1) PL(n, 1. %)
Li':%aia.:]7273 , Lij :%aia .7k:15253a
J dYidy; / 7k Y9V J

and oj; is the (i, j) —th element of the inverse of the matrix {Li j}, all evaluated at the MLE of parameters. With the
above defined expressions, we can obtain the values of the Bayes estimates of various parameters .

Ifu (d, 0, i) = (& then the Bayes estimate of the parameter o under the squared error loss (SEL) function from (33)
is

. R 1
aBS:a—i—al—i—E[AG11+BGZ1+CG31] (34

Ifu (&, 6, i) — 0 then the Bayes estimate of the parameter 8 under the squared error loss (SEL) function is
A N 1
Ogs =0+ar+ 5 [Ac12 + B0y 4 Co3y). (35)
Ifu (&, 6, i) = A then the Bayes estimate of the parameter A under the squared error loss (SEL) function is
A A 1
A,BS:A/+Q3+§[AG]3+BGQ3+CG33]. (36)
Ifu (&, 0, i) = ¢ "% then the Bayes estimate of the parameter o under the LINEX loss function from (33) is
N 1 _hiy 1, 1
aBL:_Zlog e 1 —hal-i-ih Gll—ih(AGll‘f'BGzl‘f'CGﬂ) . (37)

Ifu (ﬁc, é,i) = ¢~ then the Bayes estimate of the parameter 6 under the LINEX loss function is
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R 1 5 1 1
Bp1 =~ log {eh9 [1 — hay + Ethzz — 3h(AG12+Bon + CG32)] } . (38)
Ifu (éc, 0, i) — ¢ then the Bayes estimate of the parameter A under the LINEX loss function is

A~ 1 2 1 1
ApL = _E log {ehA |:1 — hasz + §h2633 — Eh (A(713 + B0z + CG33):| } . 39)

The estimators of reliability function R(t), hazard rate function H(t) and reversed hazard rate function Q(t) can be
obtained by substituting the Lindely’s approximate under the squared error loss (SEL) function and LINEX loss function
of the parameters ¢, 6 and A in (3), (4) and (5).

The approximate Bayes estimator of &, 6 and A can be obtained using Lindley approximation , but it is not possible
to construct highest posterior density(HPD) confidence intervals using this method.There for, we using the following
Markov Chain Mont Carlo (MCMC) method to generate samples from the posterior density function, and obtain the
Bayes estimators and HPD confidence intervals.

4.2 MCMC Method

We study the Markov chain Monte Carlo (MCMC) methods to draw samples from the posterior density function and
then compute the Bayes estimators and also construct HPD credible intervals of o, 6 and AThere are several
conventional methods to define such Markov Chains exist, including Gibbs sampling, Metropolis-Hastings (MH) and
reversible jump.Using these algorithms it is possible to implement posterior simulation in essentially any issue which
allow point wise evaluation of the prior distribution and likelihood function. From Equation (31), the marginal posterior
density of «, is proportional to

) - 0 ol . o o(n—r)
i (| 0,4, x) oc a2t e T (Ax,- + Ex%) (A + Ox;) e~ (At 3)" o= (Ae+§ %) (40)
1=1
Similarly, the posterior conditional distribution for 6 and A are respectively
: N T 6 ,\*"! 0.2\ (e 0,2)007)
(0] oA, x) o gratr—le=0ws H (lxi—i— Exlz) A+ Gxi)e*(lxﬁ%x?) o (Aet§e) 41)
=1
and
* we+r—1 _—0w - 0 2 ot ,(;LX.JFQX,Z)“ ,(ACJFQCZ)“("*’)
(A, 0, x)cc OV e s H AXi+ =X; (A+6x;)e \*MiT2%) ¢ 2 (42)

=1 2

We can see the posteriors conditional distributions for &, 6 and A are log-concave and can not be reduced analytically to
well known distributions. So, as suggested by [36], a common way to solve this problem is to use the hybird algorithm by
combined a Metropolis- Hasting ( MH) sampling with Gibbs sampling scheme using normal distribution. There for the
algorithm works as follow:

1) Set the initial values of ¢, 6 and A say (¢, 6y,A0).

2) Set j=1.

3) Using MH, generate o from 7j(a/~! | /71,2771 x) with normal distribution, N(a/~!,KaV o).

4) Using MH, generate 6; from ﬂi‘(@j’l | /=1, A7~1 x) with normal distribution, N(8/~1,KgVy).

5) Using MH, generate A/ from j(2/~! | @/~!,6/7! x) with normal distribution, N(A/~! K; V),

where Ko,Kg and K are scaling factor and Voo , Vg and Vg are variances-covariances matrix.

6) Set j=j+1.

7) Repeat steps from 1 to 5 N times.

8) The Bayes estimators of u(a, 6, A) can be approximated as :

o nEtu (e, 85,4) fi(0y,0),4))
v I fi(@),6),4))

(43)

Upe ~

where

r ] o1 o a(n—r)
filay,6;,4) =] (MhL Exi2> (A + i) e~ (Rt 830)" = (Ao §2) 700

1=1
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9) Ordered ¢t , 6; and A;,j =1,...N and suppose that we would like to construct the HPD credible intervals of ¢, 0
and A Now, we construct all 100(1-a)% credible intervals of & say (&1}, On(1—a)))s - - (X na], Hn))-

Here [X] denotes the largest integer less than or equal to X. Then the HPD credible interval of ¢ is that interval which
has the shortest length. Similarity, the HPD credible interval of 6 and A can also be constructed. Now, two loss functions
to determine the Bayes estimates based on MCMC method from (35).

4.2.1 Bayes estimate based on MCMC under LINEX loss function

1- For estimating a, consider u (¢, 0;,A;) = exp[—ha;] , therefore

1 [EYY u (e, 0;,4)) fi(0;,0),4;) ]
g = — log NZt—IIM(N] i, A7) fi(e,05,45) (44)
h v Liz1 f1(@),6),4))
2- For estimating 0, consider u (o}, 0;,A;) = exp[—h0);] , therefore
=1 [EYN u(a),6),4)) fi(0;,0,4;) ]
Op = — log NZFl]”(N/ i, A7) fi(a,65,4)) . 45)
h v Liz1 J1(0,6;,4))
3-For estimating A, consider u (o}, 0;,A;) = exp[—hA;] , then
5 —1 LYN u(a;,0,,A)) fi(a,0;,4,
Asr = — log N):zfllu(Nj i, A7) fi(e,65,45) 46)
h v Lic1 f1(2,6),4))

The estimators of reliability function R(t), hazard rate function H(t) and reversed hazard rate function Q(t) can be
obtained by substituting the MCMC under the LINEX loss function of the parameters o, 8 and A in (3), (4) and (5).

4.2.2 Bayes estimate based on MCMC under Squared Error loss function

1- For estimating ¢, consider u (oj,0;,A;) = «;, therefore

YN (0,000 filc, 05,0,
&SL:N):FII (NJ - Ai) f1(2, 8, A7) )
N Lot f1(e,0),4))

2- For estimating 0, consider u (oj,0;,A;) = 6;, therefore

v L u(0,05,4) fi(ay,6),4))

01 = (48)
¥ I fi(,6),)
3-For estimating A, consider u (aj,0;,A;) = A; , then
Ay = N X (95,05, 25) £1(2, 65, 45) 49)

v IV filoy,05,4;)

The estimators of reliability function R(t), hazard rate function H(t) and reversed hazard rate function Q(t) can be
obtained by substituting the MCMC under the Squared Error loss(SEL) function of the parameters &, 6 and A4 in (3), (4)
and (5).

5 Simulation Study

In this section, we carry out a simulation study to compare the performance of ML estimators and Bays estimators.
We estimate the unknown parameters using the ML estimate and Bayes estimators obtained by Lindley approximations
and MCMC method. The performances of different estimators with MSE are compared. Also, the average length of the
asymptotic confidence intervals and the HPD confidence intervals are obtained.
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The comparison between the estimates is taking place according to the following steps:
1- For given the parameter wy,w, w3, w4 ws and we generate random values of &, 6 and A from Gamma distribution.

2- For given values of n and r with initial values of &, 6 and A given in step 1, we generate random samples from
inverse cumulative distribution function of GLE distribution and then ordered them.

3- The ML estimates of o, 0 and A are then obtained by solving numerically the nonlinear equation (11), (12) and
(13).

4- The ML estimates of the hazard function, survival function and reversed hazard function are obtained from the
equations (16),( 17) and (18) with t=0.25.

5- The Bayes estimates of o/, 6 and A by using Lindley’s approximation forms under Secured Error (SE) loss function
given by (34) - (36), and under LINEX loss function given by (37) - (39).

6- The Bayes estimates of &, 6 , A, hazard function, survival function and reversed hazard function are computed by
applying MCMC method with 1100 observations under Secured Error (SE) loss function and under LINEX loss function

7- The quantities (K — x)? are computed where K stands for an estimate of k (ML or Bayes).

Steps 1-7 are repeated at least 1000 times for informative prior and non-informative prior and for different sample
sizesnandrat T=2.

A simulation data for hybird type-II censored sample from GLED is generated with &« =1.2,0 =1, A = 1.5 and
T =2 for different choices of n and r with informative priors w; = 1,w, = 1,w3 =0.05,ws = 0.05,ws =4, wg =4, and
non-informative priors wi = wy = w3 = wy = ws = we = 0,the MSE’s, the average asymptotic confidence intervals and the
HPD confidence intervals length from the MCMC technique are computed with informative priors and non-informative
priors .

The MSE of the estimates were estimated by

MSE(R)=Y) L
; 1000

First, the informative priors are considered.

Table 1: Estimates of the parameters ¢ and the corresponding MSE for informative priors

n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 c2=-2 c3=1 c4=5 cl=-5 c2=-2 c3=1 c4=5

10 | 7 | 0.9644 | 0.8396 | 0.9837 | 0.8927 | 0.8214 | 0.7937 | 0.9644 | 0.9644 | 0.9644 | 0.9644 | 0.9644
0.0555 | 0.1299 | 0.0468 | 0.0944 | 0.1433 | 0.1651 | 0.0555 | 0.0555 | 0.0555 | 0.0555 | 0.0555
40 | 25| 1.2622 | 1.022 | 1.3686 | 1.1175 | 0.9592 | 0.9683 | 1.2621 | 1.2621 | 1.2621 | 1.2621 | 1.2621
0.0039 | 0.0317 | 0.0284 | 0.0068 | 0.058 | 0.0485 | 0.0038 | 0.0038 | 0.0038 | 0.0038 | 0.0038
90 | 75 | 1.1699 | 1.1516 | 1.1728 | 1.16 1.1476 | 1.1339 | 1.17 1.17 1.17 1.17 1.17
0.0009 | 0.0023 | 0.0007 | 0.0016 | 0.0027 | 0.0044 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009

Table 2: Estimates of the parameters 6 and the corresponding MSE for informative priors

n |r | MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 c2=-2 c3=1 c4=5 cl=-5 c2=-2 c3=1 c4=5

10 | 7 | 1.2634 | 0.9642 | 1.747 | 1.6752 | 0.6932 | 0.7323 | 1.2661 1.2662 | 1.266 | 1.266 | 1.266
0.0694 | 0.0013 | 0.5583 | 0.4559 | 0.0941 | 0.0717 | 0.06873 | 0.06876 | 0.0688 | 0.0688 | 0.0688
40 | 25 | 1.1216 | 0.9683 | 1.3611 | 1.2069 | 0.8775 | 0.8059 | 1.1211 1.1211 1.1211 | 1.1211 | 1.1211
0.0148 | 0.001 | 0.1304 | 0.0428 | 0.015 | 0.0377 | 0.0143 | 0.0143 | 0.0143 | 0.0143 | 0.0143
90 | 75 | 0.9918 | 0.9954 | 1.1535 | 1.0318 | 0.9861 | 0.86 0.9846 | 0.9846 | 0.9846 | 0.9846 | 0.9846
0.0001 | 0.0000 | 0.024 | 0.001 | 0.0002 | 0.0058 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
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Table 3: Estimates of the parameters A and the corresponding MSE for informative priors

n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 | c2=2 | c3=1 c4=5 cl=->5 c2=-2 c3=1 c4=5
10 | 7 1.0218 | 1.001 1.3042 | 1.2148 | 0.8822 | 0.7292 | 1.0231 1.0231 1.0231 1.0231 1.0231
0.2287 | 0.2495 | 0.0383 | 0.0813 | 0.3817 | 0.5941 | 0.22776 | 0.22776 | 0.22776 | 0.22776 | 0.22776
40 | 25 | 1.3533 | 1.2964 | 1.4119 | 1.3463 | 1.2746 | 1.224 | 1.3537 | 1.3537 | 1.3537 | 1.3537 | 1.3537
0.0215 | 0.0415 | 0.0078 | 0.0236 | 0.0508 | 0.0762 | 0.02144 | 0.02144 | 0.02144 | 0.02144 | 0.02144
90 | 75 | 1.5261 | 1.4855 | 1.5568 | 1.5149 | 1.47 1.44 1.5264 | 1.5264 | 1.5264 | 1.5264 | 1.5264
0.0007 | 0.0002 | 0.0005 | 0.0002 | 0.0008 | 0.0041 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
Table 4: Estimates of survival function R(t) and the corresponding MSE for informative priors
n |r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=5 | c2=2 | c3=I c4=5 cl=-5 | c2=-2 | c3=l c4=5
10 | 7 | 0.6861 | 0.6652 | 0.6131 | 0.6186 0.7156 | 0.6858 | 0.6858 | 0.6858 | 0.6858 | 0.6858
0.0013 | 0.0003 | 0.0014 | 0.0041 0.0042 | 0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0013
40 | 25 | 0.7495 | 0.7055 | 0.6192 | 0.586 | 0.7023 | 0.7508 | 0.7494 | 0.7494 | 0.7494 | 0.7494 | 0.7494
0.001 0.0000 | 0.0009 | 0.0011 | 0.0027 | 0.01 0.001 | 0.001 | 0.001 | 0.0013 | 0.001
90 | 75 | 0.6395 | 0.6469 | 0.6292 | 0.6386 | 0.6504 | 0.6573 | 0.6397 | 0.6397 | 0.6397 | 0.6397 | 0.6397
0.0001 | 0.0000 | 0.0005 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
Table 5: Estimates of hazard function H(t) and the corresponding MSE for informative priors
n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 | c2=2 | c3=1 c4=5 cl=->5 c2=-2 c3=1 c4=5
10 | 7 1.4005 | 1.2853 | 2.2231 | 1.6744 | 1.1131 | 1.0011 | 1.4025 | 1.4025 | 1.4025 | 1.4025 | 1.4025
0.227 | 0.3497 | 0.1201 | 0.0409 | 0.583 | 0.7665 | 0.22628 | 0.22628 | 0.22628 | 0.22628 | 0.22628
40 | 25 | 1.5926 | 1.6101 | 1.9012 | 1.7564 | 1.5526 | 1.469 | 1.5931 1.5931 1.5931 1.5931 1.5931
0.0259 | 0.071 | 0.001 | 0.0145 | 0.105 | 0.1662 | 0.0260 | 0.02603 | 0.02603 | 0.02603 | 0.02603
90 | 75 | 1.8981 | 1.8107 | 1.9924 | 1.8947 | 1.77 1.7 1.896 1.896 1.896 1.896 1.896
0.0005 | 0.0043 | 0.000 | 0.0003 | 0.0104 | 0.0305 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005
Table 6: Estimates of reversed hazard function Q(t) and the corresponding MSE for informative priors
n |r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=5 | c2=2 | c3=I c4=5 cl=-5 c2=-2 c3=1 c4=5
10 | 7 | 3.0614 | 2.5532 | 2.989 | 2.7154 | 2.5041 | 2.5192 | 3.0607 | 3.0607 | 3.0607 | 3.0607 | 3.0607
0.1858 | 0.882 | 0.2534 | 0.6038 | 0.9766 | 0.9471 | 0.18566 | 0.18566 | 0.18566 | 0.18566 | 0.18566
40 | 25 | 47648 | 3.6994 | 3.881 3.7863 | 3.6619 | 2.9762 | 4.7636 | 4.7636 | 4.7636 | 4.7636 | 4.7636
0.1788 | 0.0429 | 0.151 | 0.02 0.03 0.2664 | 0.1786 | 0.1786 | 0.1786 | 0.1786 | 0.1786
90 | 75 | 3.3674 | 3.3171 | 3.3807 | 3.3591 | 3.4025 | 3.2654 | 3.3663 | 3.3663 | 3.3663 | 3.3663 | 3.3663
0.0156 | 0.0307 | 0.0125 | 0.01 0.05 0.0515 | 0.0157 | 0.0157 | 0.0157 | 0.0157 | 0.0157
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Table 7: The 95% ACT’s and HPD credible intervals and the corresponding length of &, 0 and A for informative priors.

n r | parameter ACI HPD
10| 7 (01 1.782 | 0.0004
0 8.35021 | 0.0114
A 5.1938 | 0.0059
40 | 25 (01 1.7918 | 0.0005
0 7.9846 | 0.0093
A 2.4734 | 0.0007
90 | 75 (01 0.8756 | 0.0002
0 5.5741 | 0.0033
A 1.8729 | 0.0009

Second, non-informative priors

Table 8: Estimates of the parameters ¢ and the corresponding MSE for non-informative priors

n |r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=5 | c2=2 | c3=I c4=5 cl=5 | c2=2 | c3=I c4=5
10 | 7 | 0.9644 | 0.8375 | 0.9817 | 0.8902 | 0.8195 | 0.7927 | 0.9644 | 0.9644 | 0.9644 | 0.9644 | 0.9644
0.0555 | 0.1314 | 0.0477 | 0.0959 | 0.1448 | 0.1659 | 0.0555 | 0.0555 | 0.0555 | 0.0555 | 0.0555
40 | 25 | 1.2622 | 1.2191 | 1.2745 | 1.241 1.2094 | 1.1819 | 1.2621 | 1.2621 | 1.2621 | 1.2621 | 1.2621
0.0039 | 0.0004 | 0.0056 | 0.0017 | 0.0001 | 0.0003 | 0.0038 | 0.0038 | 0.0038 | 0.0038 | 0.0038
90 | 75| 1.1699 | 1.1836 | 1.174 | 1.1612 | 1.1488 | 1.1349 | 1.17 1.17 1.17 1.17 1.17
0.0009 | 0.0002 | 0.0007 | 0.0015 | 0.0000 | 0.0000 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009
Table9 : Estimates of the parameters 6 and the corresponding MSE for non-informative priors
n |r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 | c2=-2 | c3=1 c4=5 cl=-5 c2=-2 | c3=1 c4=5
10| 7 | 1.2634 | 0974 | 1.7481 | 1.6795 | 0.6988 | 0.733 | 1.2661 1.2662 | 1.266 | 1.266 | 1.266
0.0694 | 0.001 | 0.5596 | 0.4617 | 0.0907 | 0.0713 | 0.06873 | 0.06876 | 0.0688 | 0.0688 | 0.0688
40 | 25 | 1.1216 | 0.9696 | 1.3615 | 1.208 | 0.8785 | 0.8062 | 1.1211 1.1211 1.1211 | 1.1211 | 1.1211
0.0148 | 0.0009 | 0.1307 | 0.0433 | 0.0148 | 0.0376 | 0.0143 | 0.0143 | 0.0143 | 0.0143 | 0.0143
90 | 75 | 0.9918 | 0.8953 | 1.1534 | 1.0318 | 0.84 0.76 0.9846 | 0.9846 | 0.9846 | 0.9846 | 0.9846
0.0001 | 0.000 | 0.064 | 0.017 | 0.0038 | 0.02 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
Table10 : Estimates of the parameters A and the corresponding MSE for non-informative priors
n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=5 | c2=2 | c3=1 c4=5 cl=-5 c2=-2 c3=1 c4=5
10 | 7 1.0218 | 1.0224 | 1.3095 | 1.2295 | 0.9015 | 0.7344 | 1.0231 1.0231 1.0231 1.0231 1.0231
0.2287 | 0.2281 | 0.0363 | 0.0732 | 0.3583 | 0.5862 | 0.22776 | 0.22776 | 0.22776 | 0.22776 | 0.22776
40 | 25 | 1.3533 | 1.3486 | 1.4474 | 1.3966 | 1.324 | 1.2534 | 1.3537 | 1.3537 | 1.3537 | 1.3537 | 1.3537
0.0215 | 0.0229 | 0.0028 | 0.0107 | 0.031 | 0.0608 | 0.02144 | 0.02144 | 0.02144 | 0.02144 | 0.02144
90 | 75 | 1.5261 | 1.5225 | 1.5889 | 1.5548 | 1.51 1.46 1.5264 | 1.5264 | 1.5264 | 1.5264 | 1.5264
0.0007 | 0.0005 | 0.0000 | 0.003 | 0.0001 | 0.0013 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
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Table 11: Estimates of survival function R(t) and the corresponding MSE for non- informative priors

n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 c2=-2 c3=1 c4=5 cl=-5 c2=-2 c3=1 c4=5

10 | 7 | 0.6861 | 0.6599 | 0.62 0.6152 | 0.6875 | 0.7141 | 0.6858 | 0.6858 | 0.6858 | 0.6858 | 0.6858
0.0013 | 0.0001 | 0.001 | 0.0012 | 0.0014 | 0.0041 | 0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0013
40 | 25 | 0.7495 | 0.6866 | 0.6646 | 0.6735 | 0.6927 | 0.704 | 0.7494 | 0.7494 | 0.7494 | 0.7494 | 0.7494
0.001 0.0000 | 0.0002 | 0.001 | 0.001 | 0.0029 | 0.001 | 0.001 | 0.001 | 0.0013 | 0.001
90 | 75 | 0.6395 | 0.6402 | 0.6231 | 0.6309 | 0.6428 | 0.652 | 0.6397 | 0.6397 | 0.6397 | 0.6397 | 0.6397
0.0001 | 0.0000 | 0.0000 | 0.0005 | 0.0001 | 0.000 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001

Table 12: Estimates of hazard rate function H(t) and the corresponding MSE for non- informative priors

n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 c2=-2 c3=1 c4=5 cl=-5 c2=-2 c3=1 c4=5

10 | 7 1.4005 | 1.3054 | 2.1985 | 1.6867 | 1.1303 | 1.0056 | 1.4025 | 1.4025 | 1.4025 | 1.4025 | 1.4025

0.227 | 0.3263 | 0.1036 | 0.0361 | 0.557 | 0.7587 | 0.22628 | 0.22628 | 0.22628 | 0.22628 | 0.22628

40 | 25 | 1.5926 | 1.6764 | 1.9507 | 1.8229 | 1.6142 | 1.5041 | 1.5931 1.5931 1.5931 1.5931 1.5931

0.0259 | 0.0401 | 0.01 0.0029 | 0.0688 | 0.1387 | 0.0260 | 0.02603 | 0.02603 | 0.02603 | 0.02603

90 | 75 | 1.8981 | 1.929 | 2.0331 | 1.944 | 1.82 1.73 1.896 1.896 1.896 1.896 1.896

0.0005 | 0.0027 | 0.0036 | 0.0000 | 0.0004 | 0.0115 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005

Table 13: Estimates of reversed hazard rate function Q(t) and the corresponding MES for non-informative priors

n r MLEs BAYES MCMC
SEL LINEX SEL LINEX
cl=-5 c2=-2 c3=1 c4=5 cl=-5 c2=-2 c3=1 c4=5

10 | 7 | 3.0614 | 2.5331 | 2.9781 | 2.6968 | 2.4864 | 2.512 | 3.0607 | 3.0607 | 3.0607 | 3.0607 | 3.0607

0.1858 | 0.9202 | 0.2645 | 0.633 1.012 | 0.9612 | 0.18566 | 0.18566 | 0.18566 | 0.18566 | 0.18566

40 | 25 | 4.7648 | 3.6735 | 3.8647 | 3.7601 | 3.6383 | 3.1828 | 4.7636 | 4.7636 | 4.7636 | 4.7636 | 4.7636

0.1788 | 0.0328 | 0.1386 | 0.0717 | 0.0213 | 0.0958 | 0.1786 | 0.1786 | 0.1786 | 0.1786 | 0.1786

90 | 75 | 3.3674 | 3.4327 | 3.3608 | 3.3235 | 3.2794 | 3.2501 | 3.3663 | 3.3663 | 3.3663 | 3.3663 | 3.3663

0.0156 | 0.0036 | 0.0129 | 0.0228 | 0.0038 | 0.05 0.0157 | 0.0157 | 0.0157 | 0.0157 | 0.0157

Table 14 The 95% ACI’s and HPD credible intervals and the corresponding length of o, 0 and A for non -informative

priors
n r | parameter ACI HPD
10 o 1.782 | 0.0006
0 8.35021 | 0.0176
A 5.1938 | 0.0056
40 | 27 o 1.7918 | 0.001
0 7.9846 | 0.0113
A 24734 | 0.0012
90 | 72 o 0.8756 | 0.0001
0 5.5741 | 0.0056
A 1.8729 | 0.0006

We observe from the simulation study ,from Tables The performance the MLE’s and Bayes estimators using MCMC
are very similar in all aspects.

6 Real Data Analysis

In this section, we use the lifetime data set given by Table 15 to compare between proposed methods. The data set given
in Table 3 represents the relief times of twenty patients receiving an analgesic.
This data set was taken from [37].
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Table 15. Relief times of twenty patients.
1.1 14 13 1.7 19 1.8 16 22 1.7 27
41 18 15 12 14 30 1.7 23 16 20

Before progressing, first we would like to check whether the GLED fit this data or not. The calculated value of the
K-S test is 0.18497 for the GLE distribution and this value is smaller than their corresponding values expected at 5%
significance level, which is 0.29407 at n =20 . We have just plotted the empirical survival function and the fitted survival
functions in Figure 1. Observe that the GLED can be a good model fitting this data. Figure 2 shows that a Q-Q plot for
the data .

0.8

0.6

0.4

SurvivalFunctior

0.2

0.0

0 1 2 3 4 5

Fig. 1: Empirical and fitted distribution function for completed data set.

4.0
35
3.0 .
25

20 Lo

1.0 15 2.0 25 3.0

Fig. 2: Q-Q plot compare data to a specific distribution.

The unknown parameters using the ML estimates and the Bayes procedure are estimated. For computing the ML
estimates, use the numerical method and also compute the 95% ACIs using the observed Fisher information matrix. For
computing the Bayes estimates we consider the SE loss function and LINEX loss function are presented in Table 16 - 19.
For comparison purpose, the informative and the non-informative priors were assumed. The Bayes estimates are obtained
by using samples of size N=11000. In all cases informative and the non-informative priors ¢ = 2.78703,0 =0.012 ,
A =0.469487,c=2,-2,0.001.

First, the informative priors are considered with w; = 1.2, w, =0.01,w3 =1, wy = 1.2, w5 =0.0l and wg =1 .
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Table 16: Estimates of the parameters ¢, 0 , A for different methods under the informative priors

Parameters | MLEs BAYES MCMC
SEL LINEX SEL LINEX
c=-2 ¢=0.001 c=2 c=-2 ¢=0.001 c=2
o 1.9156 | 1.747 | 1.8113 1.747 1.7175 | 1.8299 | 1.8972 | 1.8299 | 1.7536
?] 0.1833 | 0.1719 | 0.1738 | 0.1719 | 0.1701 | 0.1854 | 0.1854 | 0.1854 | 0.1854
A 0.2667 | 0.2608 | 0.2642 | 0.2608 | 0.2576 | 0.2421 | 0.244 0.2421 | 0.2401

Table 17: The 95% ACI and the HPD credible interval of the parameters o, 0 , A under the informative priors.

o Lenght 2] Lenght A Lenght
ACI | (1.6064,2.2248) | 0.618437 | (0.1325,0.234) | 0.10157 | (0.2091,0.3243) | 0.1152

HPD | (1.2477,2.2774) | 1.02967 | (0.1803,0.1912) | 0.0108495 | (0.1578,0.3256) | 0.167789

Table18: Estimates of the parameters &, 0 , A for different methods under the non- informative priors

Parameters | MLEs BAYES MCMC
SEL LINEX SEL LINEX
c=-2 ¢=0.001 c=2 c=-2 ¢=0.001 c=2
o 1.9156 | 1.7897 | 1.8613 | 1.7897 | 1.7471 | 1.7865 | 1.8694 | 1.8361 1.708
?] 0.1833 | 0.1718 | 0.1737 | 0.1718 | 0.1701 | 0.1882 | 0.1883 | 0.1824 | 0.1882
A 0.2667 | 0.2562 | 0.2595 | 0.2562 | 0.2531 | 0.2284 | 0.2344 | 0.2161 | 0.2227

Table 19: The 95% ACI and the HPD credible interval of the parameters ¢, 0 , A under the non-informative priors
o Lenght ¢} Lenght A Lenght
ACI | (1.6064,2.2248) | 0.618437 | (0.1325,0.234) | 0.10157 | (0.2091,0.3243) | 0.11589

HPD | (1.2611,2.349) 1.08784 | (0.181,0.1998) | 0.0188514 | (0.1372,0.3651) | 0.227894

7 Conclusion

In this paper, MLE and Bayes estimation of the unknown parameter for the Type-II hybrid censored GLE distribution are
considered. We provide the maximum likelihood estimators and it is observed that the maximum likelihood estimators
of the unknown parameters can not obtained in the closed form and we use the numerical to compute them. Also, we
find the Bayes estimators of the unknown parameters and show that they can not be obtained in explicit forms, and we
have proposed two approximation methods to compute them. Lindley approximations and the MCMC method are used.
We have compared the performance of the different methods by Monte Carlo simulations, and it is observed that the
performance of quite satisfactory.

Under the simulation study:

1- Tables (1-9) showed that the mean square errors decrease by increasing n and r.

2- The Bayes estimates of the three parameters o, 0 and A using MCMC method are generally quite to their ML
estimates and Bayes estimates using Lindley approximation , based on MSEs.

Furthermore, we observe the following from real data analysis, it is observed that: from Table 17 and 19, the length of
the HPD credible intervals of o, 8 and A based on informative priors are al almost smaller than the corresponding length
of the HPD credible intervals based on non-informative priors.
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