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Abstract: In this research, point and interval estimation for unknown parameters of Burr Type-X (Burr-X) distribution based on

the Type-I hybrid progressive censoring are obtained. For the estimation process, the maximum likelihood estimations (MLEs) and

Bayesian methods (BM) with Markov Chain Monte Carlo (MCMC) are used. Finally, some computations and comparisons between

the different methods based on simulation data are obtained.
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1 Introduction

The censoring schemes are very important in lifetimes. There are many situations where the experimenter may not be
able to obtain full information about the failure times for all experimental elements. There are also situations in which
the pre-failure elements are planned in order to reduce the cost and time associated with the test. Traditional censoring,
including Type-I and Type-II schemes, does not enjoy the flexibility of removing elements except at the endpoint of the
experiment. The hybrid censoring scheme is defined as a mixture between the Type-I and Type-II schemes. Epstein [1,2]
introduced the hybrid censoring scheme and now became most popular in life test experiments. Some papers have tackled
in this point of research including Amein [3,4], Amein et al. [5], Balakrishnan [6], Balakrishnan and Cramer [7], Kundu
[8] and Mohie El-Din et al. [9].

The paper is organized as follows: The description of the model and the fixed of necessary assumptions are presented
in Section 2. In section 3, we calculate the MLEs. Then follow the fisher information matrix and construction of confidence
intervals are calculated in Section 4. By using the squared error loss function the Bayes estimation is presented in Section
5. Bayesian estimation using MCMC approach is obtained in Section 6. The numerical results and the analysis of obtained
data are presented in Section 7. Finally, real data set is presented as application, some remarks and conclusion will be given
in Section 8.

2 Description of Model

It is known that the Type-I hybrid Progressive censoring scheme (TIHPCS) is a mixture from the Type-II progressive and
hybrid censoring scheme. It considers n identical items setting on a life-test and their lifetime distributions denoted by
X1, ....,Xn. Suppose m and T are the number of failures and the time, respectively which is predetermined beforehand such
that m < n. Also, suppose the integer numbers R1,R2, . . . ,Rm represent the number of failure and units which are dropped
from the experiment satisfying the equation ∑m

i=1 Ri+m= n. When the first failure occurs X(1:m:n), the R1 of the remaining

units are randomly removed from the experiment and so on for reach to the mth failure or the predetermined time T . Life
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test is terminated at a random time T1 = min(X(m:m:n),T ). If the test quits at time T it will satisfy X( j:m:n) < T < X( j+1:m:n)
and R∗

j = n−R1− . . .−R j − j.

Fig. 1 experiment terminate at mth failure i.e. xm < T

Fig. 2 experiment terminate at time T , i.e. T < xm

The observed sample might be one of the follows two cases:

CaseI : {X(1:m:n),X(2:m:n), . . . ,X(m:m:n)}, i f X(m:m:n) < T (see f ig.1), (1)

CaseII : {X(1:m:n),X(2:m:n), . . . ,X( j:m:n)}, i f X( j:m:n) < T < X( j+1:m:n),(see f ig.2). (2)

Burr [10] has derived a family of Burr distributions. One of this family is Burr Type-X and also is called the
generalization of the Rayleigh distribution. It is known that the Burr distributions played an important practical role in
reliability study, phenomena modeling, health, agriculture and biology.

The cumulative distribution function and probability density function with shape parameter is α and scale parameter
is β are given by:

F(x;α,β ) = (1− e−(β x)2
)α ,x > 0 ,α,β > 0. (3)

f (x;α,β ) = 2αβ xe−(β x)2

(1− e−(β x)2

)(α−1) ,x > 0,α,β > 0. (4)

The reliability function and hazard rate function are respectively:

S(x,α,β ) = 1− (1− e−(β x)2
)α (5)

and

H(x,α,β ) =
2 α β xe−(β x2

i )(1− e−(β x2
i ))(α−1)

1− (1− e−(β x2
i ))α

(6)

3 Maximum Likelihood Estimation (MLE)

Here, we use the MLE technique to make a confidence interval for the unknown parameters α and β of Burr-X. The
likelihood function can written as:

Case I : L(α,β )∝
m

∏
i=1

f (xi) [1−F (xi)]
Ri , (7)

Case II : L(α,β )∝
m

∏
i=1

f (xi) [1−F (xi)]
Ri [1−F (T )]R

∗
j , (8)
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Substituting from Eqs. (3 - 4) in Eqs. (7 - 8); yields:

Case I : L(α,β |x) ∝
m

∏
i=1

2αβ xi e−(β x2
i )
(

1− e−(β x2
i )
)α−1

[1− (1− e−(β x2
i ))α ]R j , (9)

Case II : L(α,β |x) ∝
j

∏
i=1

2αβ xi e−(β x2
i )
(

1− e−(β x2
i )
)α−1

[1− (1− e−(β x2
i ))α ]Ri [1− (1− e−β T2

)α ]R
∗
j , (10)

where R∗
j = n−R1− . . .−R j − j.

The likelihood in the two case can be written as:

L(α,β |x) ∝
d

∏
i=1

2αβ xi e−(β x2
i )
(

1− e−(β x2
i )
)α−1

[1− (1− e−(β x2
i ))α ]Ri [1− (1− e−β T2

)α ]R
∗
j , (11)

From Eq. (11), the associated log-likelihood function can be written as:

logL(α,β |x) ∝ d logα + d logβ +
d

∑
i=1

logxi −β
d

∑
i=1

x2
i +(α − 1)

d

∑
i=1

log(1− e−(β x2
i ))

+
d

∑
i=1

R j log(1− (1− e−(β x2
i ))α)+

d

∑
i=1

R∗
j log(1− (1− e−(β x2

i ))α),

(12)

differentiating Eq. (12) by αandβ , we find

∂ logL

∂α
=

d

α
+

d

∑
i=1

log
(

1− e−(β x2
i )
)

−
d

∑
i=1

R j
(1− e−(β x2

i ))α

1− (1− e−(β x2
i ))α

log(1− e−(β x2
i )) = 0, (13)

∂ logL

∂β
=

d

β
−

d

∑
i=1

x2
i +(α − 1)

d

∑
i=1

x2
i e−(β x2

i )

(1− e−(β x2
i ))

−
d

∑
i=1

R j
α(1− e−(β x2

i ))α−1e−(β x2
i )x2

i

1− (1− e−(β x2
i ))α

= 0, (14)

=
d

β
−

d

∑
i=1

x2
i +(α − 1)

d

∑
i=1

x2
i e−(β x2

i )

(1− e−(β x2
i ))

−
d

∑
i=1

R j
α(1− e−(β x2

i ))α−1e−(β x2
i )x2

i

1− (1− e−(β x2
i ))α

−
d

∑
i=1

R∗
j

αT 2(1− e−β T2
)α−1e−β T2

1− (1− e−β T2
)α

= 0.

Estimators of αandβ can be obtained by solving the non-linear Eqs. (14 - 15) by numerical technique.

In addition, the MLE of Ŝ(x,α,β ) and Ĥ(x,α,β ) take the following form:

Ĥ(x,α,β ) =
2 α̂ β̂ xe(−β̂x2

i )(1− e(−β̂x2
i ))(α̂−1)

1− (1− e(−β̂x2
i ))α̂

, (15)

and

Ŝ(x,α,β ) = 1− (1− e(−β̂x2
i ))α̂ . (16)
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4 Asymptotic Confidence Intervals

Finding confidence interval estimation for unknown parameters, associated hazard rate and survival function is the main
aim of this section. For this purpose, the Fisher information matrix I = [Ii, j] , i, j = 1,2 is given by:

I =−





∂ 2 logL

∂α2
∂ 2 logL

∂α∂β
∂ 2 logL

∂β ∂α
∂ 2 logL

∂β 2



=

[

I11 I12

I21 I22

]

. (17)

From the above equations, the variance-covariance matrix is approximated as [Vi j] = [I]−1.
The (1−η)% approximate confidence intervals for α,β respectively are:

α̂ ±Z(η/2)

√

V̂11 and β̂ ±Z(η/2)

√

V̂22,

where V̂11and V̂22 are the elements on the main diagonal of the covariance matrix I−1(α̂ , β̂ ) and zη/2 is the percentile

of the standard normal distribution with right-tail probability η/2.

5 Bayes Method

Now, we will estimate the unknown parameters of Burr-X distribution by using Bayesian approach. Suppose that
X1,X2, ...,Xn denotes a Type-I progressive hybrid censored sample drawn from a Burr X(α,β ) distribution. It is assumed
that α and β are a prior distributed as independent Gamma(a,b) and Gamma(p,q) distributions respectively.

Π(α) ∝ αa−1e−bα , α > 0,a > 0,b > 0 (18)

and

Π(β ) ∝ β p−1e−qβ , β > 0, p > 0,q > 0. (19)

Therefore the joint prior distribution of α and β takes the following form,

g(α,β ) = L(α,β |x)π(α)π(β ). (20)

From the previous equation Eq. (20) the posterior density function for the parameters α and β for given the data,
denoted by π∗(α,β |x), becomes

π∗ (α,β |x) =
L(α,β |x)π(α)π(β )

∫ ∞
0

∫ ∞
0 L(α,β |x)π(α)π(β )dαdβ

. (21)

For any function under squared error loss function, the Bayes estimator of is the posterior mean which takes the
following form:

ĝ(α,β |x) = E (g(α,β |x)) =

∫ ∞
0

∫ ∞
0 g(α,β )L(α,β |x)π(α)π(β )

∫ ∞
0

∫ ∞
0 L(α,β |x)π(α)π(β )dαdβ

. (22)

In general, the Eq. (22) is complicated and difficult to solve. Therefore, the MCMC approach is used to solve the
double integration and may be a suitable method in this case. The mechanism of MCMC is generating samples from the
posterior distributions and then computing the Bayes estimator of ĝ(α,β |x).

6 Markov Chain Monte-Carlo (MCMC) Approach

The Metropolis-Hastings method is widely used in case of Eq. (23). It simulates samples from a prescribed posterior
distribution. It was developed by Metropolis et al. [11] and extended later by Hastings [12] and now it is the important
method in case of Eq. (23) compared with the Lindly approximation, Importance sampling and others. The posterior
density function becomes:

g(α,β |x) ∝ αd+a−1e−bαβ d+p−1e−qβ xi e−(β x2
i )
(

1− e−(β x2
i )
)α−1

[1− (1− e−(β x2
i ))α ]Ri [1− (1− e−β T2

)α ]R
∗
j . (23)
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From Eq. (23), the prior density function of α for given β and β for given α becomes:

g1(α|β ,x) ∝ αd+a−1
(

1− e−(β x2
i )
)α−1

[1− (1− e−(β x2
i ))α ]Ri [1− (1− e−β T2

)α ]R
∗
j , (24)

and

g2(β |α,x) ∝ β d+p−1e−qβ e−(β x2
i )
(

1− e−(β x2
i )
)α−1

[1− (1− e−(β x2
i ))α ]Ri [1− (1− e−β T2

)α ]R
∗
j . (25)

The prior density function of α and β given cannot be reduced analytically to well known distributions. So, the normal
distribution will be used as proposal distribution for generating α and β from the posterior density functions and in turn
obtain the Bayes estimates and the corresponding suitable intervals take the following form:

1.Start with β (0),α(0)

2.Set ν = 1.
3.Generate αν from g1 with the normal N(αν − 1,V).
4.Generate β ν from g2 with the normal N(β ν−1,V22).
5.Calculate αν and β ν .
6.Set ν = ν + 1.
7.Repeat 3-6 steps N times.
8.Rearrange the values αi and βi, i = M+ 1,M+ 2, · · ·,N.
9.Calculate the Bayes estimates of α and β as:

E(α|data) = 1
N−M ∑N

i=M+1 αi and E(β |data) = 1
N−M ∑N

i=M+1 βi , where M is burn-in.

10.(1 − η)% suitable intervals of α and β can be caculated as:

(

α{ η
2 (N−M)},α

{

1−η
2 (N−M)

}

)

and
(

β{ η
2 (N−M)},β

{

1−η
2 (N−M)

}

)

.

7 Simulation Study

For achieving the simulation studies, we used (Mathematica ver. 8.0) for illustrating the theoretical results of estimation
problem. Confidence interval for α , β , S and H using ML and BE include MCMC approach. Non-informative denoted by
(MCMC0) and informative priors denoted by (MCMC1) are calculated numerically. (500) samples have been generated
from Type-I hybrid progressive samples from Burr-X distribution with different censoring schemes R that contain N =
11000 values with discarding the first M = 1000 values in the case of MCMC as burn-in. The performances of ML and
Bayesian (with joint gamma priors) methods are compared via mean squared errors technique. In Tables (2 - 7) below,
average point estimation (mean), mean squared error (mse), interval estimation lower limit (LL), interval estimation upper
limit (UL), interval length (IL) and coverage probability (cov) for α , β , S and H are computed. All results are obtained at
α = 2;β = 3;T = 0.8;t = 0.5;a= 2;b= 1; p = 3;q = 1;N = 11000;M = 1000;η = 0.05 and different censoring schemes
(see Table 1).

Table 1. Censoring schemes with different values for n and m , where 0r means that 0 repeated r times.

Censoring scheme n m R

CS1 30 10 R1 = {2,1,2,3,1,3,2,2,3,1}
CS2 30 15 R2 = {2,1,2,03,2,2,0,1,1,0,2,1,1}
CS3 40 10 R3 = {2,3,2,6,4,3,2,4,3,1}
CS4 40 15 R4 = {2,1,2,0,2,1,2,1,4,1,1,4,2,1,1}
CS5 40 20 R5 = {2,1,02,1,1,2,2,1,0,2,1,2,02,1,0,2,1,1}
CS6 50 10 R6 = {2,3,2,3,4,6,4,5,5,6}
CS7 50 20 R7 = {2,1,2,1,1,1,2,2,1,0,2,1,2,2,3,1,2,2,1,1}
CS8 50 30 R8 = {2,1,04,2,02,2,0,2,03,2,2,1,03,2,2,05,1,1}
CS9 60 30 R9 = {2,1,3,03,2,0,3,2,0,2,03,2,2,1,03,2,2,02,3,0,1,1,1}

Censoring schemes with different values for n and m , where 0r means that 0 repeated r times.
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Table 2. Mean, MSE, LL, UL, IL and cov for α and β using maximum likelihood method.

CS n m mean MSE LL UL IL Cov

α

CS1 30 10 2.0318 0.061 1.3203 2.7432 1.4229 0.974
CS2 30 15 1.9816 0.1163 1.4348 2.5284 1.0936 0.87

CS3 40 10 2.0332 0.0483 1.3129 2.7535 1.4406 0.992
CS4 40 15 2.0589 0.0451 1.482 2.6359 1.1539 0.988
CS5 40 20 2.02 0.094 1.5408 2.4993 0.9585 0.906

CS6 50 10 2 0.052 1.2391 2.7609 1.5218 1

CS7 50 20 2.0412 0.039 1.5503 2.5321 0.9818 0.984
CS8 50 30 1.9734 0.1893 1.5917 2.3551 0.7634 0.778

CS9 60 30 2.0727 0.0737 1.6783 2.4671 0.7887 0.938

β

CS1 30 10 2.9611 0.3072 0.508 5.4142 4.9062 1

CS2 30 15 2.9977 0.3373 0.833 5.1625 4.3294 1

CS3 40 10 3.0018 0.2871 0.6404 5.3632 4.7227 1

CS4 40 15 3.0524 0.274 0.933 5.1718 4.2388 1

CS5 40 20 3.0341 0.3051 1.1394 4.9289 3.7896 1

CS6 50 10 2.9825 0.2867 0.6079 5.3572 4.7493 1

CS7 50 20 3.0379 0.2844 1.2001 4.8757 3.6756 1

CS8 50 30 3.0516 0.3802 1.4525 4.6507 3.1982 1

CS9 60 30 3.121 0.285 1.5255 4.7166 3.1911 1

Mean, MSE, LL, UL, IL and cov for α and β using maximum likelihood method.

Table 3. Mean, MSE, LL, UL, IL and cov for S and H using maximum likelihood method.

CS n m mean MSE LL UL IL Cov

S

CS1 30 10 0.7166 0.0855 0.5619 0.8714 0.3096 0.952

CS2 30 15 0.7362 0.0947 0.6048 0.8676 0.2629 0.856

CS3 40 10 0.7227 0.0779 0.5737 0.8718 0.2981 0.962
CS4 40 15 0.718 0.0705 0.589 0.8469 0.2579 0.964
CS5 40 20 0.7269 0.0879 0.6106 0.8431 0.2326 0.868

CS6 50 10 0.7354 0.0755 0.5935 0.8772 0.2837 0.954
CS7 50 20 0.7245 0.0617 0.6124 0.8365 0.2241 0.948
CS8 50 30 0.739 0.1065 0.6444 0.8337 0.1893 0.72

CS9 60 30 0.7171 0.0762 0.619 0.8151 0.196 0.87

H

CS n m mean MSE LL UL IL Cov

CS1 30 10 2.6338 0.849 0.7772 4.4905 3.7133 0.968

CS2 30 15 2.4867 0.9384 1.1219 3.8515 2.7296 0.87

CS3 40 10 2.5914 0.7894 0.7054 4.4775 3.7721 0.976

CS4 40 15 2.6583 0.726 1.1562 4.1604 3.0042 0.976

CS5 40 20 2.5838 0.8624 1.3534 3.8143 2.4609 0.904

CS6 50 10 2.4711 0.7968 0.5622 4.38 3.8177 0.972

CS7 50 20 2.5834 0.6105 1.3375 3.8294 2.4919 0.982

CS8 50 30 2.5254 1.1112 1.5534 3.4975 1.9441 0.76

CS9 60 30 2.7114 0.7877 1.6607 3.7622 2.1015 0.924

Mean, MSE, LL, UL, IL and cov for S and H using maximum likelihood method.
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Table 4. Mean, MSE, LL, UL, IL and cov for α and β using Bayesian estimation (non-informative prior).

CS n m mean MSE LL UL IL Cov

α

CS1 30 10 1.9553 0.0534 1.2235 2.6089 1.3854 0.988
CS2 30 15 2.068 0.0441 1.5167 2.5663 1.0496 0.978

CS3 40 10 1.9448 0.0564 1.2069 2.6027 1.3957 0.986
CS4 40 15 2.0014 0.0431 1.4201 2.5306 1.1105 0.988
CS5 40 20 2.0773 0.0348 1.5851 2.5198 0.9347 0.98

CS6 50 10 1.8772 0.0749 1.1046 2.5531 1.4486 0.966
CS7 50 20 2.0122 0.0318 1.5245 2.4631 0.9386 0.986
CS8 50 30 2.2042 0.0671 1.8114 2.5603 0.7489 0.866

CS9 60 30 2.1046 0.0336 1.7119 2.4691 0.7573 0.966

β

CS1 30 10 2.8991 1.9721 1.2 5.8658 4.6657 0.99
CS2 30 15 3.1852 2.636 1.6014 6.1831 4.5817 0.95

CS3 40 10 2.9252 0.8207 1.2603 5.7399 4.4796 0.986
CS4 40 15 2.9854 0.9989 1.4558 5.4615 4.0057 0.976
CS5 40 20 3.2131 1.6063 1.7012 5.6087 3.9075 0.964

CS6 50 10 2.8672 0.3975 1.2031 5.4253 4.2221 0.988
CS7 50 20 3.0039 0.7613 1.6348 5.1135 3.4787 0.964
CS8 50 30 3.5935 3.1328 2.2216 5.9699 3.7483 0.85

CS9 60 30 3.23 0.8096 1.9326 5.1126 3.18 0.952

Mean, MSE, LL, UL, IL and cov for α and β using Bayesian estimation (non-informative prior).

Table 5. Mean, MSE, LL, UL, IL and cov for S and H using Bayesian estimation (non-informative prior).

CS n m mean MSE LL UL IL Cov

S

CS1 30 10 0.7475 0.0704 0.599 0.8959 0.2969 0.952
CS2 30 15 0.7435 0.0698 0.6124 0.8746 0.2622 0.904

CS3 40 10 0.7557 0.0693 0.6105 0.9009 0.2904 0.934
CS4 40 15 0.7392 0.0598 0.6144 0.864 0.2496 0.958
CS5 40 20 0.733 0.0667 0.6171 0.8489 0.2318 0.9
CS6 50 10 0.771 0.0714 0.6277 0.9143 0.2866 0.91
CS7 50 20 0.739 0.0527 0.6296 0.8484 0.2188 0.966
CS8 50 30 0.7234 0.0658 0.6244 0.8224 0.198 0.876

CS9 60 30 0.7219 0.059 0.6242 0.8195 0.1954 0.904

H

CS1 30 10 2.3075 0.6873 0.3932 4.2217 3.8285 0.952
CS2 30 15 2.4793 0.5944 1.0689 3.8897 2.8208 0.968

CS3 40 10 2.2541 0.7194 0.2003 4.3079 4.1076 0.958
CS4 40 15 2.4282 0.6108 0.9312 3.9252 2.994 0.964
CS5 40 20 2.5649 0.5807 1.3137 3.8161 2.5023 0.972

CS6 50 10 2.0801 0.7577 −0.2033 4.3635 4.5668 0.92
CS7 50 20 2.4368 0.5038 1.2002 3.6733 2.4732 0.978
CS8 50 30 2.8336 0.6401 1.7715 3.8957 2.1241 0.982

CS9 60 30 2.6861 0.5728 1.6288 3.7434 2.1146 0.982

Mean, MSE, LL, UL, IL and cov for S and H using Bayesian estimation (non-informative prior).
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Table 6. Mean, MSE, LL, UL, IL and cov for α and β using Bayesian estimation (informative prior).

CS n m mean MSE LL UL IL Cov

α

CS1 30 10 1.9727 0.0332 1.3531 2.5401 1.187 0.996
CS2 30 15 2.048 0.025 1.5553 2.5075 0.9521 1

CS3 40 10 1.9652 0.0342 1.331 2.5425 1.2115 0.996
CS4 40 15 2.0113 0.0274 1.4923 2.4951 1.0027 1
CS5 40 20 2.0709 0.0247 1.6315 2.4776 0.8462 0.99

CS6 50 10 1.9156 0.0459 1.2717 2.5041 1.2324 0.99
CS7 50 20 2.0116 0.0212 1.5658 2.4322 0.8664 0.996
CS8 50 30 2.1783 0.0465 1.8198 2.5127 0.6929 0.918

CS9 60 30 2.103 0.0278 1.7324 2.4493 0.7169 0.98

β

CS1 30 10 2.8991 0.3001 1.3895 5.1293 3.7398 0.996
CS2 30 15 3.1852 0.5579 1.6605 5.3313 3.6707 0.988

CS3 40 10 2.9252 0.2254 1.4388 5.0768 3.638 0.994
CS4 40 15 2.9854 0.2282 1.5794 4.9781 3.3987 0.996
CS5 40 20 3.2131 0.704 1.805 5.0963 3.2913 0.972

CS6 50 10 2.8672 0.1863 1.4366 4.9557 3.519 1
CS7 50 20 3.0039 0.2509 1.7081 4.7997 3.0916 0.994
CS8 50 30 3.5935 1.2608 2.2019 5.3229 3.1209 0.884

CS9 60 30 3.23 0.4817 1.9831 4.8437 2.8606 0.97

Mean, MSE, LL, UL, IL and cov for α and β using Bayesian estimation (informative prior).

Table 7. Mean, MSE, LL, UL, IL and cov for S and H using Bayesian estimation under (informative prior).

CS n m mean MSE LL UL IL Cov

S

CS1 30 10 0.7386 0.0707 0.5884 0.8888 0.3004 0.96
CS2 30 15 0.7359 0.0658 0.6031 0.8687 0.2656 0.944

CS3 40 10 0.7462 0.0673 0.6012 0.8912 0.29 0.954
CS4 40 15 0.7336 0.0596 0.6077 0.8596 0.2518 0.974
CS5 40 20 0.7281 0.0657 0.6113 0.845 0.2337 0.902

CS6 50 10 0.7609 0.0697 0.6207 0.9011 0.2804 0.938
CS7 50 20 0.7361 0.0524 0.6261 0.846 0.22 0.96
CS8 50 30 0.7173 0.0644 0.6175 0.8171 0.1996 0.91

CS9 60 30 0.7189 0.0595 0.6208 0.8171 0.1963 0.9

H

CS1 30 10 2.3856 0.6576 0.5414 4.2297 3.6884 0.958
CS2 30 15 2.5065 0.5765 1.1178 3.8952 2.7775 0.968

CS3 40 10 2.3346 0.6491 0.4274 4.2418 3.8144 0.966
CS4 40 15 2.4748 0.5809 0.9953 3.9543 2.959 0.972
CS5 40 20 2.5863 0.5641 1.3432 3.8295 2.4863 0.978

CS6 50 10 2.1832 0.7011 0.1699 4.1965 4.0266 0.964
CS7 50 20 2.4537 0.4926 1.2238 3.6835 2.4597 0.98
CS8 50 30 2.8357 0.6383 1.7852 3.8861 2.1009 0.986

CS9 60 30 2.703 0.5772 1.6475 3.7584 2.1109 0.988

Mean, MSE, LL, UL, IL and cov for S and H using Bayesian estimation under (informative prior).

8 Remarks and Conclusion

In the above sections, the ML and BE methods are used to fix the interval estimation for the unknown parameters of Burr-
X distribution in case of TIHPCS. MCMC approximation is used in Bayesian procedure to solve the hard integrations.
Some numerical computations and comparisons are presented to illustrate the methods of inference developed here. The
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simulation approach was due to examine and compare the fulfillment of the proposed methods for meany values of the
sample sizes, different censoring schemes. From the results, we observe the following.

1.For fixed values of the sample size, by increasing the failure times, the MSEs and Cov for both hazard rate function
and reliability function of the considered parameters are decreased.

2.For fixed values of the sample size the MSEs, for α less than the MSEs for β in all methods studied here.
3.The results show that, the Bayesian estimation with informative prior is better comparing with the other methods.
4.We observed that, in most cases, mean squared errors and interval lengths calculated for Bayesian under MCMC

approximation procedure are smaller than calculated for maximum likelihood, so Bayesian estimation under MCMC
approximation procedure is better than the maximum likelihood as expected. Coverage probabilities in the two
methods are nearly so close.
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