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Abstract: In this paper, we obtain the point and interval estimation for Frechetdistribution FD based on progressive first failure PFF

censored data using two methods: Maximum likelihood estimation ( MLE) and Bayesian estimation. A comparison of Bayesian

estimation under symmetric and asymmetric loss functions are obtained. The highest posterior density (HPD) interval and

approximate confidence interval CI was made.
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1 Introduction

One of the most common censoring schemes is Type-II censoring.which saves time and money. However, when the
lifetimes of products are very high, the experimental time of a Type-II censoring life test can be still too long. A
generalization of Type-II censoring is the progressive Type-II censoring. [1] described a life test in which the
experimenter might decide to group the test units into several sets, each as an assembly of test units . Then, run all the
test units simultaneously until the first failure in each group. Such a censoring scheme is called first-failure censoring, [2]
and [3] obtained MLE, exact confidence intervals and exact confidence regions for the parameters of the Gompertz and
Burr Type-XII distributions based on first failure-censored sampling, respectively. For more reading one can refer to [4]
and [5]. The first-failure censoring does not allow for sets to be removed from the test at the points other than the final
termination point. However, this allowance will be desirable in practice. This leads us to the area of progressive
censoring. [6] combined the concepts of first-failure censoring and progressive censoring to develop a new life test plan
called a PFF censoring scheme. [7] studied the coefficient of variation of Gompertz distribution under PFF censoring. [8]
and [9] introduced MLE, Bayesian estimates, exact confidence intervals and exact confidence regions for the parameters
of Gompertz and Burr Type-XII distributions under PFF censored sampling.

2 Model desciption

Suppose that number (n) of independent groups with k items within each group are put on a life test. R1 groups and
the group in which the first failure is observed are randomly removed from the test as soon as the first failure Y R

1;m,n,k

has occurred, R2 groups and the group in which the second failure is observed are randomly removed from the test as
soon as the second failure occurred Y R

2;m,n,k , and finally when the m-th failure Y R
m;m,n,k is observed, the remaining groups

Rm,(m ≤ n) are removed from the test. Then Y R
1;m,n,k < ... < Y R

m;m,n,k
are called PFF censored order statistics with the

progressive censored scheme R = (R1,R2, ...,Rm), where n = m+∑m
i=1Ri. If the failure times of the n× k items originally
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in the test are from a continuous population with distribution function F(y) and probability density function f (y) , the
joint probability density function for Y R

1;m,n,k,Y
R

2;m,n,k, ...,Y
R

m;m,n,k is defined as follows:

f1,2,...,m(Y
R

1;m,n,k,Y
R

2;m,n,k, ...,Y
R

m;m,n,k)= A(n,m−1)km
m

∏
i=1

f (Y R
i;m,n,k)

[
1−F(Y R

i;m,n,k)
]k(Ri+1)−1

, (1)

0 < y1< y2< ... < ym< ∞ , where A(n,m− 1) = n(n−R1− 1)...(n−R1−R2 − ...−Rm−1− (m− 1))

Special cases:

1.Putting k = 1 gives the progressively Type-II censored order statistics.
2.The complete sample case when R = {0,0, ...,0} and k = 1.

3 Frechet Distribution

The probability density function (PDF) and the cumulative distribution (CDF) respectively of the FD as follows:

f (x) =

(
c

β

)(
x−θ

β

)−(c+1)

exp

[
−

(
x−θ

β

)−c
]
, x > θ ,c > 0,β > 0. (2)

and

F(x) = exp

[
−

(
x−θ

β

)−c
]
, x > θ ,c > 0,β > 0. (3)

In the FD, the shape parameter c governs the shape of the PDF, the hazard function and the general properties of the FD.

4 Maximum Likelihood Estimation

This section discussed the process of obtaining point and interval estimations of the parameters of FD based on PFF
censored data.

To find the point estimation, let X = x
R1
1:m,n,k,x

R2
2:m,n,k, · · ·,x

Rm

m:m,n,k be the PFF censored order statistics from FD with

censored scheme R. From equations (1), (2) and (3) the likelihood function is given by

L(c,β ,θ |X) = Akm
m

∏
i=1

[(
c

β

)(
xi −θ

β

)−(c+1)

exp

[
−

(
xi −θ

β

)−c
]][

1− exp

[
−

(
xi −θ

β

)−c
]]k(Ri+1)−1

, (4)

The log likelihood function is :

ℓ(c,β ,θ |X) = lnA+m lnk+m lnc+mc lnβ − (1+ c)
m

∑
i=1

ln(xi −θ )−
m

∑
i=1

(
xi −θ

β

)−c

+
m

∑
i=1

(k(Ri + 1)− 1) ln

[
1− e

−
(

xi−θ
β

)−c]
, (5)

we obtain the the first partial derivatives of the parameters with respect to c, θ , β and equating to zero.

∂ℓ

∂c
=

m

c
+m lnβ −

m

∑
i=1

ln(xi −θ )+
m

∑
i=1

(
xi −θ

β

)−c

ln

(
xi −θ

β

)
−

m

∑
i=1

(k(Ri + 1)− 1)
e
−
(

xi−θ
β

)−c( xi−θ
β

)−c
ln
(

xi−θ
β

)

1− e
−
(

xi−θ
β

)−c = 0, (6)

∂ℓ

∂β
=

mc

β
−

c

β

m

∑
i=1

(
xi −θ

β

)−c

+
c

β

m

∑
i=1

(k(Ri + 1)− 1)

(
xi−θ

β

)−c

e
−
(

xi−θ
β

)−c

1− e
−
(

xi−θ
β

)−c = 0, (7)

∂ℓ

∂θ
= (1+ c)

m

∑
i=1

(
1

xi −θ

)
+

c

β

m

∑
i=1

(k(Ri + 1)− 1)

(
xi−θ

β

)−c−1

e
−
(

xi−θ
β

)−c

1− e
−
(

xi−θ
β

)−c −
c

β

m

∑
i=1

(
xi −θ

β
)−c−1 = 0 (8)

Equations (6), (7), (8) cannot be solved analytically, so we used Newton-Raphson method to solve them.
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5 Interval Estimation

In this section we obtain the approximate CI of the parameters θ ,c and β .

5.1 Approximate confidence intervals ACI

In this subsection we obtain approximate confidence intervals of the parameters based on asymptotic distribution of the
MLEs of the unknown parameters Θ = (β ,θ ,c). The asymptotic variances and covariances of the MLE for parameters
θ , c and β are given by elements of the inverse of the Fisher information matrix Unfortunately, it is difficult to obtain
the exact mathematical expressions for the above-mentioned equations. Therefore, we give the approximate (observed)
asymptotic variance-covariance matrix for the MLE, which is obtained by dropping the expectation operator E.

I−1
i j (c,β ,θ ) =




− ∂ 2ℓ
∂β 2

∂ 2ℓ
∂β ∂c

∂ 2ℓ
∂β ∂θ

∂ 2ℓ
∂c∂β − ∂ 2ℓ

∂c2
∂ 2ℓ

∂c∂θ
∂ 2ℓ

∂θ∂β
∂ 2ℓ

∂θ∂c
− ∂ 2ℓ

∂θ 2




−1

=




var(β̂ ) cov(β̂ , ĉ) cov(β̂ , θ̂ )

cov(ĉβ̂ ) var(ĉ) cov(ĉ, θ̂ )

cov(θ̂ , β̂ ) cov(θ̂ , ĉ) var(θ̂)


 (9)

Approximate confidence intervals for c, θ and β can be obtained Thus, the (1− γ)100% confidence intervals for
parameters c,θ and β become,

ĉ±Z γ
2

√
var(ĉ) β̂ ±Z γ

2

√
var(β̂ ) θ̂ ±Z γ

2

√
var(θ̂ ) (10)

where Z γ
2

is the percentile of the standard normal distribution with right-tail probability.

5.2 Bootstrap confidence Intervals

In this section, we construct the percentile bootstrap (Boot-p) (see, [19]) The bootstrap is a resampling method for
statistical inference. It is commonly used to estimate confidence intervals as well as be used to estimate bias and variance
of an estimator or calibrate hypothesis tests. The following steps are adopted to obtain PFF censoring bootstrap sample
from FD with parameters c,θ and β based on simulated PFF censored data set.

Algorithm

1.From an original data set X = (xR
1,m,n,k

,xR
2,m,n,k

,xR
3,m,n,k

, · · ·,xR
m,m,n,k

) , compute the MLE of the parameters c and β and θ

say ĉ, θ̂ and β̂ from equations (6), (7) and (8).

2.Use ĉ, θ̂ and β̂ to generate a bootstrap sample X
∗

with the same values of Ri,(i = 1.2. · ··,m) using the algorithm
made by [20] .

3.Similar to step 1 based on X
∗

compute the bootstrap sample estimates of c,θ and β say ĉ∗, θ̂ ∗ and β̂ ∗ .

4.Repeat steps 2 and 3 N times representing N bootstrap MLE of c, θ and β based on N different bootstrap samples.

5.Arrange ĉ∗i, θ̂ ∗i and β̂ ∗i in an ascending order to obtain bootstrap sample (ψ
(1)
t ,ψ

(2)
t , · · ·,ψ

(N)
t ), t = 1,2,3 where

ψ1 = ĉ∗,ψ2 = θ̂ ∗,ψ3 = β̂ ∗ Let G(x) = P(ψt ≤ x) be cumulative distribution function of ψt . Define ψtboot = G−1(x)
for given x. The approximate bootstrap 100(1− γ)% confidence interval of ψt given by:

[
ψtboot

( γ

2

)
,ψtboot

(
1−

γ

2

)]
(11)

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


184 F. H. Riad, E. H. Hafez: Point and interval estimation for Frechet distribution...

6 Bayes estimators under symmetric and asymmetric loss function

This section covers with obtaining the Bayesian estimation for the FD parameters under different loss functions. [10] had
studied the Bayesian estimation using squared error loss function SELF for lindely distribution using important sampling
technique and Metropolis-Hasting algorithm MHA . In practical works the parameters cannot be treated as a constant
during the life testing time. Thus, it would be a fact to assume the parameters used in the life time model as random
variables. We have also conducted a Bayesian study assuming the following independent gamma priors for θ ,β and c:

g1(θ ) ∝ θ µ−1e−λ θ ,θ > 0, (12)

g2(β ) ∝ β µ1−1e−λ1β ,β > 0 (13)

g3(c) ∝ cµ2−1e−λ2c,c > 0 (14)

Where µ1,µ2,µ ,λ ,λ2,λ1 are hyperparameters and µ1,µ2,µ ,λ ,λ2,λ1 > 0

Assume that the model parameters θ , c and β are independent, then the joint prior PDF of θ , β and c is given by

π(θ ,c,β ) ∝ cµ2−1β µ1−1θ µ−1e−(θλ+β λ1+cλ2), θ ,β ,c > 0. (15)

6.1 Symmetric loss function

In this subsection, we conducted Bayesian estimation using SELF. The likelihood function has the form :

L(θ ) = Akm
m

∏
i=1

[(
c

β

)(
x−θ

β

)−(c+1)

exp

[
−

(
x−θ

β

)−c
]][

1− exp

[
−

(
x−θ

β

)−c
]]k(Ri+1)−1

(16)

The joint posterior density function of the parameters θ ,β and c can be written from (4) and (15) as follows:

π∗ (θ ,β ,c | x) ∝ L(θ ,β ,c)π(θ ,β ,c) (17)

π∗ (θ ,β ,c | x) ∝ L(θ ) = Akm
m

∏
i=1

[(
c

β

)(
x−θ

β

)−(c+1)

exp

[
−

(
x−θ

β

)−c
]]

[
1− exp

[
−

(
x−θ

β

)−c
]]k(Ri+1)−1

∗ cµ2−1β µ1−1θ µ−1e−(θλ+β λ1+cλ2).

(18)

The posterior density function is:

π∗ (θ ,β ,c | x) =
L(θ )π(θ ,β ,c | x)∫ ∞

0 L(θ )π(θ ,β ,c | x)dθdcdβ
(19)

Based on SE loss function, the Bayes estimator of the function of parameters U =U(Θ), Θ = (θ ,β ,c) is given by

ÛSE =
∫

Θ

U π∗(Θ) dΘ , (20)

where π∗(Θ) is given by equation (19).
Accordingly, the Bayes estimate of any function of θ say h(θ ) under Squared Error loss function is

θ̂SE = E(θ |data) [h(θ )] =

∫ ∞
0 h(θ )L(θ )g(θ | x)dθ∫ ∞

0 L(θ )g(θ | x)dθ .
(21)

It is impossible to compute equation (21) analytically. The posterior density function cannot be reduced analytically to
well known distributions. However, its plot shows that it is similar to normal distribution. Hence, to calculate the integral
that we cannot calculate exactly, we use the Metropolis-Hasting algorithm MHA with normal as a proposal distribution.

c© 2020 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 9, No. 1, 181-191 (2020) / www.naturalspublishing.com/Journals.asp 185

6.2 Asymmetric loss function

Asymmetric loss function may be more appropriate in some fields. Recently, many authors considered asymmetric loss
functions in reliability and life testing. One of the most popular asymmetric loss functions is linear-exponential loss
function (LINEX) which was introduced by [11]. It used in several papers, for example, [12], [13], [14] and [15]. This
function is approximately linearly on one side and rises approximately to zero on the other side. Under the assumption

that the minimal loss occurs at θ̂ = θ , the LINEX loss function can be expressed as:

L1(δ ) ∝ exp(wδ )−wδ − 1, (22)

where δ = θ̂ − θ , θ̂ is the estimate of θ ,w 6= 0. The magnitude of w represents the direction, and degree of symmetry.
Where w > 0 means overestimation is more serious than underestimation, and w < 0 means the opposite. For w close to
zero the LINEX loss function is approximately the Squared Error Loss SEL function. The posterior expectation of the
LINEX loss function is :

Eθ (L1(θ̂ −θ )) ∝ exp(wθ )Eθ [exp(−wθ )]−w((θ̂ −Eθ [θ ])− 1. (23)

The Bayes estimator under the LINEX loss function is the value of

θ̂LINEX =
−1

w
log(Eθ [exp(−wθ )]), (24)

such that Eθ [exp(−wθ )] exists. Another asymmetric loss function called a General Entropy loss function GELF was
proposed by [16] which can be expressed as:

L2(θ̂ ,θ ) ∝ (
θ̂

θ
)q − q log(

θ̂

θ
)− 1. (25)

The weighted SELF results from q =−1. The Bayes estimate θ̂GE under GEL function is

θ̂GE = (Eθ [θ ]
−q)

−1
q , (26)

such that Eθ [θ ]
−q exists. Since it is impossible to compute equation (24) and 26 analytically, we used the Markov

chain Mont-Carlo (MCMC) method such as Metropolis-Hastings algorithm. to draw samples from the posterior density
function and then to compute the Bayes estimate.

6.3 Bayesian estimation using MCMC method

In this subsection, MCMC method is considered to generate samples from the posterior distribution and then compute the
BEs of θ , c and β From the joint posterior density function in equation (19), the conditional posterior distributions of θ ,
c and β are given respectively by:

π∗(θ |c,β ) ∝θ µ2−1e−λ θ
mi

∏
j=1

[
exp

[
−

(
x−θ

β

)−c
]][

1− exp

[
−

(
x−θ

β

)−c
]](k(Ri+1)−1)

, (27)

π∗(β |θ ,c) ∝β m∗c+µ1−1e−λ1β
mi

∏
j=1

[
exp

[
−

(
x−θ

β

)−c
]][

1− exp

[
−

(
x−θ

β

)−c
]](k(Ri+1)−1)

, (28)

π∗(c|β ,θ ) ∝cµ+m−1e−cλ2

mi

∏
j=1

[
exp

[
−

(
x−θ

β

)−c
]][

1− exp

[
−

(
x−θ

β

)−c
]](k(Ri+1)−1)

. (29)

The conditional posterior distributions of θ , c and β in equations (27), (28), and (29) cannot be reduced analytically
to well known distribution. Consequently, MHA is used to generate random samples from these distributions see [17].
The following algorithm is proposed to compute BE of U =U(θ ,c,β ) under SELF, GELF and LINEX loss function.
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6.4 MHA

The MHA was originally introduced by [17]. Suppose that our goal was to draw samples from some distributions f (x|θ )=
νg(θ ), where ν is the normalizing constant which may be unknown or very difficult to compute. The MHA provided a

way of sampling from f (x|θ ) with no need us to know ν . Let g
(

θ (b)|θ (a)
)

be an arbitrary transition kernel: that is the

probability of moving, or jumping, from current state θ (a) to θ (b). This is sometimes called the proposal distribution.

The following algorithm generated a sequence of values θ (1),θ (2), ...,θ (n) which forms a Markov chain with stationary
distribution given by f (x|θ ).

6.5 MHA (Algorithm 1)

1.Start with initial point θ (0) = θ̂MLE , c(0) = ĉMLE , β (0) = β̂MLE .
2.Set i=1.
3.Generate θ (∗) from the proposal distribution N(θ (i−1),varθ (i−1)).

4.Calculate the acceptance probability r(θ (i−1),θ (∗)) = min

[
1,

π(θ (∗))

π(θ (i−1))

]
.

5.Generate U from uniform on (0, 1).
6.If U < r(θ (i−1),θ (∗)) accepts the proposal distribution and set θ (i) = θ (∗). Otherwise, reject the proposal distribution

and set θ (i) = θ (i−1).
7.Set i = i+ 1.
8.Repeat Steps (1-7) for the other parameters c,β N times.
9.The approximate estimates of SE , LINEX, GELF are given respectively by

θ̂SE =
1

N −M

N

∑
i=M+1

U(c(i),θ (i),β (i)), (30)

θ̂LINEX =
−1

c
log[

1

N −M

N

∑
i=M+1

exp{−cU(c(i),θ (i),β (i))}] (31)

θ̂GE =

(
1

N −M

N

∑
i=M+1

exp{−cU(c(i),θ (i),β (i))}

)−1
q

, (32)

we can compute c and β where M is nburn units and N is the number of mcmc iterations.
10.Do the same steps for the other two parameters c and β .

6.6 Highest Posterior Density HPD interval algorithm

In Bayesian statistics, a credible interval is an interval in the domain of a posterior probability distribution used for
interval estimation .The credible intervals are analogous to confidence intervals in frequentist statistics although they
differ on a philosophical basis, Bayesian intervals treat their bounds as a fixed value and the estimated parameter as a
random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a
fixed value. In this section, we described the algorithm for finding (1− γ) HPD interval for θ ,c,β (credible intervals).
This algorithm proposed by [18]

6.7 (Algorithm 2)

1.Arrange the values of the estimates obtained from BE ( θ (∗) ) in ascending order.
2.Find the position of the lower bound which is N[(N −M)∗ γ/2], M is the nburn.

3.The lower bound of θ is the observed value has the number in arrangement θ
(∗)
low = θ

(∗)
( N − M)∗(γ/2)

.

4.Find the position of upper bound which is N[(N −M)∗ (1− (γ/2))].
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5.The upper bound of θ is the observed value has the number in arrangement θ
(∗)
upp = θ

(∗)
(N−M)∗(1−(γ/2))

.

6.Repeat the steps N times and find the average value of θ
(∗)
low and θ

(∗)
upp.

7.Do the same steps for the other two parameters c,β .

7 Simulation studies

In this section, simulation studies are conducted to investigate the performances of the MLEs and BEs (under SELF,
GELF and LINEX loss function) in terms of their mean square errors (MSEs) and for various choices of sample sizes (n,
m, and censoring schemes (Ri, i = 1,2, ...,m). Table (1) contains censoring schemes (C.S) used in the simulation,
Table(2) and Table(3), Table(4) contains the results concluded from the simulation study.
Using the fact that the PFF censored sample with distribution function F(x), can be viewed as a progressive Type-II
censored sample from a population with distribution function 1− (1−F(x))k, we generate a PFF censored samples from
the continuous random variable using the algorithm described in [20]. The estimation procedure is performed according
to the following algorithm, for mor reading about PFF see [21], for more reading about BE see [22] .

Algorithm (3)

1.Specify the values of k, n, m.
2.Generate random samples of size m uing the algorithm made by [20] from Uniform(0,1) distribution, (U1,U2, ...,Um),

i = 1,2, ...,m.
3.Define the values of the censored schemes, Ri, i = 1,2, ...,m, and such that ∑m

i=1 Ri = n−m.

4.Set Ei j =U
1/(i+∑m

j=m−i+1 R j)

i , and i = 1,2, ...,m.
5.Obtain PFF censored samples (U∗

1 ,U
∗
2 , ...,U

∗
m), where U∗

i = 1−∏m
j=m−i+1 R j, i = 1,2, ...,m.

6.Use step (4) to generate random samples (t1, t2, ..., tm), i = 1,2, ...,m. from equation (3) as follows:

[ti = (θ +β (−Log[(1− (1−U∗
i )

(1/k))])(−1/c))], i = 1,2, ...,m.
7.Use the progressive censored data to compute the MLEs of the model parameters by solving the nonlinear system

((6),(7),(8)).
8.Compute the BEs of the distribution parameters according to algorithm (1), with N = 11000, M = 2000, where N is

the number of mcmc iterations and M is the nburn.
9.Compute the CIs bounds with confidence level 95% for the 3 parameters θ , c and β .

10.Compute 95% credible CIs using algorithm (2) of the parameters θ , c and β .
11.Replicate the steps ((2)− (10)), 1000 times.
12.Compute the average values of the MSEs associated with the MLEs and BEs of the parameters.
13.Compute the average values of the lengths of bootstrap CI, ACI, credible CI and the coverage probability of these CIs

of the parameters.
14.Do steps ((1)-(13)) with different values of n, m, and Ri, i = 1,2, ...,m.

Table (1) censoring schemes used in simulation.

C.S [1] m = 10,n = 40,R1 = R2 = R3 = 10,R4 = R5 = R6 = R7 = ...= Rm = 0

C.S [2] m = 10,n = 40,R1 = R2 = R3 = R4 = R5 = R6 = 5,R7 = R8 = ...= Rm = 0

C.S [3] m = 30,n = 70,R1 = R2 = R3 = R4 = 10,R5 = ...= Rm = 0

C.S [4] m = 30,n = 70,R1 = 20,R2 = 10,R3 = R4 = ...= Rm = 0

C.S [5] m = 50,n = 70,R1 = R2 = R3 = R4 = R5 = 10,R6 = ...= Rm = 0

C.S [6] m = 50,n = 70,R1 = R2 = 20,R3 = 10,R4 = ...= Rm = 0

C.S [7] m = 70,n = 120,R1 = R2, ...= R14 = 5,R15...= Rm = 0

C.S [8] m = 70,n = 120,R1 = R2 = R3 = R4 = R5 = R6 =,R7 = 10,R8 = ...= Rm = 0
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Table (2) MSE, CI and HPD, with n = 50,m = 10,k = 2.
Parameter,C.S[1] [c] [θ ] [β ]

MSEMlE 0.0486761 0.0136221 0.0890451

MSESE 0.00093363 0.000247784 0.00199665

MSELINEX 0.00091788 0.00024855 0.00199663

MSEGE 0.00090892 0.0002491 0.0019984

95%CI Length 2.10274 1.0148 1.61856

95%CI f orHPD Length 0.063618 0.0342 0.0544

bootstrapCI Length 1.37561 0.71166 1.26723

COVMLE 0.92 0.95 0.93

COVMCMC 0.95 0.99 0.98

COVboot 0.96 0.97 0.98

Parameter,C.S[2] [c] [θ ] [β ]

MSEMlE 0.095757 0.0139325 0.0771662

MSESE 0.00154333 0.000303997 0.000849126

MSELINEX 0.00154525 0.00030456 0.00084941

MSEGE 0.00154735 0.00030496 0.0008499

95%CI Length 2.21486 1.02571 1.65005

95%CI f orHPD Length 0.06351 0.02677 0.04505

bootstrap CI Length 1.34693 0.67021 1.24716

COVMLE 0.92 0.95 0.93

COVMCMC 0.95 0.99 0.98

COVboot 0.94 0.96 0.97

Table (3) MSE, CI and HPD, with n = 70,m = 30,k = 2.
Parameter,C.S[3] [c] [θ ] [β ]

MSEMlE 0.0579295 0.0150023 0.0425346

MSESE 0.00130812 0.000601582 0.000656316

MSELINEX 0.00130193 0.00060393 0.00066183

MSEGE 0.0012983 0.0006056 0.0006659

95%CI Length 2.10274 1.0148 1.61856

95%CI f orHPD Length 0.063618 0.0342 0.0544

bootstrapCI Length 1.37561 0.71166 1.26723

COVMLE 0.92 0.95 0.93

COVMCMC 0.95 0.99 0.98

COVboot 0.96 0.97 0.98

Parameter,C.S[4] [c] [θ ] [β ]

MSEMlE 0.191946 0.0393184 0.0669236

MSESE 0.0019705 0.000810072 0.00108304

MSELINEX 0.00196987 0.00081577 0.00108934

MSEGE 0.0019701 0.000819916 0.00109429999

95%CI Length 1.52 0.83 1.05146

95%CI f orHPD Length 0.0422 0.02619 0.03346

bootstrap CI Length 1.13916 0.62600 0.806306

COVMLE 0.92 0.96 0.9

COVMCMC 0.95 0.99 0.98

COVboot 0.94 0.96 0.97
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Table (4) MSE, CI and HPD, with n = 70,m = 50,k = 2.
Parameter,C.S[5] [c] [θ ] [β ]

MSEMlE 0.029146 0.0103155 0.0288355

MSESE 0.000408453 0.000106225 0.000342256

MSELINEX 0.00040718 0.00010656 0.00034465

MSEGE 0.00040645 0.00010679 0.0003464

95%CI Length 1.0679 0.56172 0.80877

95%CI f orHPD Length 0.03537 0.01697 0.02697

bootstrapCI Length 1.32561 0.71166 0.9284

COVMLE 0.95 0.95 1

COVMCMC 0.95 0.95 1

COVboot 1 1 1

Parameter,C.S[6] [c] [θ ] [β ]

MSEMLE 0.0765714 0.0252709 0.0569429

MSESE 0.0007307 0.00083689 0.001478952

MSELINEX 0.00070923 0.0008421 0.00148882

MSEGE 0.00069704 0.00084597 0.0014969

95%CI Length 1.35658 0.75126 0.97617

95%CI f orHPD Length 0.06451 0.04677 0.04505

bootstrap CI Length 1.34693 0.67021 1.24716

COVMLE 1 1 0.8

COVMCMC 1 1 0.8

COVboot 0.94 0.96 0.97

Table (5) MSE, CI and HPD, with n = 120,m = 70,k = 2,

.

Parameter,C.S[7] [c] [θ ] [β ]

MSEMlE 0.00328937 0.00207793 0.00519712

MSESE 3.53× 10−6 8.65× 10−7 2.× 10−6

MSELINEX 3.53× 10−6 8.6× 10−7 2.× 10−6

MSEGE 3.53× 10−6 8.6× 10−7 2.× 10−6

95%CI Length 0.91769 0.50269 0.70113

95%CI f orHPD Length 0.00305 0.00157 0.00241

bootstrapCI Length 1.03102 0.68414 0.73012

COVMLE 1 1 1

COVMCMC 1 1 1

COVboot 1 1 1

Parameter,C.S[8] [c] [θ ] [β ]

MSEMLE 0.0004307 0.00013689 0.005478952

MSESE 2.87× 10−6 8.22× 10−7 2.057× 10−6

MSELINEX 2.87× 10−6 8.2× 10−7 2.6× 10−6

MSEGE 2.87× 10−6 8.2× 10−7 2.1× 10−6

95%CI Length 1.35658 0.75126 0.97617

95%CI f orHPD Length 0.06451 0.04677 0.04505

bootstrap CI Length 1.34693 0.67021 1.24716

COVMLE 1 1 1

COVMCMC 1 1 1

COVboot 1 1 1
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Table (6) MSE, CI and HPD, with n = 130,m = 100,k = 2.
Parameter,C.S[9], [c] [θ ] [β ]

MSEMlE 0.00663903 0.00152868 0.00395928

MSESE 0 0 6 ∗ 10−9

MSELINEX 0 0 1 ∗ 10−9

MSEGE 0 0 1 ∗ 10−9

95%CI Length 0.79028 0.46499 0.64017

95%CI f orHPD Length 0.00003 0.00012 0.00002

bootstrap CI Length 0.71166 0.68634 0.648

COVMLE 0.98 0.95 0.93

COVMCMC 1 1 1

COVboot 0.96 0.97 0.98

8 Conclusion

Point and interval estimation using MLE, symmetric and asymmetric BE For FD parameter based on PFF samples are
derived and computed. Asymmetric Bayesian estimation is always better than symmetric Bayesian Estimation. The MSE

of θ̂LINEX is always smaller than MSE of θ̂SE , the HPD interval length and the CI length of the parameter reduce as n,m
increase, olso as the diffrence between n,m reduces. The results are defined, as follows:

1.For all censoring schemes and k = 2 as n,m increase the MSE of the FD parameters decreases.
2.For all censoring schemes and k = 2 as n,m increase the HPD interval length and the CI length of the parameter

decreases.
3.The MSE of θ̂SE , θ̂LINEX , θ̂GE (bayesian estimators) is always smaller than MSE of θ̂MLE .

4.When m is large the MSE of θ̂SE , θ̂LINEX is almost the same as MSE of θ̂GE .
5.When m is large and using BE the MSE of the parameters tends to zero.
6.When m is large the CI,bootstrap CI,95%CI f orHPD lenghts also decrease.
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