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Abstract: In this paper, we utilize Sumudu variational iteration method (SVIM) to obtain approximate solutions for fractional Burger’s

(FBE) and coupled fractional Burger’s equations (CFBEs). The results are compared with FHPM. The results, show that the suggested

algorithm is appropriate for handling linear and as well as nonlinear problems in engineering and sciences.
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1 Introduction

Fractional calculus (FC) has played an important role in areas ranging from fundamental science to engineering in the
past ten years [1–3] and has been applied to a wide class of complex problems encompassing physics, biology, mechanics,
and interdisciplinary areas [4–6].

Various methods have been utilized to obtain approximate solutions of fractional PDEs, such as the FADM [7, 8],
the FRDTM [9], the FVIM [10–13], the Fq-HAM [14], the FHPM [15], the FSEM [16], the FSHPM [17], and the
FLVIM [18, 19] have been utilized to solve fractional differential equations.

The present paper aims is to suggest the SVIM to the the time FBE and CFBEs, as follows:

D
γ
τ ϕ = ϕµµ −ϕϕµ , (1)

ϕ(µ ,0) = g1(µ), (2)

and

D
γ1
τ ϕ −ϕµµ − 2ϕϕµ +(ϕψ)µ = 0,

D
γ2
τ ψ −ψµµ − 2ψψµ +(ϕψ)µ = 0, (3)

ϕ(µ ,0) = g2(µ),

ψ(µ ,0) = g3(µ). (4)

This paper is organized as follows. In Section 2, we review the FC theory. In Section 3, the SVIM is analyzed. In
Section 4, the approximate solution for the time FBE and CFBEs is obtained. Conclusion is presented in Section 5.

2 Preliminaries

Definition 1.The R-L fractional integral operator of order γ ≥ 0, of a function ϕ(µ) ∈Cϑ ,ϑ ≥−1 is [20, 21]

Iγϕ(µ) =







1

Γ (γ)

∫ µ
0 (µ − τ)γ−1ϕ(τ)dτ, γ > 0,µ > 0,

ϕ(µ), γ = 0,
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The properties of Iγ : For ϕ ∈Cϑ ,ϑ ≥−1,γ,σ ≥−1, then

1.Iγ Iσ ϕ(µ) = Iγ+σ ϕ(µ).

2.Iγ Iσ ϕ(µ) = Iσ Iγϕ(µ).

3.Iγ µm =
Γ (m+ 1)

Γ (γ +m+ 1
µγ+m.

Definition 2.The FDO of ϕ(µ) in the Caputo sense is [20, 21]

Dγϕ(µ) = Im−γDmϕ(µ)

=
1

Γ (m− γ)

∫ µ

0
(µ − τ)m−γ−1ϕ(m)(τ)dτ, (5)

for m− 1 < γ ≤ m.

Definition 3.The Mittag-Leffler function Eγ with γ > 0 is [20, 21]

Eγ(z) =
∞

∑
m=0

zγ

Γ (mγ + 1)
. (6)

Definition 4.The ST is defined over the set of function

A =

{

ϕ(τ)/∃M,ω1,ω2 > 0, |ϕ(τ)|< Me
|τ|
ω j , i f τ ∈ (−1) j × [0,∞)

}

,

by the following formula

S[ϕ(τ)] =
∫ ∞

0
e−τ ϕ(ωτ)dτ,ω ∈ (−ω1,ω2). (7)

Definition 5.The ST of the CFD is defined as

S[D
mγ
τ ϕ(µ ,τ)] = ω−mγS[ϕ(µ ,τ)]−

m−1

∑
k=0

ω−mγ+kϕ(k)(µ ,0),m− 1 < mγ < m. (8)

3 Sumudu variational iteration method (SVIM)

Let us consider a general FPDEs of the form:

D
γ
τ ϕ(µ ,τ)+R[ϕ(µ ,τ)]+N[ϕ(µ ,τ)] = g(µ ,τ), (9)

with the initial condition
ϕ(µ ,0) = h(µ) (10)

We will see the whole process of the Lagrange multipliers in the case of an algebraic equation. The solution of the
algebraic equation f (µ) = 0 is

µn+1 = µn +λ f (µn). (11)

The optimality condition for the extreme
δ µn+1

δ µn
= 0 is

λ =−
1

f ′(µn)
. (12)

Substituting (12) in (11):

µn+1 = µn −
f (µn)

f ′(µn)
. (13)

Now, we apply the ST to (9), and get

Gn(ω)

ωγ
−

ϕ(µ ,0)

ωγ
+ S [R[ϕ ]+N[ϕ ]− g] = 0, (14)
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where G(ω) is ST of ϕ .
Using (11), the iteration formula (14) can be written as

Gn+1(ω) = Gn(ω)+λ (ω)

(

Gn(ω)

ωγ
−

ϕ

ωγ
+ S [R[ϕ ]+N[ϕ ]− g]

)

(15)

Taking the variation of (15), which is given by

δ [Gn+1(ω)] = δ [Gn(ω)]+ δ

[

λ (ω)

(

Gn(ω)

ωγ
−

ϕn

ωγ
+ S[R[ϕn]+N[ϕn]− g]

)]

(16)

Using computation of (16), we get

δ [Gn+1(ω)] = δ [Gn(ω)]+ δ

[

λ (ω)
Gn(ω)

ωγ

]

= δ [Gn(ω)]+
λ (ω)

ωγ
δ [Gn(ω)]

= 0. (17)

Hence, from (17) we get

λ (ω) =−ωγ . (18)

Applying the inverse ST to (15) after putting the value of λ (ω), we get

ϕn+1(µ ,τ) = S−1(ϕn(µ ,0))− S−1(ωγ [S[R[ϕm(µ ,τ)]+N[ϕm(µ ,τ)]− g(µ ,τ)]]). (19)

Consequently, the approximate solution may be procured using

ϕ(µ ,τ) = lim
n→∞

ϕn(µ ,τ) (20)

4 Applications

Example 1. Consider the FBE

D
γ
τ ϕ(µ ,τ) = ϕµµ(µ ,τ)−ϕ(µ ,τ)ϕµ(µ ,τ), (21)

with

ϕ(µ ,0) = µ . (22)

In view of (19) and (21), we obtain

ϕn+1(µ ,τ) = S−1(ϕn(µ ,0))

+ S−1

(

ωγ

[

S

(

∂ 2

∂ µ2
ϕn(µ ,τ)−ϕn(µ ,τ)

∂

∂ µ
ϕn(µ ,τ)

)])

(23)

The initial iteration ϕ0(µ ,τ) is given as follows

ϕ0(µ ,τ) = ϕ(µ ,0) = µ . (24)

Now, we get the first approximation, namely

ϕ1(µ ,τ) = S−1(ϕ0(µ ,0))+ S−1

(

ωγ

[

S

(

∂ 2

∂ µ2
ϕ0(µ ,τ)−ϕ0(µ ,τ)

∂

∂ µ
ϕ0(µ ,τ)

)])

= µ + S−1 (ωγ [S (−µ)])

= µ − µ
τγ

Γ (γ + 1)
. (25)
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The second approximate reads, as follows:

ϕ2(µ ,τ) = S−1(ϕ1(µ ,0))+ S−1

(

ωγ

[

S

(

∂ 2

∂ µ2
ϕ1(µ ,τ)−ϕ1(µ ,τ)

∂

∂ µ
ϕ1(µ ,τ)

)])

= µ + S−1

(

ωγ

[

S

[

−µ + 2µ
τγ

Γ (γ + 1)
− µ

τ2γ

Γ 2(γ + 1)

]])

= µ + S−1

(

ωγ

[

−µ + 2µωγ − µ
Γ (2γ + 1)

Γ 2(γ + 1)
ω2γ

])

= µ − µ
τγ

Γ (γ + 1)
+ 2µ

τ2γ

Γ (2γ + 1)
− µ

Γ (2γ + 1)

Γ 2(γ + 1)

τ3γ

Γ (3γ + 1)
.

...

and so on.

Then, we have

ϕ(µ ,τ) = µ − µ
τγ

Γ (γ + 1)
+ 2µ

τ2γ

Γ (2γ + 1)
− µ

Γ (2γ + 1)

Γ 2(γ + 1)

τ3γ

Γ (3γ + 1)
+ . . . (26)

Example 2. Consider the following CFBEs:

D
γ1
τ ϕ(µ ,τ)−ϕµµ(µ ,τ)− 2ϕ(µ ,τ)ϕµ(µ ,τ)+ (ϕψ)µ = 0,

D
γ2
τ ψ(µ ,τ)−ψµµ(µ ,τ)− 2ψ(µ ,τ)ψµ(µ ,τ)+ (ϕψ)µ = 0, (27)

subject to initial conditions

ϕ(µ ,0) = sin(µ),

ψ(µ ,0) = sin(µ). (28)

Using (19), we get

ϕn+1(µ ,τ) = S−1(ϕ0(µ ,0))

+S−1

(

ωγ1

[

S

[

∂ 2

∂ µ2
ϕn + 2ϕn

∂

∂ µ
ϕn −

∂

∂ µ
(ϕnψn)

]])

ψn+1(µ ,τ) = S−1(ψ0(µ ,0))

+S−1

(

ωγ2

[

S

[

∂ 2

∂ µ2
ψn + 2ψn(µ ,τ)

∂

∂ µ
ψn −

∂

∂ µ
(ϕnψn)

]])

(29)

The initial iterations ϕ0(µ ,τ) and ψ0(µ ,τ) are

ϕ0(µ ,τ) = sin(µ),

ψ0(µ ,τ) = sin(µ). (30)

Hence, we obtain the first approximation; namely

ϕ1(µ ,τ) = S−1(ϕ0(µ ,0))+ S−1

(

ωγ1

[

S

[

∂ 2

∂ µ2
ϕ0 + 2ϕ0

∂

∂ µ
ϕ0 −

∂

∂ µ
(ϕ0ψ0

]])

ψ1(µ ,τ) = S−1(ψ0(µ ,0))+ S−1

(

ωγ2

[

S

[

∂ 2

∂ µ2
ψ0 + 2ψ0

∂

∂ µ
ψ0 −

∂

∂ µ
(ϕ0ψ0

]])

=

(

1−
τγ1

Γ (γ1 + 1)

)

sin(µ)

=

(

1−
τγ2

Γ (γ2 + 1)

)

sin(µ) (31)
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The second approximation reads as follows:

ϕ2(µ ,τ) = S−1(ϕ1(µ ,0))+ S−1

(

ωγ1

[

S

[

∂ 2

∂ µ2
ϕ1 + 2ϕ1

∂

∂ µ
ϕ1 −

∂

∂ µ
(ϕ1ψ1

]])

ψ2(µ ,τ) = S−1(ψ1(µ ,0))+ S−1

(

ωγ2

[

S

[

∂ 2

∂ µ2
ψ1 + 2ψ1

∂

∂ µ
ψ1 −

∂

∂ µ
(ϕ1ψ1

]])

= sin(µ)+ S−1

(

ωγ1

[

S

[

−sin(µ)+
τγ1

Γ (γ1 + 1)
)sin(µ)

]])

−

S−1

(

ωγ1

[

S

[

τγ1

Γ (γ1 + 1)
)sin(2µ)+

τγ2

Γ (γ2 + 1)
)sin(2µ)

]])

= sin(µ)+ S−1

(

ωγ2

[

S

[

−sin(µ)+
τγ2

Γ (γ2 + 1)
)sin(µ)

]])

−

S−1

(

ωγ2

[

S

[

τγ2

Γ (γ2 + 1)
)sin(2µ)+

τγ1

Γ (γ1 + 1)
)sin(2µ)

]])

= sin(µ)−
τγ1

Γ (γ1 + 1)
sin(µ)+

τ2γ1

Γ (2γ1 + 1)
sin(µ)−

τ2γ1

Γ (2γ1 + 1)
sin(2µ)+

τγ1+γ2

Γ (γ2 + γ2 + 1)
sin(2µ)

= sin(µ)−
τγ2

Γ (γ2 + 1)
sin(µ)+

τ2γ2

Γ (2γ2 + 1)
sin(µ)−

τ2γ2

Γ (2γ2 + 1)
sin(2µ)+

τγ1+γ2

Γ (γ1 + γ2 + 1)
sin(2µ) (32)

...

and so on.
For γ1 = γ2 , we have

ϕ(µ ,τ) = sin(µ)

(

1−
τ

γ
1

Γ (γ1 + 1)
+

τ2γ1

Γ (2γ1 + 1)
−·· ·

)

ψ(µ ,τ) = sin(µ)

(

1−
τγ2

Γ (γ2 + 1)
+

τ2γ2

Γ (2γ2 + 1)
−·· ·

)

= Eγ1
(−τγ1)sin(µ)

= Eγ2
(−τγ2)sin(µ). (33)

The result is same as q-HATM [14].

5 Conclusion

In this work, the SVIM has been successfully used to obtain the solutions of the FBE and CFBEs. The obtained solutions
were in the form of infinite power series which can be written in a closed form. In view of the results, we can say that this
technique is powerful mathematical tool for solving FPDEs.
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