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Abstract: In this work we prove the existence of solution to a nonlinear fractional initial value problem with Caputo-Fabrizio
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prove its convergence. We show the performance of the procedure in some examples, including an application to hysteresis

phenomena.

Keywords: Caputo-Fabrizio fractional derivative, fractional initial value problems, approximate solutions, recursive methods.

1 Introduction

In last decades numerous works devoted to fractional calculus have been published. Although the first reference to a
fractional derivative dates back to the 17th century, in an epistolary exchange between Leibniz and L’Hôpital, it has been
in recent times that the large number of applications in different areas of science and technology gave greater relevance to
calculus with non-integer orders. Through fractional calculus, phenomena such as viscoelasticity, hysteresis, diffusion in
porous media, pricing, abnormal cell proliferation, etc., achieve models that seem to fit better to reality than the traditional
differential equations with integer order (see [1–13], just for citing some few examples).
Several definitions have been given for a derivative of arbitrary order, Dα , with α ∈ R. A brief mention will be made of
some of them.
From the classical Cauchy’s formula for the n-fold iterated integral,

0In
t [ f ](t) =

1

(n− 1)!

∫ t

0
(t − s)n−1 f (s)ds, n ∈ N,

and recalling that Gamma function verifies nΓ (n) = n!, Riemann-Liouville’s integral operator of order α , for α ∈ R, is
an immediate generalization:

0Iα
t [ f ](t) =

1

Γ (α)

∫ t

0
(t − s)α−1 f (s)ds. (1)

From (1), the Riemann-Liouville fractional derivative of order α , with n− 1 < α < n, is almost naturally defined as

RL
0 D

α
t [ f ](t) =

1

Γ (n−α)

dn

dtn
(

∫ t

0
(t − s)n−α f (s)ds). (2)

Another definition is the Caputo fractional derivative of order α [14]:

C
0 D

α
t [ f ](t) =

1

Γ (n−α)

∫ t

0
(t − s)n−1−α dn f (s)

dsn
ds. (3)
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It can be proved that both derivatives, (2) and (3), are left inverse operators to the integral operator of Riemann-Liouville
of order α and are associated to the idea that ”deriving α times” might be thought as “integrating n−α times and deriving
n times”; the difference lies in the order in which these operations are performed.
These definitions are not equivalent: the operators domains are different, since different hypothesis over f are needed to
guarantee their existence and, even with the appropriate conditions for f ,

C
0 D

α
t [ f ](t) =RL

0 D
α
t [ f ](t)−

n−1

∑
k=0

tk−α

Γ (k−α + 1)
f (k)(0+)

(see, for example, [15] and [16] for a detailed treatment).
Note that both derivatives may be thought as convolution operators with singular kernels.
Less than five years ago a new definition was proposed [17]: the Caputo-Fabrizio fractional derivative of order α , with
α ∈ (0,1), defined as

CF
0 D

α
t [ f ](t) =

M(α)

1−α

∫ t

0
f ′(s)e−

α(t−s)
1−α ds, (4)

with M(α) a normalizing factor verifying M(0) = M(1) = 1.
Caputo-Fabrizio definition was then generalized by Atangana and Baleanu [18], who gave the following definition of the
Atangana-Baleanu fractional derivative in Riemann-Liouville sense,

ABR
0 D

α
t [ f ](t) =

M(α)

1−α

d

dt

∫ t

0
f (s)Eα (−

α(t − s)α

1−α
)ds (5)

and the Atangana-Baleanu fractional derivative in Caputo sense,

ABC
0 D

α
t [ f ](t) =

M(α)

1−α

∫ t

0
f ′(s)Eα (−

α(t − s)α

1−α
)ds, (6)

where the exponential has been replaced by the generalized Mittag-Leffler function,

Eα(z) =
∞

∑
k=0

zk

Γ (αk+ 1)
.

Note that these last definitions - (4), (5) and (6) - avoid singular kernels.
There are other types of fractional derivatives, like Grünwald-Letnikov’s, Hadamard’s, Weyl’s, etc., some of them
responding mostly to mathematical interest. A general framework to gather the different alternatives is proposed in [19].
All the definitions show that fractional derivative operators are not local, since they need the information of f in a whole
interval of integration. If the variable is time, this means that history of the phenomenon is taken into account when
deriving with a non-integer order.
In this work we consider Caputo-Fabrizio fractional derivative (CFFD). In Section 2 we comment a few of its properties.
An existence result for a class of fractional initial value problem is presented in Section 3 and a recursive method to
solve it appears in Section 4. We offer numerical examples in Section 5. Finally, some conclusions are presented.

2 Some comments on the Caputo-Fabrizio fractional derivative

There is no consensus as to what properties an operator must satisfy in order to be effectively considered a fractional
derivative. Many of the alternative definitions have emerged to better adapt to particular physical contexts. In [20], an
interesting proposal is offered about the classification of these operators.
In the case of Caputo-Fabrizio fractional derivative, an additional advantage is the non-singularity of the kernel.
In [17], [21], [22] and [23] several properties of this derivative are analyzed.
Regarding qualitative results, the operator shows a behavior similar to that of Caputo fractional derivative.
In Figure 1, for example, we show Caputo derivatives (on the left) and Caputo-Fabrizio derivatives (on the right), of
different orders, for f (t) = sin(t). Input (sin(t)) vs. output (Dα [sin](t)) is showed in Figure 2 (Caputo derivatives on the
left, Caputo-Fabrizio derivatives on the right) , exhibiting a behavior that would allow - with a suitable adaptation - to
describe hysteresis phenomena.
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Fig. 1: Caputo and Caputo-Fabrizio derivatives of sin(t) (left and right, respectively) for different fractionary orders: purple,

α = 1
4 ; blue, α = 1

3 ; green, α = 1
2 ; yellow, α = 2

3 ; orange, α = 9
10 ; red, α = 1 (ordinary derivative).
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Fig. 2: Dα [sin](t) vs. sin(t) for different values of α (same color code). Caputo derivatives on the left and Caputo-Fabrizio

derivatives on the right.

3 Existence and uniqueness of solution to a nonlinear FIVP

3.1 Introduction

Let us consider the following initial value problem:

{

CF
0 Dα

t [y](t) = f (t,y(t)) for t ∈ [0,T ],
y(0) = y0,

(7)

where y(t) is an unknown function and CF
0 Dα

t [y](t) is its Caputo-Fabrizio derivative of order α ∈ (0,1). The function
f (t,y) and y0 ∈ R are given data,
In [24] an existence theorem for a continuous solution of this problem is presented.
Inspired in the traditional theorem due to Picard and Lindelöf, we will offer a slightly different result for absolutely
continuous solutions: like in the ordinary differential equation case, an alternative and equivalent integral formulation of
the problem is stated and the existence and uniqueness of solution follows from the Banach fixed point theorem.
For the moment we will assume that f ∈C(A), with A = [0,T ]× [y0 − b,y0 + b] for some b ∈ R.
As CF

0 Dα
t [y](0) = 0 we will also assume that f (0,y0) = 0.

We will look for continuous solutions, y(t), for which y′(t) exists almost everywhere and is integrable on [0,T ] - that is to
say, y′(t) ∈ L1([0,T ]). These conditions guarantee the existence of CF

0 Dα
t [y](t).

We will add the requirement that y(t) = y(0)+
∫ t

0 y′(τ)dτ for every t ∈ [0,T ]. As we are working on the real line, all
these conditions over y(t) are equivalent to look for absolutely continuous solutions to (7), which we will denote by
y ∈ AC([0,T ]).
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3.2 Equivalent integral problem

Under these hypotheses we can prove the following

Proposition 1. Solving (7) in AC([0,T ]) is equivalent to solve the following integral equation:

y(t) = y0 +
α

M(α)

∫ t

0
f (τ,y(τ))dτ +

1−α

M(α)
f (t,y(t)). (8)

Proof. Suppose that y(t) ∈ AC([0,T ]) verifies CF
0 Dα

t [y](t) = u(t) and y(0) = y0 for u ∈C([0,T ]).
Then

∫ t
0 y′(τ)e

ατ
1−α dτ = 1−α

M(α)
e

αt
1−α u(t).

It can be proved that, as y′(τ)e
ατ

1−α is integrable on [0,T ], necessarily 1−α
M(α)

e
αt

1−α u(t)∈ AC([0,T ]) and, consequently, u(t)∈

AC([0,T ]).
Then, almost for every t ∈ [0,T ] where derivatives exist,

y′(t)e
αt

1−α = 1−α
M(α) [

α
1−α e

αt
1−α u(t)+ e

αt
1−α u′(t)],

or
y′(t) = 1−α

M(α)
[ α

1−α u(t)+ u′(t)].

Then
y(t)− y(0) = α

M(α)

∫ t
0 u(τ)dτ + 1−α

M(α)
[u(t)− u(0)].

So, if u(t) = f (t,y(t)), y(0) = y0 and f (0,y0) = 0, we have (8).

Now suppose (8) holds, for y = y(t) ∈ AC([0,T ]) and f (t,y) ∈C(A).
Under these conditions it can be proved that u(t) = f (t,y(t)) ∈ AC([0,T ]), so its derivative, u′(t), exists almost for every
t ∈ [0,T ].
Then, as

y(t) = y0 +
α

M(α)

∫ t

0
u(τ)dτ +

1−α

M(α)
u(t),

clearly it is y(0) = y0 and we obtain

y′(t) = α
M(α)u(t)+ 1−α

M(α)u′(t)

for every t ∈ [0,T ] where both derivatives, y′(t) and u′(t), exist.

As y′(t) is integrable and u(t) ∈ AC([0,T ]), u′(t) must be integrable and so is α
M(α)u(t)+ 1−α

M(α)u′(t).

Then,
M(α)
1−α

∫ t
0 y′(τ)e

−α(t−τ)
1−α dτ =

∫ t
0 [

α
1−α u(τ)e

−α(t−τ)
1−α + u′(τ)e

−α(t−τ)
1−α ]dτ.

Now, for every τ where u′ exists, it is α
1−α u(τ)e

−α(t−τ)
1−α + u′(τ)e

−α(t−τ)
1−α = d[u(τ)e

−α(t−τ)
1−α ]

dτ and

CF
0 Dα

t [y](t) =
∫ t

0
d[u(τ)e

−α(t−τ)
1−α ]

dτ dτ.

As u(t) = f (t,y(t)) and u(0) = f (0,y0) = 0, we have (7).

3.3 Existence and uniqueness of the solution

Let us suppose now that f is Lipschitz continuous with respect to its second variable in [y0 − b,y0 + b], i.e. there exists
L ∈ R>0 so that

| f (t,y1)− f (t,y2)| ≤ L|y1 − y2|

for every y1,y2 in [y0 − b,y0 + b] and each t ∈ [0,T ]. We will indicate this by f ∈ Lip2(A).
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Consider h ∈ (0,T ].
Given y0 ∈ R and f ∈ Lip2(A), with f (0,y0) = 0, let us define the operator

F (ϕ)(t) = y0 +
α

M(α)

∫ t

0
f (τ,ϕ(τ))dτ +

1−α

M(α)
f (t,ϕ(t))

for ϕ ∈ AC([0,h]) and t ∈ [0,h].
It can be proved that AC([0,h]) is a Banach space with the norm

||ϕ ||AC = ||ϕ ||∞ +V(ϕ , [0,h]),

for

V (ϕ , [0,h]) := sup
π
(

n

∑
i=1

|ϕ(ti)−ϕ(ti−1)|),

where the supreme is taken over all finite increasing subsets π of [0,h]: π = {ti}
n
i=0, n ∈ N, with 0 ≤ t0 < t1 < ... < tn ≤ h.

Note that, as f (t,y(t)) ∈ AC([0,h]), F (ϕ)(t) is absolutely continuous in [0,h] and, consequently, F goes from
AC([0,h]) to AC([0,h]).

For ϕ and ψ in AC([0,h]), t ∈ [0,h] and σ = max{α,1−α}, it is

|F (ϕ)(t)− F (ψ)(t)| ≤

≤ α
|M(α)|

∫ t
0 | f (τ,ϕ(τ))− f (τ,ψ(τ))|dτ + 1−α

|M(α)| | f (t,ϕ(t))− f (t,ψ(t))| ≤

≤ σ
|M(α)|

∫ t
0 L|ϕ(τ)−ψ(τ)|dτ + σ

|M(α)|L|ϕ(t)−ψ(t)| ≤

≤ σ
|M(α)|

∫ t
0 L||ϕ −ψ ||∞dτ + σ

|M(α)|L||ϕ −ψ ||∞ ≤

≤ σL
|M(α)| (h+ 1)||ϕ −ψ ||∞,

so

||F (ϕ)− F (ψ)||∞ ≤
σL

|M(α)|
(h+ 1)||ϕ −ψ ||∞

if ϕ(t),ψ(t) ∈ [y0 − b,y0 + b] ∀t ∈ [0,h].
Now, we will make an additional hypothesis about f : suppose f (t,y) is linear in y, that is, f (t,y) = g1(t)y+ g2(t), for g1

and g2 functions such that f ∈ C(A)∪Lip2(A); note that it is enough that g1 and g2 are continuous in [0,h], and then L

could be chosen, simply, as an upper bound of {|g1(t)|, t ∈ [0,h]}.
For π = {ti}

n
i=0, n ∈ N, with 0 ≤ t0 < t1 < ... < tn ≤ h, it is

∑n
i=1 |F (ϕ)(ti)−F (ψ)(ti)− (F (ϕ)(ti−1)−F (ψ)(ti−1))| ≤

≤ σ
|M(α)| ∑n

i=1

∫ ti
ti−1

| f (τ,ϕ(τ))− f (τ,ψ(τ))|dτ+

+ σ
|M(α)| ∑n

i=1 | f (ti,ϕ(ti))− f (ti,ψ(ti))− f (ti−1,ϕ(ti−1))+ f (ti−1,ψ(ti−1))| ≤

≤ σ
|M(α)|

Lh||ϕ −ψ ||∞+ σ
|M(α)| ∑n

i=1 |g1(ti)(ϕ −ψ)(ti)− g1(ti−1)(ϕ −ψ)(ti−1))| ≤

≤ σ
|M(α)|Lh||ϕ −ψ ||∞+ σ

|M(α)| ∑n
i=1 |g1(ti)(ϕ −ψ)(ti))− g1(ti−1)(ϕ −ψ)(ti))+

+g1(ti−1)(ϕ −ψ)(ti))− g1(ti−1)(ϕ −ψ)(ti−1)| ≤

≤ σ
|M(α)| (Lh+V(g1, [0,h])||ϕ −ψ ||∞+ σL

|M(α)|V (ϕ −ψ , [0,h]),

where we are supposing that V (g1, [0,h])< ∞ and L is an upper bound of |g1| in [0,h].
Then,

||F (ϕ)− F (ψ)||AC ≤
σH

|M(α)|
||ϕ −ψ ||AC
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for H = (2h+ 1)L+V(g1, [0,h]).
So, if σH

|M(α)| < 1, F is a contractive operator from AC([0,T ]) to AC([0,T ]) and the Banach fixed-point theorem guarantees

the existence of a unique absolutely continuous solution to (8) in [0,h].
Note that the inequality σH

|M(α)| < 1 establishes conditions over L and determines the choice of h ∈ [0,T ].

We have proved the following:

Theorem 1. Given the initial value problem

{

CF
0 Dα

t [y](t) = f (t,y(t)) for t ∈ [0,T ],
y(0) = y0,

so that

- f is linear in its second variable, i.e. f (t,y) = g1(t)y+ g2(t), with g1,g2 ∈C([0,T ]), and

- f (0,y0) = 0,

there is h ∈ (0,T ] such that, if σH
|M(α)| < 1 - for H = (2h + 1)L + V (g1, [0,h]), L = sup{|g1(t)|, t ∈ [0,h]}, and

σ = max{α,1−α} - there exists a unique absolutely continuous solution y(t) for t ∈ [0,h]⊆ [0,T ].

4 Approximate solutions to the FIVP

Like in the case of ordinary differential equations, and based on the equivalent integral formulation of the FIVP, we will
define a sequence of approximate solutions to (8) that converges to its unique solution.
Suppose all the hypotheses of Theorem 1 are fulfilled. We will define the recursive sequence of functions:

{

ϕ0(t) = y0,

ϕi+1(t) = F (ϕi)(t) for i ≥ 0.
(9)

Now, we will conveniently choose h0 ∈ [0,h] so that we can prove inductively that, for each i ∈ N0, ϕi is well defined,
ϕi ∈ AC([0,h0]) and ϕi(t) ∈ [y0 − b,y0 + b] for every t ∈ [0,h0].
After that, as ϕi+1 = F (ϕi) ∀i ≥ 0 and F is contractive, the sequence will converge to the solution of (8) and,
equivalently, to the solution of (7) in [0,h0].

Clearly ϕ0 is well defined and derivable in [0,h0] for every h0 ∈ [0,h], because it is constant, and
ϕ0(t) = y0 ∈ [y0 − b,y0 + b] ∀t ∈ [0,h0] for every h0 ∈ [0,h].
As ϕi+1 = F (ϕi) and F goes from AC([0,h0]) to itself, for every h0 ∈ [0,h], if ϕi is well defined and ϕi ∈ AC([0,h0]),
then ϕi+1 is well defined and ϕi+1 ∈ AC([0,h0]).
For t ∈ [0,h0]⊆ [0,h]

|ϕi+1(t)− y0| ≤
α

|M(α)|

∫ t
0 | f (τ,ϕi(τ))|dτ + 1−α

|M(α)|
| f (t,ϕi(t))| ≤

σ
|M(α)|

B(h0 + 1)< b

if B is a bound of f in A,
|M(α)|b

σB
> 1 and we choose h0 ≤ min{h,

|M(α)|b
σB

− 1}.
We have proved the followings:

Proposition 2. Given the fractional initial value problem (7), under the conditions of Theorem 1, the unique absolutely

continuous solution y(t), for t ∈ [0,h0], can be approximated by the sequence of functions

{

ϕ0(t) = y0,

ϕi+1(t) = y0 +
α

M(α)

∫ t
0 f (τ,ϕi(τ))dτ + 1−α

M(α) f (t,ϕi(t)) for i ≥ 0.

4.1 Prolongation of solutions

Note that (7) is equivalent to

{

M(α)
1−α

∫ t
h0

y′(τ)e
−α(t−τ)

1−α dτ = f (t,y(t))−
M(α)
1−α

∫ h0
0 y′(τ)e

−α(t−τ)
1−α dτ for t ∈ [0,T ],

y(h0) = y1,
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where the datum is y(h0) instead of y(0).
Then, the problem to solve can be written as

{

M(α)
1−α

∫ t
h0

y′(τ)e
−α(t−τ)

1−α dτ = f (t,y(t))− f (h0,y(h0)) for t ∈ [0,T ],
y(h0) = y1.

Operating as in Proposition (1), but with the right hand f1(t,y(t)) = f (t,y(t))− f (h0,y(h0)) instead of f (t,y(t)), we obtain
an equivalent integral problem:

y(t) = y1 +
α

M(α)

∫ t
h0

f1(τ,y(τ))dτ + 1−α
M(α) f1(t,y(t)).

Defining

F1(ϕ)(t) = y1 +
α

M(α)

∫ t
h0

f1(τ,ϕ(τ))dτ + 1−α
M(α)

f1(t,ϕ(t))

and using

{

ϕ0(t) = y1 for t ≥ h0,

ϕi+1(t) = F1(ϕi)(t) for i ≥ 0, t ≥ h0,

we can obtain approximations for t ∈ [h0,h1], for certain h1 > h0.
The value of y1 is approximated by ϕn(h0), where n is the number of iterations chosen to approximate the solution in
[0,h0] (n can be selected as the index for which ||ϕn −ϕn−1||AC ≤ ∆ , with ∆ the maximum tolerance accepted).
This process can be repeatedly applied.

5 Numerical examples

We will solve some initial value problems applying the recursive method described in the previous section, for several
functions f (t,y) satisfying the hypotheses of Theorem 1.

5.1 Example 1

Let us consider the following initial value problem, for α = 1
2

and M(α) = 1.

The exact solution is yexact(t) = e
t
4 :

{

CF
0 D

1
2

t [y](t) = 2
5
y(1− e−

5
4 t) for t ∈ [0,5],

y(0) = 1.

In Figure 3 we represent the exact solution (dashed in black) and ten iterations.
For i = 9 it is ||ϕ9 − yexact ||AC

∼= 0.001 and for i = 13, ||ϕ13 − yexact ||AC
∼= 0.00001 in [0,5].

In this example σ = max{α,1−α} = 1
2
, so it must be H < 2, and B

b
< 2 too. As B = 2

5
|y|max and L = 2

5
, if we choose

b = 1 the operator is contractive for h <
2
5
, so we can guarantee the existence of a unique absolute continuous solution

y(t) for t ∈ [0, 2
5
). However, Figure 3 shows that the convergence seems to occur in a considerable wider range.
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Fig. 3: The exact solution (dashed in black) and several iterations (ϕ1 to ϕ9, from gray to pink) for the Example 1.

5.2 Example 2

For the following initial value problem the exact solution is yexact (t) =
1
4
e−

t
2 :

{

CF
0 D

2
3

t [y](t) =−y(1− e−
3t
2 ) for t ∈ [0,5],

y(0) = 1
4
.

In Figure 4, the exact solution (dashed in black) and ten iterations are represented.
In Figure 5 we show, in red, three prolongations of the solution, using the procedure described in Section 4.1, each one
with nine iterations; dashed in black, the exact solution.
It is ||ϕ10 − yexact ||AC

∼= 0.008 in [0,2], ||ϕ9 − yexact ||AC
∼= 0.001 in [2,3], ||ϕ9 − yexact ||AC

∼= 0.0002 in [3,4] and ||ϕ9 −
yexact ||AC

∼= 0.0003 in [4,5.5].

5.3 Example 3

In [21] the author gives an expression for the exact solution to the problem
{

CF
0 Dα

t [y](t)−λ y(t) = g(t) for t ∈ [0,T ],
y(0) = 0.

If λ (1−α) 6= 1 it is

y(t) =
1−α

1−λ (1−α)
g(t)+

α

(1−λ (1−α))2

∫ t

0
g(τ)e

λα(t−τ)
1−λ(1−α) dτ.

For α = 1
2
, λ = 1

3
and g(t) = sin(t) we show in Figure 6 the exact solution dashed in blue and, in red, the approximation

after twelve iterations. It is ||ϕ12 − yexact ||AC
∼= 0.004 in [0,10].

5.4 Example 4

The solution of the following initial value problem, for α = 1
4

and M(α) = 1, is unknown:

{

CF
0 D

1
4

t [y](t) = ye−t sin(t) for t ∈ [0,5],
y(0) = 1.
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-0.1

0.1

0.2

Fig. 4: The exact solution (dashed in black) and several iterations (ϕ1 to ϕ10, alternating at both sides) for the Example 2.

1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

Fig. 5: The exact solution (dashed in black) and three prolongations (intervals [0,2], [2,3], [3,4] and [4,5]) for the Example 2.

In Figure 7 we show eight iterations. From ϕ6 to ϕ8 the curves are practically indistinguishable. It is ||ϕ8 −ϕ7||AC
∼=

0.00003 in [0,5]. The solution seems to have a horizontal asymptote (near 1.167), which is reasonable: as y(t) remains
bounded in [0,T ], || f (t,y(t))|| = ||ye−t sin(t)||−−→t→∞0 and the Caputo-Fabrizio fractional derivative is null if and only if the
function is a constant.

5.5 Example 5

In this example we will illustrate an application to hysteresis phenomena.
In [25], a fractional differential equation is proposed to model magnetization processes in ferromagnetic materials. A
thermodynamic base is provided to ensure the viability of the model, and the authors also simulate hysteresis phenomena
that are in agreement with experimental data.
If M is the magnetization vector and H is the magnetic field that produces it, in diamagnetic and paramagnetic materials
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Fig. 6: the 12th iteration and the exact solution (dashed in blue) for the problem of Example 2.

1 2 3 4 5 6 7
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1.3

1.4

Fig. 7: Several iterations for the Example 4. The approximations accumulate on the pink curve.

the relationship between them is linear,

M(t) = χmH(t),

where χm is the so-called magnetic susceptibility of the medium.
In ferromagnetic materials this relationship is no linear and the hysteresis phenomena, related to the material memory, are
observed (magnetization remains after magnetic field is reduced to 0). In one dimension, the proposed model for this case
is

c1D
α
t [M](t)+ c2M3(t)+ c3M(t) = H(t),

where c1,c2 and c3 are constants that have to do with constitutive properties of the material, temperature, and the so-called
Curie temperature over which there is no “memory”. Dα

t might be the Caputo fractional derivative or the Caputo-Fabrizio
fractional derivative.
With the recursive method we have presented in Section 4, and the prolongation procedure we have shown in Section 4.1,
we solved the equation

CF
0 D

1
2

t [M] = f (t,M)

with f (t,M) = 1
13
[5cos( t

5
)− 5e−t +M], which corresponds to c1 = c2 = 1, c3 = 2

5
and H(t) = 1

13
[5cos( t

5
)− 5e−t ] +

31
65

sin( t
5
)+ sin3( t

5
); the exact solution is M(t) = sin( t

5
) for M(0) = 0.
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In Figure 8 we represent Mapprox.(t) vs. Happrox.(t), with Happrox.(t) = f (t,Mapprox.(t))+
2
5
Mapprox.(t)+M3

approx.(t), giving

rise to a typical hysteresis cycle. M(t) was obtained by the iterative method after ten iterations and two prolongations.

-1.5 -1.0 -0.5 0.5 1.0 1.5

HHtL

-1.0

-0.5

0.5

1.0

MHtL

Fig. 8: M(t) vs. H(t).

6 Conclusion

In this work we have proved a theorem about the existence of an absolutely continuous solution to the initial value
problem CF

0 Dα
t [y](t) = f (t,y(t)), with y(0) = y0, when f (t,y) is linear in its second variable. A recursive method to build

analytical (not numerical) approximate solutions to this problem have also been developed, and a general demonstration
of its convergence was offered. Both, existence theorem and recursive method, are inspired in the traditional theorem for
ordinary differential equations due to Picard and Lindelöf, conveniently adapted to FIVP. Several examples with very
good performance of the method have been shown.
Regarding the future work, we are analyzing the possibility of combining the proposed method with existing techniques,
to obtain approximate solutions to boundary value problems involving fractional partial differential equations.
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[3] D. Baleanu, Z. Güvenç and J. Tenreiro Machado (Eds.), New trends in nanotechnology and fractional calculus applications,

Springer: New York, 2010.

[4] M. Caputo and J. Carcione, Hysteresis cycles and fatigue criteria using anelastic models based on fractional derivatives, Rheol.

Acta 50, 107–115 (2011).

[5] D. Craiem, F. Rojo, J. Atienza, G. Guinea and R. Armentano, Fractional calculus applied to model arterial viscoelasticity, Lat. Am.

Appl. Res. 38, 141–145 (2008).

[6] M. Dokuyucu, E. Celik, H. Bulut and H. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur.

Phys. J. Plus 133(92), 6 p. (2018).

[7] R. Garra, Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks, Phys. Rev. E 84(3), 036605

1–6 (2011).

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


312 S. Seminara, M. Troparevsky: Approximate Solutions to Nonlinear Fractional...
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