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1 Introduction, motivation and preliminaries

The application of differential equations for modeling in sciences is well known, so they are studied in many areas. The
functions that verify the equation and establish its solutions (for example [1,2,3]) are of crucial interest. In recent years,
several fractional calculus operators have been investigated and applied in various fields. The Mittag-Leffler function,
and some of its generalizations, play a similar role in many differential equations involving fractional derivatives, (see, for
example [4,5,6]). Due to the interest in the study of the behavior of different generalizations of the Mittag-Leffler function
in the analysis of a broader field of fractional differential equations, different relations of recurrence involving fractional
operators have been studied recently. They allow to establish recurrence relationships between different generalizations
of the Mittag-Leffler function (see for example [7,8,9]).

The present work is motivated by the interest in the study of Mittag-Leffler-type functions as solutions of fractional
differential equations, and the recurrence relationships that involve them.

This paper is structured as follows: In Section 1 we have compiled some basic fact. In Section 2 we introduce the
notion of linear sequential fractional differential equations with recurrence relationships associated with
Riemann-Liouville operator, and we develop a general theory for this differential equation. Finally, a direct method is
also introduced to solve the homogeneous and non-homogeneous case with constant coefficients, and explicit
expressions are obtained for the solutions in both cases.

1.1 Fractional operators

For development of this work we need to remember basic elements of fractional calculus as derivatives and integrals of
arbitrary orders. It is well known that there are several definitions of fractional derivative, but we will consider the called
Riemann-Liouville fractional derivative (see, for example [10,11,12]). The Riemann-Liouville fractional integral of order
α > 0 of a function f is defined by

(
Iα
a+ f
)
(x) =

1

Γ (α)

∫ x

a

f (t)

(x− t)1−α
dt, x > a, (1.1)
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where f (x) ∈ L1(a,b). If n= [α]+1, the Riemann-Liouville fractional derivative of the function f (x), x ∈ [a,b], is defined
by

(Dα
a+ f )(x) =

(
d

dx

)
(
In−α
a+ f

)
(x) =

1

Γ (n−α)

(
d

dx

)n ∫ x

a

f (t)

(x− t)α−n+1
dt. (1.2)

To ensure the existence of (1.2), it will be enough that

∫ x

a

f (t)

(x− t){α} dt ∈ AC[α ]([a,b]), (1.3)

while the condition above is verified if f (x) ∈ AC[α ]([a,b]) . Moreover, if α,β ∈ R, β > 0, α ≥ 0 , then

(

Dα
a+(t − a)β−1

)

(x) =
Γ (β )

Γ (β −α)
(x− a)β−α−1. (1.4)

The following Lemma, presented in [10], gives a rule for parametric derivation under the integral sign.

Lemma 1. Let 0 < α ≤ 1, f (x) and k(x) defined in [a,b] such that

f (x) ∈C([a,b]) and L(x) =
∫ x

0
τ−α k(x− τ)dτ ∈C1[a,b]. (1.5)

Then, if x ∈ [a,b], we have

Dα
a+

[∫ t

a
k(t − τ) f (u)du

]

(x) =

∫ x

a
Dα

a+[k(t − a)](u) f (x+ a− u)du+ f (x) lim
x→a+

I1−α
a+ [k(t − a)](x). (1.6)

1.2 Mittag-Leffler type functions

The well known Mittag-Leffler function Eα ,β (x) is defined (see, for instance [10]) by the following series:

Eα ,β (x) =
∞

∑
j=0

x j

Γ (α j+β )
(x ∈ C;Re(α),Re(β )> 0), (1.7)

where Γ (x) is the classical Gamma function. The α-Exponential Function is defined by

eλ x
α = xα−1Eα ,α (λ xα) , (1.8)

with x ∈ C\ {0}, Re(α)> 0, y λ ∈ C; which satisfies the properties:

(
∂

∂x

)n [

eλ x
α

]

= xα−n−1Eα ,α−n(λ xα), (1.9)

(
∂

∂λ

)n [

eλ x
α

]

= n!xαn+α−1En+1
α ,αn+α(λ xα ), n ∈ N, λ ∈ C. (1.10)

The following Mittag-Leffler type function will be considered

eλ x
α ,n =

1

n!

(
∂

∂λ

)n [

eλ x
α

]

= xαn+α−1En+1
α ,αn+α(λ xα). (1.11)

where x ∈ C\ {0}, Re(α) > 0,λ ∈ C, and n ∈ N0. In particular, when n = 0, we obtain from (1.11): eλ x
α ,0 = eλ x

α . We can

easily see from (1.11) that

Re

[

eλ x
α ,n

]

=
∞

∑
j=0

(−1) jc2 j x2 jα

(2 j)!
ebx

α ,n+2 j and Im

[

eλ x
α ,n

]

=
∞

∑
j=0

(−1) jc2 j+1 x(2 j+1)α

(2 j+ 1)!
ebx

α ,n+2 j+1. (1.12)
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with x > 0 y λ = b+ ic (b,c ∈ R). In [13], Prabhakar introduces the Mittag-Leffler type function

E
γ
α ,β (x) =

∞

∑
j=0

(γ) jx
j

Γ (α j+β ) j!
, (1.13)

with α , β , γ ∈ C; Re(α), Re(β ) > 0, and x ∈ C; where (γ) j is the Pochhammer symbol (see, for example [10]) and

verifies E1
α ,β = Eα ,β . The following formula is obtained from (1.4):

(

Dα
a+(t − a)β−1Eµ,β [λ (t − a)µ ]

)

(x) = (x− a)α+β−1Eµ,α+β [λ (x− a)µ] (1.14)

with λ ∈C, α,β ,µ ∈R+. In particular, under certain restrictions, by mean (1.14), it can prove that
(

Dα
a+e

λ (t−a)
α

)

(x) = λ e
λ (x−a)
α , (1.15)

when α > 0, y λ ∈C (see, [10]). Moreover, the α-Exponential Function satisfies the property

lim
x→a+

(

I1−α
a+ e

λ (t−a)
α

)

(x) = 1, (α ≥ 0). (1.16)

1.3 Linear differential equation of fractional order

In [10, Chapter 7], the theory of the linear sequential fractional differential equation develops. In this section we highlight
only some necessary aspects of the theory.

Definition 1. Let N ∈ N. We will call Linear Sequential Fractional Differential Equation (LFDE) of order Nα the

equation of the type
N

∑
k=0

bk(x)y
(kα)(x) = f (x) (a < x < b), (1.17)

where bk(x) y f (x) are known functions, y(0)(x) = y(x), and y(kα) =
(
Dkα

a+y(x)
)
(x) (k = 1,2, ...,N) represents a fractional

sequential derivative introduced by Miller and Ross in [5]:

D
α
a+ = Dα

a+ (0 < α ≤ 1),

D
kα
a+ = D

α
a+D

(k−1)α
a+ , (1.18)

where Dα
a+ is a fractional derivative, for example, the Riemann-Liouville fractional derivative: Dα

a+ = Dα
a+.

A Sequential Fractional Differential Equation of order Nα is given by the following expression

F
(
x,y(x),(Dα y) (x),

(
D

2αy
)
(x), ...,

(
D

Nα y
)
(x)
)
= f (x), (1.19)

with α > 0, F(x,y1,y2, ...,yN) and f (x) are known functions (see [10]).

Let bN(x) 6= 0, ∀x ∈ [a,b]; the equation (1.17) can be written in the following normalized form:

[LNα(y)] (x) =
(
D

Nα
a+ y

)
(x)+

N−1

∑
j=0

bk(x)
(

D
jα

a+y
)

(x) = f (x). (1.20)

Definition 2. A fundamental set of solution to the equation [LNα (y)](x) = f (x) in some interval V ⊂ [a,b] is a set of N

linearly independent functions in V , which are solutions to the equation.

Proposition 1. If
{

u j(x)
}N

j=1
is a fundamental set of solutions to the equation [LNα (y)] (x) = 0 in some interval V ⊂ (a,b],

then the general solution to this differential equation is given by

yg(x) =
N

∑
k=1

ckuk(x), (1.21)

with {ck}N
k=1 arbitrary constants.

Proposition 2. The set of solutions to [LNα (y)] (x) = 0, in some V ⊂ (a,b], is a vector space of dimension N.

Proposition 3. If yp(x) is a particular solution to [LNα (y)] (x) = f (x), then a general solution to this equation is

yg(x) = yh(x)+ yp(x), (1.22)

where yh(x) is the general solution to associated homogeneous equation, [LNα (y)] (x) = 0.
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1.3.1 Solution of linear sequential differential equations with constant coefficients

Now, we address at the following equation

[LNα (y)] (x) =
(
D

Nα
a+ y

)
(x)+

N

∑
j=1

aN− j

(

D
(N− j)α
a+ y

)

(x) = 0, (1.23)

where
{

a j

}N−1

j=0
are real constants. Let us mention an important property of the α-Exponential Function:

[

LNα

(

e
λ (t−a)
α

)]

(x) = PN(λ )e
λ (x−a)
α , (1.24)

where

PN(λ ) = λ N +
N

∑
j=1

aN− jλ
N− j . (1.25)

is the characteristic polynomial associated with the equation [LNα (y)](x) = 0.

Lemma 2. If λ ∈ C is a root of the characteristic polynomial (1.25), then

∂

∂λ

[

LNα

(

e
λ (t−a)
α

)]

(x) =

[

LNα

(
∂

∂λ
e

λ (t−a)
α

)]

(x). (1.26)

and
∂ ℓ

∂λ ℓ
e

λ (x−a)
α = (x− a)ℓαe

λ (x−a)
α ,ℓ . (1.27)

Proposition 4. If λ1 is a root of multiplicity ℓ1 of the caracteristic polinomial (1.25), then the functions
{

y1, j(x)
}ℓ1−1

j=0
:

y1, j(x) = (x− a) jαe
λ1(x−a)
α , j , (1.28)

whit e
λ1(x−a)
α , j , defined by (1.11), are solutions of the equation [LNα (y)](x) = 0.

Corollary 1. Let
{

λ j

}M

j=1
be M different roots of multiplicity

{
ℓ j

}M

j=1
of the characteristic polynomial (1.25). Then, the

functions
M⋃

k=1

{

(x− a) jαe
λk(x−a)
α , j

}ℓ j−1

j=0
(1.29)

are linearly independent solutions of the equations (1.23).

Proposition 5. If λ1 and λ 1 (λ1 = b+ ic, c 6= 0) are two solutions of multiplicity ℓ1 of the characteristic polynomial

(1.25), then the functions

{
∞

∑
j=0

(−1) j c2 j

(2 j)!
(x− a)(2 j+k)αe

b(x−a)
α ,k+2 j

}ℓ1−1

k=0

and

{
∞

∑
j=0

(−1) j c2 j+1

(2 j+ 1)!
(x− a)(2 j+k+1)αe

b(x−a)
α ,k+2 j+1

}ℓ1−1

k=0

(1.30)

determine 2ℓ1 real linearly independent solutions of the equation [LNα (y)](x) = 0.

Remark. Taking into account (1.12), (1.30) can be written, as follows:

∞

∑
j=0

(−1) j c2 j

(2 j)!
(x− a)(2 j+k)αe

b(x−a)
α ,k+2 j =Re

[

(x− a)kαe
λ1(x−a)
α ,k

]

, (1.31)

and
∞

∑
j=0

(−1) j c2 j+1

(2 j+ 1)!
(x− a)(2 j+k+1)αe

b(x−a)
α ,k+2 j+1 = Im

[

(x− a)kαe
λ1(x−a)
α ,k

]

. (1.32)
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Corollary 2. Let
{

λm,λ m

}p

m=1
, λm = bm + icm (cm 6= 0), be all different pairs of complex conjugate solutions of

multiplicity {σm}p
m=1 of the characteristic polynomial (1.25) for the fractional differential equation (1.23). Then, the

functions
p
⋃

m=1

{

Re

[

(x− a)kαe
λm(x−a)
α ,k

]}σm−1

k=0
and

p
⋃

m=1

{

Im

[

(x− a)kαe
λm(x−a)
α ,k

]}σm−1

k=0
(1.33)

form a linearly independent set of solutions to the equations (1.23).

Theorem 1. Let
{

λ j

}k

j=1
be all real different roots of the characteristic polynomial (1.25) of multiplicity

{
ℓ j

}k

j=1
, and

let
{

r j ,r j

}p

j=1
( r j = b j + ic j ) be the set of all distinct pairs of complex conjugate roots of (1.25) of multiplicity

{
σ j

}p

j=1

such that ∑k
j=1 ℓ j + 2∑

p
j=1 σ j = N. Then, the functions

k⋃

m=1

{

(x− a)ℓαe
λm(x−a)
α , j

}ℓm−1

j=1
;

p
⋃

m=1

{

Re

[

(x− a)kαe
rm(x−a)
α ,k

]}σm−1

k=1
and

p
⋃

m=1

{

Im

[

(x− a)kαe
rm(x−a)
α ,k

]}σm−1

k=1
(1.34)

form a fundamental set of solutions of the differential equation (1.23).

1.3.2 Solution of Linear Sequential Differential Equations in the Non-Homogeneous Case.

Proposition 6. Let f (x) ∈ L1(a,b)∩C[(a,b)]. Then, the LFDE

(
D

α
a+y
)
(x)−λ y(x) = f (x) (x > a), (1.35)

has the general solution

yg(x) = ce
λ (x−a)
α + yp(x), (1.36)

where

yp(x) =
(

eλ t
α ∗a f

)

(x) (1.37)

is a particular solution to (1.35), being ∗a the convolution:

(g ∗a f )(x) =
∫ x

a
g(x− t) f (t)dt. (1.38)

In addition, if f (x) is continuous in [a,b], then yp(a+) = 0; while if f (x) ∈ C1−α([a,b]), then
(
I1−α
a+ yp

)
(a+) = 0.

Theorem 2. Let
{

λ j

}k

j=1
be the k different complex roots of multiplicity

{
σ j

}k

j=1
of the characteristic polynomial (1.25)

for the following non-homogeneous LFDE:

[LNα (y)](x) =

(
k

∏
j=1

(
Dα

a+−λ j

)σ j y

)

(x) = f (x) (x > a). (1.39)

Then the particular solution to (1.39) is given by:

yp(x) = (Ga ∗a f0)(x) (1.40)

where

Gα(x) =
k

∏
j=1

∗a

(
σ j

∏
ℓ=1

∗a

e
λ j(t−a)
α

)

(x). (1.41)

Furthermore, if f (x) ∈ C1−α([a,b]), then
(
I1−α
a+ yp

)
(a+)= 0, while yp(a+)= 0 when f (x) is continuous [a,b]. Moreover,

(
I1−α
a+ Gα

)
(a+)= 0.
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2 General theory for sequential linear fractional differential equations with recurrence

relationship

In this section our main results are proved.

Definition 3. Let N ∈N and 0 < α ≤ 1. We will call Linear Sequential Fractional Differential Equations with Recurrence

Relationship (LFDERR) of order Nα to an equation of the type:

[RNα(yn(t))
∞
n=0] (x) =

(
D

Nα
a+ yn

)
(x)+

N

∑
j=1

aN− j(x)
(

D
(N− j)α
a+ yn+ j

)

(x) = fn(x) (n ∈ N0, x > a), (2.1)

where D
kα
a+ is defined by (1.18),

{
a j(x)

}N−1

j=0
are real functions defined in (a,b] ⊂ R, a0 6= 0, and fn(x) ∈ C((a,b]), for

each n ∈ N0. When fn ≡ 0 the equation (2.1) we will call Homogeneous LFDERR (LFDERRH) asociated with (2.1):

(
D

Nα
a+ yn

)
(x)+

N

∑
j=1

aN− j(x)
(

D
(N− j)α
a+ yn+ j

)

(x) = 0. (2.2)

If a0,a1, ...,aN−1 are constants, the equation (2.1) will be called equation to constant coefficients:

(
D

Nα
a+ yn

)
(x)+

N

∑
j=1

aN− j

(

D
(N− j)α
a+ yn+ j

)

(x) = fn(x); (2.3)

and its corresponding homogeneous equation will be:

(
D

Nα
a+ yn

)
(x)+

N

∑
j=1

aN− j

(

D
(N− j)α
a+ yn+ j

)

(x) = 0. (2.4)

A Sequential Fractional Differential Equation with recurrence relationship of order Nα is given by the following

expression

F
[
n,x,ENyn(x),

(
D

α EN−1yn

)
(x),

(
D

2αEN−2yn

)
(x), ...,

(
D

Nα yn

)
(x)
]
= fn(x), (2.5)

with α > 0, F(x,y1,y2, ...,yN) and f (x) are known functions, and Ek is the Shift Operator (See, for example, [14]).

The equation (2.1) represents a recurrence relationship between the sequential derivative up to order N and the
consecutive terms of the sequence of functions (yn(x))

∞
n=0. Thus, solve the equation is to find yn(x).

In the development of this paper we will limit ourselves to work with sequential derivative (1.18), considering the
Riemann-Liouville fractional derivative.

It will be denoted with ∆ Nα (a,b) the set of functions that admit sequential derivatives Dkα
a+ , 1 ≤ k ≤ N, in (a,b).

Definition 4. The solution of the LFDERR will be given by the sequence of functions (yn(x))
∞
n=0 which verified (2.1).

Now, we define Initial Values Problem (IVP).

Definition 5. 





[RNα(yn(t))
∞
n=0](x) = fn(x) (n ∈ N0, x > a)

y0(x) = c0(x)
y1(x) = c1(x)

...

yN−1(x) = cN−1(x).

(2.6)

where c1(x), ... ,cN(x) are known function.

Theorem 3. The IVP (2.6), with c0(x),c1(x), ...,cN−1(x) ∈ ∆ ∞α (a,b), and ( fn(x))
∞
n=0 ∈ [∆ ∞α(a,b)]N, admits unique

solution. Also, the solution to (2.6) will be given by the sequence (yn(x))
∞
n=0, such that







y0(x) = c0(x)
y1(x) = c1(x)

...

yN−1(x) = cN−1(x)

yn(x) =
1
a0
{−D

Nα
a+ yn−N(x)− aN−1D

(N−1)α
a+ yn−(N−1)(x)− ...− a1D

α
a+yn−1(z)+ fn(x)} if n ≥ N.

(2.7)
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Proof. To obtain the solution, a forward iteration is performed from the known functions. From (2.3) we obtain:

yn+N(x) =
1

a0

{−D
Nα
a+ yn(x)− aN−1D

(N−1)α
a+ yn+1(x)− ...− a1D

α
a+yn+N−1(x)+ fn(x)}. (2.8)

The functions yp(x), wiht p ≥ N, can be obtained by recurrence using the initial conditions:

y0(x) = c0(x)
y1(x) = c1(x)

...
yN−1(x) = cN−1(x)

(2.9)

in (2.8). The uniqueness of the solution results from the construction. In addition, from (2.8), we obtain:

yN(x) =
1

a0

{−D
Nα
a+ c0(x)− aN−1D

(N−1)α
a+ c1(x)− ...− a1D

α
a+cN−1(x)+ f0(x)}

yN+1(x) =
1

a0

{−D
Nα
a+ c1(x)− aN−1D

(N−1)α
a+ c2(x)− ...− a1D

α
a+yN(x)+ f1(x)}

...

yN+m(x) =
1

a0

{−D
Nα
a+ ym(x)− aN−1D

(N−1)α
a+ ym+1(x)− ...− a1D

α
a+ym+(N−1)(x)+ fm(x)},

(2.10)

where m ∈ N. Therefore, if we call n = N +m, for n ≥ N results:

yn(x) =
1

a0
{−D

Nα
a+ yn−N(x)− aN−1D

(N−1)α
a+ yn−N+1(x)− ...− a1D

α
a+yn−1(x)+ fn−N(x)} (2.11)

Definition 6. We will call fundamental set of solutions of the equation (2.3) to a set of N linearly independent functions,

in some interval V ⊂ (a,b), which are solutions to this equation.

Theorem 4. Let
{
(y1

n(x))∞
n=0,(y

2
n(x))∞

n=0, ...,(y
N
n (x))∞

n=0

}
⊂ [∆ ∞α(a,b)]N be, a fundamental set of solutions to equation

(2.4), then for each x ∈ (a,b), the Casoratian1 |W0(y
1
n(x),y2

n(x), ...,yN
n (x))| 6= 0.

Proof. If there exist some x0 ∈ (a,b) such that

|W0(y1
n(x0),y2

n(x0), ...,yN
n (x0))|= 0; (2.12)

then the following system, with variables c1, c2,..., cN :







c1y1
0(x0) + c2y2

0(x0) + · · · + cNyN
0 (x0) = 0

c1y1
1(x0) + c2y2

1(x0) + · · · + cNyN
1 (x0) = 0

...
...

. . .
...

...
c1y1

N−1(x0) + c2y2
N−1(x0) + · · · + cNyN

N−1(x0) = 0.

(2.13)

It has infinite solutions: In particular, there exist c0
1, c0

2,..., c0
N real constants, not all zero, that solve the system (2.13), and

with these values we can define a sequence of functions: (zn(x))
∞
n=0, where x ∈ (a,b), such that

zn(x) =
N

∑
k=1

c0
kyk

n(x). (2.14)

1 Where |W0(y
1
n(x),y2

n(x), ...,yN
n(x))|= |Wn0

(y1
n(x),y2

n(x), ...,yN
n (x))| with n0 = 0 (see, for exaple [14]).
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By definition zn(x) is a solution of (2.3):

[RNα (zn(t))
∞
n=0](x) =

(

D
Nα
a+

(
N

∑
k=1

c0
kyk

n(t)

))

(x)+
N

∑
j=1

aN− j

(

D
(N− j)α
a+

(
N

∑
k=1

c0
kyk

n+ j(t)

))

(x) (2.15)

=
N

∑
k=1

c0
k

(

D
Nα
a+ yk

n(t)
)

(x)+
N

∑
k=1

c0
k

N

∑
j=1

aN− j

(

D
(N− j)α
a+ yk

n+ j(t)
)

(x)

=
N

∑
k=1

c0
k

[
(

D
Nα
a+ yk

n(t)
)

(x)+
N

∑
j=1

aN− j

(

D
(N− j)α
a+ yk

n+ j(t)
)

(x)

]

=
N

∑
k=1

c0
k

[

RNα

(

yk
n(t)
)∞

n=0

]

(x) = 0, (2.16)

since
(
y1

n(x)
)∞

n=0
, ...,

(
yN

n (x)
)∞

n=0
verify (2.4).

Rewriting the system (2.13), and taking into account (2.14) such that:

z0(x0) = z1(x0) = ...= zN−1(x0) = 0, (2.17)

so from (2.16) and (2.17), we have to verify an initial values problem like the following:







[RNα(zn(t))
∞
n=0](x) = 0 (n ∈ N0)

z0(x) = d0(x)
z1(x) = d1(x)

...
zN−1(x) = dN−1(x).

(2.18)

where d0(x), d1(x), ..., dN−1(x) ∈ ∆ ∞α(a,b), such that:

d0(x0) = d1(x0) = ...= dN−1(x0) = 0. (2.19)

On the other hand, the sequence zero, i.e. (wn(x))
∞
n=0 such that wn(x) = 0 for all x ∈ (a,b), verify trivially (2.18); but from

Theorem 3, the problem (2.18) admits a unique solution, i.e.:

(zn(x))
∞
n=0 = (wn(x))

∞
n=0. (2.20)

Then, for which n ∈ N0:
N

∑
k=1

c0
kyk

n(x) = zn(x) = wn(x) = 0. (2.21)

Finally, we found a null combination, not trivial, of y1
n(x), y2

n(x), ..., yN
n (x). Hence, (y1

n(x))
∞
n=0,(y

2
n(x))

∞
n=0, ...,(y

N
n (x))

∞
n=0

are lineally dependent.

Theorem 5. Let G =
{
(y1

n(x))∞
n=0,(y

2
n(x))∞

n=0, ...,(y
N
n (x))∞

n=0

}
⊂ [∆ ∞α (a,b)]N be. If there exists x0 ∈ (a,b) such that the

Casoratian

|W0(y1
n(x0),y2

n(x0), ...,yN
n (x0))| 6= 0, (2.22)

then the set G is linearly independent.

Proof. Let x0 ∈ (a,b) be such that:

|W0(y1
n(x0),y2

n(x0), ...,yN
n (x0))| 6= 0. (2.23)

Let x ∈ (a,b). We propose the following linear combination:

c1y1
n(x)+ c2y2

n(x)+ ...+ cNyN
n (x) = 0, (2.24)

c© 2021 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 7, No. 1, 1-21 (2021) / www.naturalspublishing.com/Journals.asp 9

where n ∈ N0. Also, we can obtain the following system of equations, where c1, c2,..., cN are unknown constants:







c1y1
0(x0) + c2y2

0(x0) + · · · + cNyN

0 (x0) = 0
c1y1

1(x0) + c2y2
1(x0) + · · · + cNyN

1 (x0) = 0
...

...
. . .

...
...

c1y1
N−1(x0) + c2y2

N−1(x0) + · · · + cNyN

N−1(x0) = 0

(2.25)

Since the determinant of the matrix of this homogeneous system is nonzero, i.e. |W0(y
1
n(x0),y

2
n(x0), ...,y

N
n (x0))| 6= 0, it

admits a unique solution, the trivial: c1 = c2 = ...= cN = 0. Thus, the unique linear combination possible to (2.24) is the
trivial; then

(
y1

n(x)
)∞

n=0
, ...,

(
yN

n (x)
)∞

n=0
are linear independent.

Now we consider the family of functions

yn(x) = γne
λ γ(x−a)
α , (n ∈ N, γ 6= 0). (2.26)

If we replace γne
λ γ(x−a)
α in the left hand of (2.3):

[

RNα

(

γne
λ (t−a)
α

)∞

n=0

]

(x) = γn

{
[

D
Nα
a+

(

e
λ (t−a)
α

)]

(x)+
N

∑
j=1

aN− jγ
j
[

D
(N− j)α
a+ e

λ (t−a)
α

]

(x)

}

= γn

{

λ Ne
λ (x−a)
α +

N

∑
j=1

aN− jγ
jλ N− je

λ (x−a)
α

}

= γne
λ (x−a)
α

{

λ N +
N

∑
j=1

(
aN− jγ

j
)

λ N− j

}

. (2.27)

Definition 7. We called characteristic γ-polynomial associated with (2.3) is the expression that is between brace (2.27),

and we will write:

PN,γ (λ ) = λ N +
N

∑
j=1

(
aN− jγ

j
)

λ N− j. (2.28)

Remark. Since a0 6= 0 and γ 6= 0, from the definition, the roots of (2.28) are nonzero.

Theorem 6. If λ is a root of the characteristic polynomial (2.28), then the succession

(

γne
λ γ(x−a)
α

)∞

n=0
is solution to the

equation (2.4).

Proof. Taking into account (2.27), the proof is completed.

Lemma 3. Let
{
(yk

n(x))
∞
n=0

}N

k=1
⊂ [∆ ∞α(a,b)]N be a fundamental set of solutions to equation (2.4). Then, any solution

(yn(x))
∞
n=0 to the equation (2.4), in (a,b), can be written, as follows:

yn(x) =
N

∑
k=1

ckyk
n(x) (2.29)

where c1, c2, ... ,cN are arbitrary constants.

Proof. Let x ∈ (a,b). From Theorem 4, we have

|W0(y1
n(x),y

2
n(x), ...,y

N
n (x))| 6= 0. (2.30)

On the other hand, let (yn(x))
∞
n=0 be any solution to (2.4) and we suppose:







y0(x) = d0(x)
y1(x) = d1(x)

...
yN−1(x) = dN−1(x).

(2.31)
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From (2.31) we have that the system






∑N
j=i c jy

j

0(x) = d0(x)

∑N
j=i c jy

j

1(x) = d1(x)
...

...

∑N
j=i c jy

j

N−1(x) = dN−1(x),

(2.32)

admits a unique solution, where x ∈ (a,b). Then, there is a unique (c0
1,c

0
2, ...,c

0
N) that verifies (2.32). Let’s define

wn(x) =
N

∑
j=1

c0
jy

j
n(x). (2.33)

Therefore, by (2.32), the sequence (wn(x))
∞
n=0 verifies the following initial conditions







w0(x) = d0(x)
w1(x) = d1(x)

...
wN−1(x) = dN−1(x).

(2.34)

where x ∈ (a,b). Finally, taking into account Theorem 3, the result is, as follow:

yn(x) = wn(x) =
N

∑
k=1

ckyk
n(x). (2.35)

Definition 8. We will denote E
0
N(a,b) the set of solutions to equation (2.4), x ∈ (a,b), with the operations vector addition,

“+”, and scalar multiplication “·”, defined as follows:

(y1
n(x))

∞
n=0 +(y2

n(x))
∞
n=0 = ((y1

n + y2
n)(x))

∞
n=0 (2.36)

d(y1
n(x))

∞
n=0 = ((dy1

n)(x))
∞
n=0, (2.37)

whenever (y1
n(x))

∞
n=0, (y2

n(x))
∞
n=0 ∈ E

0
N(a,b), and d is a scalar.

Theorem 7. Any linear combination of solutions to the homogeneous equation (2.2), is also solution of the equation (2.2).

Proof. If
{
(yn(x))

∞
n=0

}M

k=1
are a set of M solutions to (2.2), and c1, c2, ..., cM are arbitrary constants, then

[

RNα

(
M

∑
k=1

ckyk
n(t)

)∞

n=0

]

(x) =

[

D
Nα
a+

M

∑
k=1

ckyk
n(t)

]

(x)+
N

∑
j=0

aN− j(x)

[

D
(N− j)α
a+

M

∑
k=1

ckyk
n+ j(t)

]

(x)

=
M

∑
k=1

ck

[

D
Nα
a+ yk

n(t)
]

(x)+
N

∑
j=0

aN− j(x)
M

∑
k=1

ck

[

D
(N− j)α
a+ yk

n+ j(t)
]

(x)

=
M

∑
k=1

ck

{
[

D
Nα
a+ yk

n(t)
]

(x)+
N

∑
j=0

aN− j(x)
[

D
(N− j)α
a+ yk

n+ j(t)
]

(x)

}

=
M

∑
k=1

ck

[

RNα

(

yk
n(t)
)∞

n=0

]

(x)
︸ ︷︷ ︸

=0

= 0. (2.38)

Corollary 3. For
{
(yk

n(x))
∞
n=0

}M

k=1
⊂ [∆ ∞α(a,b)]N, we have

[

RNα

(
M

∑
k=1

ckyk
n(t)

)∞

n=0

]

(x) =
M

∑
k=1

ck

[

RNα

(

yk
n(t)
)∞

n=0

]

(x), (2.39)

where
[
RNα

(
yk

n(t)
)∞

n=0

]
(x) is given in Definition 3.
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Theorem 8. The set H = E
0
N(a,b)∩ [∆ ∞α(a,b)]N is a vector space of N dimensions.

Proof. It is clear that (0)∞
n=0 ∈ H, so H 6= /0. Let

(
y1

n(x)
)∞

n=0
,
(
y2

n(x)
)∞

n=0
∈ H, and η ,µ ∈ C. From Corollary 3, we know

that:

RNα [η (y1
n(x))

∞
n=0 + µ (y2

n(x))
∞
n=0] = ηRNα [(y1

n(x))
∞
n=0]+ µRNα [(y2

n(x))
∞
n=0] = 0. (2.40)

Finally, taking into account Lemma 3, the thesis is concluded.

Theorem 9. Let (yp
n(x))

∞
n=0 be a particular solution (2.3) and let (yh

n(x))
∞
n=0 be a solution to (2.4). Then, any solution

(yn(x))
∞
n=0 to (2.3) can be written as follows:

(yn(x))
∞
n=0 = ((yh

n + y
p
n)(x))

∞
n=0 . (2.41)

Proof. The thesis results from applying Corollary 3.

Corollary 4. Let (yn(x))
∞
n=0 be a solution to the equation (2.1). Then, for all n0 ∈ N, (yn0+n(x))

∞
n=0 is also a solution of

(2.1).

Proof. The thesis is shown verifying (2.1).

In the following Lemma we will establish a relationship between the roots of the polynomial PN(λ ), defined in (1.25),
with the roots of the polynomial PN,γ (λ ) defined in (2.28).

Lemma 4. If λ1 is a root of the polynomial PN(λ ), then γλ1 is a root of the polynomial PN,γ(λ ). Moreover, if λ1 is a root

of multiplicity ℓ of PN(λ ), then γλ1 is a root of multiplicity ℓ of PN,γ(λ ).

Proof. Taking into account (1.25) and (2.28) we can write:

PN,γ (γλ ) = (γλ )N +
N

∑
j=1

(
aN− jγ

j
)
(γλ )N− j = (γλ )N +

N

∑
j=1

(
aN− jγ

N
)

λ N− j = γNPN(λ ). (2.42)

Then PN,γ (γλ1) = γNPN(λ1) = 0.

From (2.42), we have that:

dkPN,γ

dλ k
(γλ ) = γN dkPN

dλ k
(λ ), 0 ≤ k ≤ ℓ. (2.43)

On the other hand, since λ1 is a root of multiplicity ℓ of PN(λ ), we know that

PN(λ1) =
dPN

dλ
(λ1) = ...=

dℓ−1PN

dλ ℓ−1
(λ1) = 0 and

dℓPN

dλ ℓ
(λ1) 6= 0. (2.44)

Finally, applying (2.43) and (2.44), we obtain:

PN,γ (γλ1) =
dPN,γ

dλ
(γλ1) = ...=

dℓ−1PN,γ

dλ ℓ−1
(γλ1) = 0 and

dℓPN,γ

dλ ℓ
(γλ1) 6= 0, (2.45)

i.e., γλ1 is a root of multiplicity ℓ of PN,γ(λ ).
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2.1 Solution of the homogeneous LFDERR via eλx
α

Lemma 3 asserts that the problem to obtaining a general solution to the Homogeneous LFDERR can be reduced to finding
N linearly independent solutions. In what follows we will show how, in different cases, we can obtain N − 1 solutions
from the first and such that the N solutions form a fundamental set of solutions.

It is possible to find a fundamental set of solutions of the equation (2.4) using the well known function, α-Exponential,

(1.8). The solution will be given by the potential function γn multiplied by the function eλ x
α .

Proposition 7. If λ1 is a root of the characteristic polynomial (1.25), with multiplicity ℓ1; then

{(
y1, j

n (x)
)∞

n=0

}ℓ1−1

j=0
⊂ E

0
N(a,b)∩ [∆ ∞α(a,b)]N , (2.46)

with

y1, j
n (x) = γn(x− a) jαe

λ1γ(x−a)
α , j , (2.47)

where e
λ1(x−a)
α , j is given by (1.11), and γ 6= 0.

Proof. Since λ1 is a root of multiplicity ℓ1 of PN(λ ); from Property 4, it results that γλ1 is a root of multiplicity ℓ1 of
PN,γ(λ ), i.e. (2.45) is valid.

Let 0 ≤ j ≤ ℓ1 − 1. Therefore, taking into account Lemma 2 and proceeding as in (2.27), we obtain:

{[

RNα

(

γn(t − a) jαe
λ (t−a)
α , j

)∞

n=0

]

(x)
}

λ=λ1γ
=

=

{[

RNα

(

γn ∂ j

∂λ j
e

λ (t−a)
α

)∞

n=0

]

(x)

}

λ=λ1γ

=

=

{[

D
Nα
a+

(

γn ∂ j

∂λ j
e

λ (t−a)
α

)

(x)

]

+
N

∑
σ=1

aN−σ

[

D
(N−σ)α
a+

(

γn+σ ∂ j

∂λ j
e

λ (t−a)
α

)

(x)

]}

λ=λ1γ

=

{

γn ∂ j

∂λ j

(
[

D
Nα
a+

(

e
λ (t−a)
α

)

(x)
]

+
N

∑
σ=1

aN−σ γσ
[

D
(N−σ)α
a+ e

λ (t−a)
α

]

(x)

)}

λ=λ1γ

=

=

{

γn ∂ j

∂λ j

[

PN,γ (λ )e
λ (x−a)
α

]}

λ=λ1γ

. (2.48)

Finally, applying the Leibniz rule in (2.48), we obtain:

{[

RNα

(

γn(t − a) jαe
λ (t−a)
α , j

)∞

n=0

]

(x)
}

λ=λ1γ
= γn

j

∑
k=0

(
j

k

){
∂ j−k

∂λ j−k

(

e
λ (x−a)
α

)}

λ=λ1γ

{
∂ kPN,γ

∂λ k
(λ )

}

λ=λ1γ
︸ ︷︷ ︸

=0

= 0, (2.49)

since (2.45) is valid; i.e.
(

γn(x− a) jαe
λ1γ(x−a)
α , j

)∞

n=0
∈ E0

N(a,b). Moreover, proceeding as in(2.1):

(

D
Nα
a+ γn(t − a)Nα e

λ (t−a)
α , j

)

(x) = γn ∂ j

∂λ j

(

D
Nα
a+ e

λ (t−a)
α

)

(x) = γnλ N ∂ j

∂λ j
e

λ (x−a)
α = λ Nγn(t − a) jαe

λ (x−a)
α , j , (2.50)

so, (

γn(x− a) jαe
λ1γ(x−a)
α , j

)∞

n=0
∈ [∆ ∞α(a,b)]N . (2.51)

Corollary 5. Let
{

λ j

}M

j=1
be M different roots of multiplicity

{
ℓ j

}M

j=1
, respectively, of the characteristic polynomial

(1.25). Then, the sequence of functions
M⋃

k=1

{(

yk, j
n (x)

)∞

n=0

}ℓk−1

j=0
(2.52)

where

yk, j
n (x) = γn(x− a) jαe

λkγ(x−a)
α , j , (2.53)

γ 6= 0, they form a fundamental set of solutions to the equation (2.4).
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Proof. We will prove the M = 2 case. Let {λ1,λ2} be two distinct roots of PN(λ ), where λ1 has multiplicity ℓ1, and λ2

has multiplicity ℓ2, with ℓ1 + ℓ2 = N. Then, from Lemma 4, we know that γλ1 and γλ2 are roots of multiplicity ℓ1 y ℓ2,
respectively, of PN,γ(λ ). By Proposition 7, we know that

{(

γn(x− a) jαe
λ1γ(x−a)
α , j

)∞

n=0

}ℓ1−1

j=0

⋃{(

γn(x− a) jαe
λ2γ(x−a)
α , j

)∞

n=0

}ℓ2−1

j=0
(2.54)

represents a set of solutions to the equation (2.4).
On the other hand, from Corollary 1, and Lemma 4, we know that the functions

{

(x− a) jαe
λ1γ(x−a)
α , j

}ℓ1−1

j=0

⋃{

(x− a) jαe
λ2γ(x−a)
α , j

}ℓ2−1

j=0
(2.55)

are linearly independent. Hence the functions

{

γn(x− a) jαe
λ1γ(x−a)
α , j

}ℓ1−1

j=0

⋃{

γn(x− a) jαe
λ2γ(x−a)
α , j

}ℓ2−1

j=0
(2.56)

also form a linearly independent set, with n ∈ N0. Then, we can construct the ℓ1 + ℓ2 sequences of (2.54), where their
general terms are the functions in (2.56). Then, it has been verified that (2.54) is a fundamental set of solutions of (2.4).

Corollary 6. If λ and λ (λ = b+ ic, c 6= 0) are two complex solutions of multiplicity ℓ, of the characteristic polynomial

(1.25), then the sequences of functions

{(

γn
Re

[

(x− a) jαe
λ γ(x−a)
α , j

])∞

n=0

}ℓ1−1

j=0

⋃ {(

γn
Im

[

(x− a) jαe
λ γ(x−a)
α , j

])∞

n=0

}ℓ1−1

j=0
(2.57)

γ 6= 0, form a subset of 2ℓ sequences linearly independent belonging to E
0
N(a,b)∩ [∆ ∞α(a,b)]N.

Proof. By Corollary 5, we know that

{(

γn(x− a) jαe
λ γ(x−a)
α , j

)∞

n=0

}ℓ1−1

j=0

⋃ {(

γn(x− a) jαe
λγ(x−a)
α , j

)∞

n=0

}ℓ1−1

j=0
(2.58)

is a set of solution of (2.4).
On the other hand, for each n ∈N0, we can write:

Re

[

γn(x− a) jαe
λ γ(x−a)
α , j

]

=
1

2
γn(x− a) jαe

λ γ(x−a)
α , j +

1

2

(

γn(x− a) jαe
λ γ(x−a)
α , j

)

=
1

2
γn(x− a) jαe

λ γ(x−a)
α , j +

1

2
γn(x− a) jαe

λγ(x−a)
α , j ; (2.59)

then, for each 0 ≤ j ≤ ℓ1 − 1, from Theorem 8, the sequence

(

γn
Re

[

(x− a) jαe
λ γ(x−a)
α , j

])∞

n=0
∈ E0

N(a,b)∩ [∆ ∞α (a,b)]N . (2.60)

Analogously, we can prove that

(

γn
Im

[

(x− a) jαe
λ γ(x−a)
α , j

])∞

n=0
∈ E0

N(a,b)∩ [∆ ∞α (a,b)]N (2.61)

Finally, from Proposition 5, we know that:

{(

γn
Re

[

(x− a) jαe
λ γ(x−a)
α , j

])∞

n=0

}ℓ1−1

j=0

⋃ {(

γn
Im

[

(x− a) jαe
λ γ(x−a)
α , j

])∞

n=0

}ℓ1−1

j=0
, (2.62)

is a linearly independent set.
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Corollary 7. Let
{

r j;r j

}p

j=1
be (r j = b j + ic j) the set of conjugate complex roots of PN(λ ) with multiplicity

{
σ j

}p

j=1
,

respectively, such that 2∑
p
j=1 σ j = N, then the sequences of functions

p
⋃

k=1

{(

γn
Re

[

γn(x− a) jαe
rkγ(x−a)
α , j

])∞

n=0

}σk−1

j=0
and

p
⋃

k=1

{(

γn
Im

[

γn(x− a) jαe
rkγ(x−a)
α , j

])∞

n=0

}σk−1

j=0
(2.63)

form a fundamental set of solution to equation (2.4).

Proof. The proof is similar to that of Corollary 6.

Theorem 10. Let
{

λ j

}M

j=1
be roots of PN(λ ), with multiplicity

{
ℓ j

}M

j=1
respectively, and let

{
r j;r j

}p

j=1
be (r j = b j + ic j)

the set of pairs conjugate complex roots of PN(λ ) with multiplicity
{

σ j

}p

j=1
, respectively, such that ∑M

j=1 ℓ j +2∑
p
j=1 σ j =

N, then the sequence of functions
M⋃

k=1

{(

γn(x− a) jαe
λkγ(x−a)
α , j

)∞

n=0

}ℓ j−1

j=0
; (2.64)

p
⋃

k=1

{(

γn
Re

[

γne
rkγ(x−a)
α , j

])∞

n=0

}σk−1

j=0
(2.65)

and
p
⋃

k=1

{(

γn
Im

[

γne
rkγ(x−a)
α , j

])∞

n=0

}σk−1

j=0
(2.66)

γ 6= 0, they form a fundamental set of solutions to (2.4).

Proof. The proof of Theorem follows immediately from the Corollaries 5 and 7.

Example 1. We will consider the following LFDERR:

(
D

2α
a+yn

)
(x)− yn+2(x) = 0. (2.67)

We have that P2(λ ) = (λ −1)(λ +1); from Corollary 5, the equation (2.67) has the following fundamental set of solutions:

{(

γne
γ(x−a)
α

)∞

n=0
;
(

γne
−γ(x−a)
α

)∞

n=0

}

. (2.68)

To verify that statement is sufficient to take yn(x) = γne
γλ (x−a)
α ; and from (1.15), we obtain:

[

D
2α
a+

(

γne
γλ (t−a)
α

)]

(x)− γn+2e
γλ (x−a)
α = γn+2λ 2e

γλ (x−a)
α − γn+2e

γλ (x−a)
α = 0, (2.69)

if λ = 1 or λ =−1. From Corollary 1 ( when ℓ1 = ℓ2 = 1 and M = 2), we know that the functions e
λ (x−a)
α and e

−λ (x−a)
α are

linearly independent. Hence, we obtain the sequences of functions
(

γne
γ(x−a)
α

)∞

n=0
and

(

γne
−γ(x−a)
α

)∞

n=0
that are linearly

independent. In addition, we can see in (2.69) that both sequences verify the equation (2.67).

Example 2. Now, we will consider the following LFDERR:

(
D

2α
a+yn

)
(x)− 2

(
D

α
a+yn+1

)
(x)+ yn+2(x) = 0. (2.70)

From Corollary 5, this equation has the following fundamental set of solutions
{(

γne
γ(x−a)
α

)∞

n=0
;
(

γn(x− a)αe
−γ(x−a)
α ,1

)∞

n=0

}

, (2.71)

since P2(λ ) = (λ −1)2, i.e. λ is a root of multiplicity 2. Proceeding analogously to the previous example, it can be verified
that the sequences in (2.71) solve (2.70).
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Example 3. Given the following EDFLSRR:

(
D

2α
a+yn

)
(x)+ν2yn+2(x) = 0, (ν > 0), (2.72)

we have that the characteristic polynomial associated with this equation P2,γ(λ ) = (λ − iνγ)(λ + iνγ); while P2(λ ) =
(λ − iν)(λ + iν). Then, according to Corollary 6, we can obtain the fundamental set of solutions

{(

γn
Re

[

e
νγ(x−a)
α ,0

])∞

n=0
;
(

γn
Im

[

e
νγ(x−a)
α ,0

])∞

n=0

}

. (2.73)

2.2 Solution to the nonhomogeneous LFDERR

For this section, we will consider the affirmation of Theorem 9.

Lemma 5. Let fn(x) ∈ ∆ α∞(a,b) be, for each n ∈ N0. A solution to the LFDERR of order α:

a0yn+1(x)−
(
D

α
a+yn

)
(x) = fn(x) (n ≥ 1) (2.74)

is given by the sequence (yn(x))
∞
n=1, with

yn(x) =
n−1

∑
j=0

a0
j−n
(

D
(n− j−1)α
a+ f j

)

(x). (2.75)

Proof. It results by verification: merely replacing (2.75) in (2.74):

(
D

α
a+yn

)
(x)− a0yn+1(x) =

=

[

D
α
a+

(
n−1

∑
j=0

a0
j−n
(

D
(n− j−1)α
a+ f j

)

(t)

)]

(x)− a0

n

∑
j=0

a0
j−n−1

(

D
(n− j)α
a+ f j

)

(x) =

=
n−1

∑
j=0

a0
j−n
(

D
(n− j)α
a+ f j

)

(x)−
{

n−1

∑
j=0

a0
j−n
(

D
(n− j)α
a+ f j

)

(x)+ fn(x.)

}

=− fn(x). (2.76)

Theorem 11. Let fn(x) ∈ ∆ α∞(a,b), n ∈N0. A solution to the LFDERR of order α ,

a0yn+1(x)−
(
D

α
a+yn

)
(x) = fn(x) (n ∈ N0) (2.77)

is given by (yn(x))
∞
n=0, with

yn(x) =

{

−zn(x)+∑n−1
j=0 a0

j−n
(

D
(n− j−1)α
a+ f j

)

(x) if n ≥ 1,

−z0(x) if n = 0,
(2.78)

where (zn(x))
∞
n=0 is a solution to the Homogeneous LFDERR of first order

(
D

α
a+zn

)
(x)− a0zn+1(x) = 0. (2.79)

Proof. Let n = 0 be:

y1(x) =−z1(x)+ a−1
0 f0(x) (2.80)

Since (zn(x))
∞
n=0 is solution of (2.79), the result is

z1(x) = a−1
0

(
D

α
a+z0

)
(x). (2.81)
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Replacing (2.81) in (2.80), we have:

y1(x) =−a−1
0

(
D

α
a+z0

)
(x)+ a−1

0 f0(x) = a−1
0

(
D

α
a+y0

)
(x)+ a−1

0 f0(x), (2.82)

i.e.

a0y1(x)−
(
D

α
a+y0

)
(x) = f0(x). (2.83)

Now, let n ≥ 1 be:

yn+1(x) =−zn+1(x)+
n

∑
j=0

a
j−n−1
0

(

D
(n− j)α
a+ f j

)

(x). (2.84)

Since (zn(x))
∞
n=0 is a solution of (2.79), we obtain the following:

zn+1(x) = a−1
D

α
a+zn(x). (2.85)

Replacing (2.85 ) in (2.84), we have:

yn+1(x) =−a−1
0

(
D

α
a+zn

)
(x)+

n

∑
j=0

a
j−n−1
0

(

D
(n− j)α
a+ f j

)

(x) =

=−a−1
0

(
D

α
a+zn

)
(x)+

[
n−1

∑
j=0

a
j−n−1
0

(

D
(n− j)α
a+ f j

)

(x)+ a−1
0 fn(x)

]

=

= a−1
0

[

−
(
D

α
a+zn

)
(x)+

n−1

∑
j=0

a
j−n
0

(

D
(n− j)α
a+ f j

)

(x)

]

+ a−1
0 fn(x) =

= a−1
0 D

α
a+

[

−zn(t)+
n−1

∑
j=0

a
j−n
0

(

D
(n− j−1)α
a+ f j

)

(t)

]

(x)+ a−1
0 fn(x). (2.86)

Therefore, applying (2.78) in (2.86):

yn+1(x) = a−1
0

(
D

α
a+yn

)
(x)+ a−1

0 fn(x), (2.87)

i.e.,

a0yn+1(x)−
(
D

α
a+yn

)
(x) = fn(x) (2.88)

is valid.

Corollary 8. Let fn(x) ∈ ∆ α∞(a,b), n ∈ N0, and let γ 6= 0. A solution of (2.77) is given by

(yn(x))
∞
n=0, with

yn(x) =

{

−γne
a0γ(x−a)
α +∑n−1

j=0 a0
j−n
(

D
(n− j−1)α
a+ f j

)

(x) if n ≥ 1,

−e
a0γ(x−a)
α if n = 0.

(2.89)

Proof. From Proposition 7, we know that, (zn(x))
∞
n=0, where

zn(x) = y1,0
n (x) = γn(x− a)(0)αe

−a0γ(x−a)
α ,0 = γnea0γ(x−a), (2.90)

is solution of
(
D

α
a+zn

)
(x)− a0zn+1(x) = 0. (2.91)

Then, from Theorem 11, the proof is completed.
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Proposition 8. Let fn(x) = γn f0(x), where f0 ∈ L1(a,b)∩C(a,b), and γ 6= 0. Then, the equation

(
D

α
a+yn

)
(x)−λ yn+1(x) = fn(x) (n ∈ N0, x > a) (2.92)

admits as a solution (yn(x))
∞
n=0, where

yn(x) = cγne
γλ x
α + y

p
n(x) (2.93)

with

y
p
n(x) = γne

λ γx
α ∗a f (x) (2.94)

where
(
y

p
n(x)

)∞

n=0
is a particular solution of (2.92), c is an arbitrary constant, and ∗a represents the convolution:

(g ∗a f )(x) =

∫ x

a
g(x− t) f (t)dt. (2.95)

Proof. From Proposition 7, since λ is a root of the characteristic polynomial associated with the equation

(
D

α
a+yn

)
(x)−λ yn+1(x) = 0, (2.96)

we know that
(

γne
γλ (x−a)
α

)∞

n=0
is a solution of (2.96). Then, from Theorem 9, it is enough to verify that (yp

n(x))
∞
n=0 solves

(2.92). To prove that (yn(x))
∞
n=0 is solution of (2.92), applying Lemma 1 and taking into account (1.16), we obtain:

(
D

α
a+yp

n

)
(x) = D

α
a+

[

γne
λ γt
α ∗a f (t)

]

(x) = D
α
a+

[∫ t

a
γne

λ (τ−a)
α f (τ)dτ

]

(x) =

= γn

∫ x

a

{

D
α
a+e

λ γ(t−a)
α

}

(τ) f (x− τ + a)dτ + γn f (x) lim
x→a+

{

I1−α
a+ e

λ γ(t−a)
α

}

(x)
︸ ︷︷ ︸

=1

=

= λ γn+1

∫ x

a
e

λ γ(τ−a)
α f (x− τ + a)dτ + γn f (x) = λ

[

γn+1e
λ γτ
α ∗a f (τ)

]

(x)+ γn f (x) =

= λ y
p

n+1(x)+ γn f (x). (2.97)

Theorem 12. Let f0 ∈ L1(a,b)∩C(a,b), fn(x) = γn f0(x) and γ 6= 0. Then, a particular solution of (2.3):

[RNα (yn)
∞
n=0](x) = fn(x) (n ∈ N0, x > a), (2.98)

is given by (yp
n(x))

∞
n=0 with

y
p
n(x) = γn(Gα ,γ ∗a f0)(x) (2.99)

with

Gα ,γ (x) = γn
M

∏
j=1

∗a

(
ℓk

∏
k=1

∗a

e
λ jγ(x−a)
α

)

(2.100)

where
{

λ j

}M

j=1
are the M distinct roots of multiplicity {ℓk}M

k=1 of the characteristic polynomial (1.25), respectively, i.e.:

PN(λ ) = (λ −λ1)
ℓ1(λ −λ2)

ℓ2 ...(λ −λM)ℓM , (2.101)

and ℓ1 + ℓ2 + ...+ ℓM = N.

Proof. Assuming the existence of y(x) such that, for each n ∈ N0, we can write

yn(x) = γny(x); (2.102)

and replacing (2.102) in (2.98), and taking into account that fn(x) = γn f0(x), it results

(
D

Nα
a+ γny

)
(x)+

N

∑
j=1

a j

(

D
(N− j)α
a+ γn+ jy

)

(x) = γn f0(x). (2.103)
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Thus,

f0(x) = γN

{

(
D

Nα
a+ γ−Ny

)
(x)+

N

∑
j=1

a j

(

D
(N− j)α
a+ γ j−Ny

)

(x)

}

=

= γN

{
[(

γ−1
D

α
a+

)N
y
]

(x)+
N−1

∑
j=1

a j

[(
γ−1

D
α
a+

)(N− j)
y
]

(x)

}

=

= γN

{

(
γ−1

D
α
a+

)N
+

N−1

∑
j=1

a j

(
γ−1

D
α
a+

)(N− j)

}

y(x) =

= γN
{

PN

(
γ−1

D
α
a+

)}
y(x) = γ1+ℓ2+...+ℓM PN

(
γ−1

D
α
a+

)
y(x) =

= γℓ1+ℓ2+...+ℓM
(
γ−1

D
α
a+−λ1

)ℓ1
(
γ−1

D
α
a+−λ2

)ℓ2
...
(
γ−1

D
α
a+−λM

)ℓM
y(x) =

=
(
D

α
a+− γλ1

)ℓ1
(
D

α
a+− γλ2

)ℓ2 ...
(
D

α
a+− γλM

)ℓM y(x) =

=

(
M

∏
j=1

(
D

α
a+−λ jγ

)ℓ j y

)

(x). (2.104)

Then, from Theorem 2, we conclude:

y(x) =

(
M

∏
j=1

∗a

(
ℓk

∏
k=1

∗a

e
λ jγ(t−a)
α

)

∗a f0

)

(x). (2.105)

From (2.102) and (2.105), the thesis is obtained.

The following result establishes a relationship between the LFDERR and the LFDE.

Theorem 13. Let y(x) be a solution to the Homogeneous LFDERR (1.23). Then, a solution of (2.2) is given by (yn(x))
∞
n=0

with yn(x) = y(x), n ∈ N0. Moreover,

[RNα(yn(t))
∞
n=0] (x) = [LNα (y)] (x). (2.106)

Proof. The proof is evident.

3 Reduction of the LFDERR to a recurrence relationship

Let us consider the following sequence of functions:

(yn(x))
∞
n=0 =

(
znex−a

α

)∞

n=0
, (3.1)

where (zn)
∞
n=0 is a numerical sequence. From (2.4) we obtain:

[
RNα

(
znex−a

α

)∞

n=0

]
(x) =

(
D

Nα
a+ znet−a

α

)
(x)+

N

∑
j=1

aN− j

(

D
(N− j)α
a+ zn+ je

t−a
α

)

(x) =

= zn

(
D

Nα
a+ et−a

α

)
(x)+

N

∑
j=1

aN− jzn+ j

(

D
(N− j)α
a+ et−a

α

)

(x) = znex−a
α +

N

∑
j=1

aN− jzn+ je
x−a
α =

=

(

zn +
N

∑
j=1

aN− jzn+ j

)

ex−a
α . (3.2)

Then, from (3.2), the succession of functions (3.1) solve (2.4) and must be (zn)
∞
n=0 a solution of the recurrence equation:

zn +
N

∑
j=1

aN− jzn+ j = 0. (3.3)
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If we call bN = a−1
0 and bN− j = aN− ja

−1
0 , for each 1 ≤ j ≤ N − 1, from (3.3), we obtain the following Linear Difference

Equation2:
zn+N + b1zn+N−1 + ...+ bN−1zn+1 + bNzn = 0 (3.4)

Accordingly, we show the following Lemma.

Lemma 6. If (zn)
∞
n=0 is a solution to (3.3), then (znex−a

α )
∞
n=0 is a solution to (2.4).

On the other hand, we know that if
{

λ j

}M

j=1
, are M different roots of multiplicity

{
ℓ j

}M

j=1
, respectively, of the

characteristic polynomial

PN(λ ) = λ n +
N

∑
j=1

aN− jλ
n+ j, (3.5)

associated with (3.3), then,
M⋃

k=1

{((
n

j

)

λ
n− j

k

)∞

n=0

}ℓk−1

j=0

(3.6)

is a fundamental set of solutions of (3.3), and since ex−a
α is independent of n, fromm Lemma 6, the following theorem is

proved.

Theorem 14.If
{

λ j

}M

j=1
, are M different roots of multiplicity

{
ℓ j

}M

j=1
, respectively, of (3.5). Then,

M⋃

k=1

{((
n

j

)

λ n− j
k ex−a

α

)∞

n=0

}ℓk−1

j=0

(3.7)

is a fundamental set of solutions (2.4).

Example 4. We will compare the solutions of an LFDE and a linear difference equation of first order, in the following
sense (

D
α
a+yn

)
(x)+ a0yn+1(x) = γn f0(x), (3.8)

with x ∈ (a,b), and a x0 ∈ (a,b):
yn(x0)+ a0yn+1(x0) = γn f0(x0). (3.9)

The above mentioned example can be written, as follows:

(−a0)yn+1(x)−
(
D

α
a+yn

)
(x) =−γn f0(x) (3.10)

and
yn+1(x0)− (−a−1

0 )yn(x0) = a−1γn f0(x0). (3.11)

In (3.10) and (3.11), we will call γ =−a−1
0 y f0(x) = ex−a

α :

γ−1yn+1(x)−
(
D

α
a+yn

)
(x) =−γnex−a

α (3.12)

and
yn+1(x0)− γyn(x0) =−γn+1e

x0−a
α . (3.13)

The equation (3.12) is of the type stated in (2.77), while (3.13) is an Linear Difference Equation of first order (see, for
example [14]). From Corollary 8 we know that the solution to (3.12) is given by (yn(x))

∞
n=0 where

yn(x) =

{
−γnex−a

α −∑n−1
j=0 γn− j

(
γ jex−a

α

)
if n ≥ 1,

−ea−x
α if n = 0.

(3.14)

Then, if we fix x = x0 and y0(x0) =−e
x0−a
α in (3.14), we obtain

yn(x0) =

{

γny0(x0)+∑n−1
j=0 γn− j−1

(

−γ j+1e
x0−a
α

)

if n ≥ 1,

y0(x0) if n = 0.
(3.15)

We know (see, for instance [14]) that (yn(x0))
∞
n=0 represents a solution to (3.13), under the initial condition

y0(x0) =−e
x0−a
α .

2 Also called recurrence equation (see, for example [14])
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Example 5. We will analyze the following initial values problem:







(
D2α

0+yn

)
(x)+

(
Dα

0+yn+1

)
(x)− yn+2(x) = 0

y0(x) = 0

y1(x) =
ex

α

e1
α
,

(3.16)

where n ∈ N0, x ∈ (0,+∞). The equation

(
D

2α
0+yn

)
(x)+

(
D

α
0+yn+1

)
(x)− yn+2(x) = 0 (3.17)

is a LFDERRH of order 2α , and its associated characteristic polynomial is P2(λ ) = λ 2 + λ − 1, whose roots are

λ1 =− 1−
√

5
2

and λ1 =− 1+
√

5
2

. By Corollary 5 it is known that, if γ 6= 0, the sequences

(

γne
λ1γx
α

)∞

n=0
and

(

γne
λ2γx
α

)∞

n=0
(3.18)

are two linearly independent solutions of the equation (3.17). In particular,

(

(−λ2)
n
e
−λ1λ2x
α

)∞

n=0
and

(

(−λ1)
n
e
−λ2λ1x
α

)∞

n=0
(3.19)

also form (see Theorem 14) a fundamental set of solutions of (3.17). Since λ1λ2 = −1, the solutions in (3.19) can be
written as

((−λ2)
n
ex

α)
∞
n=0 and ((−λ1)

n
ex

α)
∞
n=0 . (3.20)

In addition, according to Lemma 3, the solution (yn(x))
∞
n=0 of the equation (3.17) may be written as:

yn(x) = A(−λ2)
n
ex

α +B(−λ1)
n
ex

α = [A(−λ2)
n +B(−λ1)

n]ex
α , (3.21)

where x ∈ (0,+∞), A and B arbitrary constants. By the initial conditions, we have

{

y0(x) = (A+B)ex
α = 0

y1(x) = [A(−λ2)+B(−λ1)]e
x
α =

ex
α

e1
α
,

(3.22)

i.e. A =−B =
(√

5 e1
α

)−1

. Therefore, it follows that the solution to the IVP (3.16) is given by (yn(x))
∞
n=0 with

yn(x) =

[

1√
5 e1

α

(

1+
√

5

2

)n

− 1√
5 e1

α

(

1−
√

5

2

)n]

ex
α , (3.23)

where x ∈ (0,+∞).
Finally, it can be seen in (3.23) that the conditions y0(1) = 0 and y1(1) = 1 are verified, then we have

Fn = yn(1) =
1√
5

(

1+
√

5

2

)n

− 1√
5

(

1−
√

5

2

)n

(3.24)

that is the general expression of the well-known Fibonacci sequence :







Fn+2 = Fn +Fn+1 , n ≥ 2
F0 = 0
F1 = 1.

(3.25)
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4 Conclusion

It was possible to define and prove a new type of equation. In different cases, it was shown that it was possible to solve
these equations by means of the α-Exponential Function. Moreover, it was possible to establish relationships between
LFDE and RE through this solution, rethink about the already known problems, and study them using LFDE or RE.
Furthermore, we obtained a “theoretical interpolation” between the theories already known, from the point of view of the
LFDERR.
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