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Abstract: The most widely actions and decisions of the real-world tasks are frequently appeared as hierarchical systems. To deal with

these systems, the multi-level programming problem presents the most flourished technique. However, practical situations involve

some impreciseness regarding some decisions and performances. Neutrosophic sets provides a vital role by considering three

independent degrees specifically truth membership degree, indeterminacy-membership degree, and falsity membership degree of any

aspect of uncertain decision. By preserving the advantages of it, the presented study focuses on solving neutrosophic three-level linear

programming problems, taking into account the problem coefficients as trapezoidal neutrosophic numbers. The neutrosophic form of

the problem is transformed into an equal crisp model in the first stage of the solution methodology to reduce the problem’s complexity.

In the second stage, an interactive approach is used to reach a solution compromise between conflicted decision levels. The proposed

algorithm is validated by an illustrative example.
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1 Introduction

Multi-Level Programming Problems (MLPPs) confronted with organizational structure that contains multiple levels of
decision making over a feasible region of the solution. MLPPs have main importance in the areas of manufacturing
factories, logistics organizations, government units and multiple other areas. Approaches for solving MLPPs set every
Decision Maker (DM) an objective function with decision variables and a set of constraints for the whole DMs. Every
DM searches for his/her own interest independently but they are influenced via the different decision maker’s behaviors
[4].

In most cases, the actual decision-making status isn’t obviously defined and usually make the decision depend on
incomplete or unknown information. In fact, the vagueness nature is actually fuzziness rather than randomness [8].

To deal with vague and imprecise information, Zadeh introduced Fuzzy Set Theory (FST). However, the FST doesn’t
efficiently represent ambiguous and inaccurate information, as the truthiness function only takes into account
[3].Atanassov extended the FST in 1986 and the intuitionistic FST introduced. This theory presented the truth and falsity
functions [8].

However, the intuitive FST also doesn’t simulate human decision-making [3]. Intuitionistic FST can only deal with
incomplete information not indeterminate one . In 1995, Smarandache introduced neutrosophic theory. The neutrosophic
sets can deal with the incomplete and indeterminate information [7].

Neutrosophic sets described by three independent degrees specifically Truth membership degree (T), Indeterminacy-
membership degree (I), and Falsity membership degree (F), where T,I,F are standard or non-standard subsets of ]0−,1+[
([1],[2]).

Most MLPPs studies concentrate on the bi-level problem as a class of MLPPs ([4,10,12,13]). In [4], Emam presented
an algorithm for solving bi-level integer multi-objective fractional programming problem. It starts by detecting the convex
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hull of its original set of constraints at firstt, then it simplifies the equal problem by converting it into a separate multi-
objective decision-making problem and finally using the ε-constraint method to solve the resulting problem.

Significant studies have been carried out on multi-level programming problems ([9,11]).In[9]Osman et al. proposed
an interactive approach for solving multi-level multi-objective fractional programming(ML-MOFP) problems with fuzzy
parameters. The proposed interactive approach makes an extended work of Shi and Xia (1997). In the ?rst stage, the
numerical crisp model of the ML-MOFP problem has been developed at a con?dence level without changing the fuzzy
gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive
approach simplifes the linear multi-level multi-objective model by converting it into separate multi-objective programming
problems. Also, each separate multi-objective programming problem of the linear model is solved by theε-constraint
method and the concept of satisfactoriness.

Many researches on neutrosophic linear programming problems have been implemented ([3,6]). In [3] Abdel-Basset
et al. presented linear programming models where their parameters are trapezoidal neutrosophic numbers and proposed
an algorithm for solving them.

Abdel-Baset et al. [2] Introduced Neutrosophic Intger Programming Problem (NIPP) where their parameters are
trapezoidal neutrosophic numbers. The degrees of T, F and I membership functions of objectives are taken into account
concurrently. The NIPP, using T, F, and I membership functions and single-valued triangular neutrosophic numbers has
been converted into a crisp programming model.

Hussian et al. [7] proposed an approach for solving Neutrosophic Linear Fractional Programming (NLFP) problem,
which involves triangular Neutrosophic numbers in the cost of the objective function, resources and technological
coefficients. Here, the NLFP problem is simplified to an equal crisp Multi-Objective Linear Fractional Programming
(MOLFP) problem. The suggested approach reduces the converted MOLFP problem to a single objective Linear
Programming (LP) problem that can be easily solved by the most appropriated LP problem algorithm.

Abdelbaset et al. [1] introduced two models for solving Neutrosophic Goal Programming Problem (NGPP), to
minimize the sum of the deviation (the Ist model) on the one hand and to convert NGPP to a crisp programming model
on the other hand, using T , F, and I membership functions (the IInd model). To prove the efficiency of the presented
models, an industrial design problem has been raised. The results obtained in the Ist model and the IInd model are
compared with other techniques.

Hezam et al. [5] presented a Taylor series for solving Neutrosophic Multi-Objective Programming Problem (NMOPP).
In the suggested approach, the T, F, I membership functions related with each objective of multi-objective programming
problems are transformed into a single objective LP problem by means of a first-order Taylor polynomial series.

This paper is arranged as follows: Section 2 provides some preliminaries. In Section 3, a Three-Level Neutrosophic
Linear Programming Problem (TLNLPP) with neutrosophic parameters in the objective functions is formulated. In Section
4, the neutrosophic nature of the problem is simplified into an equivalent crisp. In Section 5, an interactive model for the
three-level linear programming problem is presented. An algorithm for solving TLNLPP with neutrosophic parameters in
the objective functions is proposed in Section 6. Furthermore, the results and the solution algorithm are clarified with a
numerical example in Section 7. Finally, Section 8 contains the conclusions and future works.

2 Preliminaries

This section presents a review of key neutrosophic set concepts and definitions.

Definition 1.(A single-valued neutrosophic set) [5]

Let Y be a universe of discourse. A single-valued neutrosophic set N over Y is an object having the form N = { 〈y , TN(

y ), IN ( y ),FN( y ) 〉 : y∈Y }, where TN (y): Y →[0,1], IN ( y ): Y →[0,1] and FN( y ): Y →[0,1] with 0≤T N( y )+ IN( y

)+FN( y )≤3 for all y∈Y . The intervals TN ( y ), IN( y ) and FN( y ) denote T, I and the F membership functions of y to N ,

respectively.

Definition 2(3).

The trapezoidal neutrosophic number G̃ is a neutrosophic set in R with the following T, I and F membership functions:

TG̃(X) =





∝G̃

(
x−g1

g2−g1

)
(g1 ≤ x ≤ g2)

∝G̃ (g2 ≤ x ≤ g3)
∝G̃ (g3 ≤ x ≤ g4)
0 otherwise

(1)
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IG̃(X) =






(g2−x+θG̃(X−g′1))
(g2−g′1)

(g′1 ≤ x ≤ g2)

θG̃ (g2 ≤ x ≤ g3)
(x−g3+θG̃(g

′
4−x))

(g′4−g3)
(g3 ≤ x ≤ g′4)

1 otherwise

(2)

FG̃(X) =






(g2−x+βG̃(X−g′′1))
(g2−g′1)

(g′′1 ≤ x ≤ g2)

βG̃ (g2 ≤ x ≤ g3)
(x−g3+βG̃(g

′′
4 −x))

(g′′4− g3)
(g3 ≤ x ≤ g′′4)

1 otherwise

(3)

Where∝G̃,θG̃ and βG̃ represent the maximum truthiness degree, minimum indeterminacy degree, minimum falsity

degree, sequentially, ∝G̃, θG̃ and βG̃ ∈ [0, 1]. Also, g′′1 ≤ g1 ≤ g′1 ≤ g2 ≤ g3 ≤ g′4 ≤ g4 ≤ g′′4 .

Fig. 1: Presents T, I, F membership functions of the trapezoidal neutrosophic number

We use Trapezoidal neutrosophic number because calculations with trapezoidal membership are easy and fewer

complexes.

Definition 3(3). a ranking function of neutrosophic numbers is a function N (R)→ R,where N(R) is a set of neutrosophic

numbers de?ned onset of real numbers, which transform each neutrosophic number into the real line.

Let C̃ = 〈(c1,c2,c3,c4 ) ; ∝C̃,θC̃,βC̃〉 and D̃ = 〈(d1,d2,d3,d4 ) ; ∝D̃,θD̃,βD̃〉 are two trapezoidal neutrosophic

numbers, then

1.If R(C̃)> R(D̃) then C̃ > D̃ ,

2.If R(C̃)< R(D̃) then C̃ < D̃ ,

3.If R
(
C̃
)
= R(D̃) then C̃ = D̃ .

3 Problem Formulation and Solution Concept

The TLNLPP with neutrosophic parameters in the objective functions may be formulated as follows:
[First Level]

max
X1

F1 ≈
n

∑
j=1

c̃1 jx j , (4)

Where x2,x3 solves
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[Second Level]

max
X2

F2 ≈
n

∑
j=1

c̃2 jx j , (5)

Where x3 solves
[Third Level]

max
X3

F3 ≈
n

∑
j=1

c̃3 jx j , (6)

Subject to
n

∑
j=1

ai jx j ≤ bi ; (7)

i = 1,2, . . . ,m , j = 1,2, . . . ,n , x j ≥ 0 , c̃1 j , c̃2 j , c̃3 j are a trapezoidal neutrosophic number. ThereforeFi : Rm →
R ,(i = 1,2,3)is the first level, the second level, and the third level objective functions, sequentially. In addition,the First
Level Decision Maker (FLDM) has x1 indicating choice of first level decision, the Second Level Decision Maker (SLDM)
and the Third Level Decision Maker (TLDM) have x2 and x3 indicating the choice of second level decision and the choice
of third level decision, sequentially.

Definition 4.For any (x1 ∈ G1 = {x1 | (x1, . . . ,xm) ∈ G}) given by FLDM and (x2 ∈ G2 = {x2 | (x1, . . . ,xm) ∈ G})
given by SLDM, if the decision-making variable (x3 ∈ G3 = {x3 | (x1, . . . ,xm) ∈ G}) is the Pareto optimal solution of

the TLDM, then (x1, ...,xm) is a feasible solution of TLNLPP.

Definition 5.If x∗ ∈ Rm is a feasible solution of the TLNLPP; no other feasible solution x ∈ G exists, such thatF1 (x
∗) ≤

F1 (x) ; so x∗is the Pareto optimal solution of the TLNLPP.

The basic idea in treating TLNLPP is to use the ranking function to transform each trapezoidal number into its equal
crisp number.

If a TLNLPP is in maximization state, then the ranking function for this trapezoidal neutrosophic number can be stated
as the following [3]:

R(g̃) =

(
gl + gu + 2(gm1 + gm2)

2

)
+(Tg̃ − Ig̃ −Fg̃) (8)

If TLNLPP is in minimization state, then the ranking function for the trapezoidal neutrosophic number can be stated
as the following [3]:

R(g̃) =

(
gl + gu − 3(gm1 + gm2)

2

)
+(Tg̃ − Ig̃ −Fg̃) (9)

Where (g̃ = gl ,gm1,gm2,gu ; Tg̃, Ig̃,Fg̃ ) be a trapezoidal neutrosophic number, where gl ,gm1,gm2,gu , are lower bound,
?rst, second median value and upper bound for trapezoidal neutrosophic number, respectively. Also Tg̃ − Ig̃ −Fg̃ are the
truth, indeterminacy and falsity degree of the trapezoidal number.

4 Deterministic Three-Level Linear Programming Problem

Now, the TLNLPP can be simplified into the following deterministic Three-Level Linear Programming Problem (TLLPP)
after the implementation of the maximization ranking function in Eq. (8):

[First Level]

max
X1

F1 =
n

∑
j=1

c1 jx j , (10)

Where x2,x3 solves
[Second Level]

max
X2

F2 =
n

∑
j=1

c2 jx j , (11)
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Where x3 solves
[Third Level]

max
X3

F3 =
n

∑
j=1

c3 jx j , (12)

Subject to
n

∑
j=1

ai jx j ≤ bi ; (13)

5 An Interactive Model for the Three level Linear Programming Problem

To solve the TLLPP through the adoption of the three-planner Stackelberg game [4], he FLDM provides the SLDM with
the acceptable and reasonable solutions in rank order, And then the SLDM takes the FLDM’s acceptable solutions to find
the solutions and gradually obtain the FLDM’s favored solution. The TLDM receives the solutions that are acceptable to
the FLDM and the SLDM , and it progressively obtains the favored SLDM solution. Finally, according to the following
satisfaction test functions the FLDM and the SLDM determine the favored solution of TLLPP:

First, the FLDM determines, by means of the following FLDM satisfaction testing function, whether the proposed
solution xF

1 ,x
S
2,x

S
3 is a preferred and acceptable solution for him or can be modified:

∥∥F1(x
F
1 ,x

F
2 ,x

F
3 )− F1

(
xF

1 ,x
S
2,x

S
3)

)∥∥
2∥∥F1

(
xF

1 ,x
S
2,x

S
3)

)∥∥
2

< δ F (14)

So xF
1 ,x

S
2,x

S
3 is a favored solution to the FLDM, where δ F is a fairly small positive constant specified by the FLDM.

Second, the SLDM determines, by means of the following SLDM satisfaction testing function, whether the proposed
solution xF

1 ,x
S
2,x

T
3 is a preferred and acceptable solution for him or can be modified:

∥∥F2(x
F
1 ,x

S
2,x

S
3))− F2

(
xF

1 ,x
S
2,x

T
3 )

)∥∥
2∥∥F2

(
xF

1 ,x
S
2,x

T
3 )

)∥∥
2

< δ S (15)

So, xF
1 ,x

S
2,x

T
3 is a favored solution to the SLDM, where δ F is a fairly small positive constant specified by the SLDM. As

a result, xF
1 ,x

S
2,x

T
3 is a favored solution to the TLLPP.

6 An Algorithm for Solving TLNLPP

An algorithm for solving TLNLPP with neutrosophic parameters in the objective functions is outlined in the following
sequence of steps:

Step 1:

DMs enter their TLNLPP with neutrosophic parameters in the objective functions.
Step 2:

If TLNLPP is in maximization state, then every neutrosophic parameters in the objective functions is converted into
its equivalent crisp value by means of Eq. (8). Else using Eq. (9).

Step 3:

The TLNLPP is simplified into the equivalent deterministic TLLPP.
Step 4:

The FLDM finds the individual optimal solution of his problem xF
1 ,x

F
2 ,x

F
3 .

Step 5:

The FLDM evaluate δ F value.
Step 6:
The SLDM defines his problem in point of view of the FLDM by setting xF

1 to the SLDM constraints.
Step 7:

Formulate the SLDM Problem.
Step 8:

The SLDM finds the optimal solution of his problemxF
1 ,x

s
2,x

s
3.
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Step 9:

If
‖F1(x

F
1 ,x

F
2 ,x

F
3 )−F1(xF

1 ,x
S
2,x

S
3) )‖ 2

‖F1(xF
1 ,x

S
2,x

S
3) )‖2

< δ F then go to step 10 otherwise go to step 5.

Step 10:
The SLDM evaluates δ F value
Step 11:

The TLDM defines his problem in point of view of the FLDM and SLDM by setting xF
1 and xS

2 to the TLDM
constraints.

Step 12:
Formulate the TLDM problem.
Step 13:
The TLDM Find the optimal solution of his problemxF

1 ,x
s
2,x

T
3 .

Step 14:

If
‖F2(x

F
1 ,x

S
2,x

S
3))−F2(xF

1 ,x
S
2,x

T
3 ) )‖ 2

‖F2(xF
1 ,x

S
2,x

T
3 ) )‖2

< δ S then go to step 15 otherwise go to step 10.

Step 15:
So, (xF

1 ,x
S
2,x

T
3 ) is the compromised solution to the TLNLPP. Then go to step 16.

Step 16:

Stop.

7 Numerical example

[First Level]
max

X1

F1 ≈ (12,13,15,17)X1 +(6,8,9,12)X2 − (1,2,3,4)X3

Where x2,x3 solves
[Second Level]

max
X2

F2 ≈ (5,7,8,10)X1 +(11,12,13,15)X2 +(7,8,10,12)X3

Where x3 solves
[Third Level]

max
X3

F3 ≈ (5,6,8,10)X1 +(8,9,11,13)X2 +(9,10,12,14)X3

Subject to
3x1 + 2x2+ x3 ≤ 90

4x1 + x3 ≤ 50

2x1 + 5x2 ≤ 60

x1,x2,x3 ≥ 0

The following solves a TLNLPP with trapezoidal neutrosophic numbers in the objective functions. In the trapezoidal
neutrosophic numbers, the sequence of the element is as follows: lower, first median, second median and finally the upper
bound. confirmation degree (Tg̃ , Ig̃ ,Fg̃) of each value of a trapezoidal neutrosophic number by DMS is (0.9, 0.1, 0.1) for
the FLDM and (0.8, 0.6, 0.4) for the SLDM and (0.75, 0.5, 0.25) for the TLDM.

At first, every trapezoidal neutrosophic number is transformed into its equivalent crisp value by means of Eq. (8).
Secondly, the previous TLNLPP with trapezoidal neutrosophic numbers in the objective functions is transformed into

equivalent crisp TLLPP as follows:
[First Level]

max
X1

F1 = 43.2 X1 + 26.7 X2 − 8.2 X3

Where x2,x3 solves
[Second Level]

max
X2

F2 = 22.3 X1 + 37.8 X2 + 27.3 X3

Where x3 solves
[Third Level]

max
X3

F3 = 21.5 X1 + 30.5 X2 + 33.5 X3
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Subject to

3x1 + 2x2 + x3 ≤ 90

4x1 + x3 ≤ 50

2x1 + 5x2+≤ 60

x1,x2,x3 ≥ 0

7.1 The FLDM Problem

[First Level]

max
X1

F1 = 43.2 X1 + 26.7 X2 − 8.2 X3

Subject to

3x1 + 2x2 + x3 ≤ 90

4x1 + x3 ≤ 50

2x1 + 5x2+≤ 60

x1,x2,x3 ≥ 0

The FLDM solution is (xF
1 ,x

F
2 ,x

F
3 ) = (12, 7, 0) and F1 = 726.9 and δ F = 0.1 is specified by FLDM.

7.2 The SLDM Problem

The SLDM reformulates this problem from the FLDM’s perspective by setting xF
1 to the SLDM constraints.

[Second Level]

max
X2

F2 = 22.3 X1 + 37.8 X2 + 27.3 X3

Subject to

3x1 + 2x2 + x3 ≤ 90

4x1 + x3 ≤ 50

2x1 + 5x2+≤ 60

x1 = 12

x1,x2,x3 ≥ 0

So, the SLDM solution is (xF
1 ,x

S
2,x

S
3) = (12, 7, 2) and F2 = 594.36 and δ S = 0.1 is specified by SLDM.

The test function in Eq. (13) is used by the FLDM to determine whether or not the solution is acceptable.

‖F1(12,7,0)− F1 (12,7,2) )‖ 2

‖F1 (12,7,2)‖2

= .05 < .1

So, (xF
1 ,x

S
2,x

S
3) = (12, 7, 2) is acceptable solution to the FLDM.
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7.3 The TLDM Problem

The TLDM reformulates this problem from the FLDM’s and SLDM’s perspective by setting xF
1 and xS

2 to the TLDM
constraints.

[Third Level]

max
X3

F3 = 21.5 X1 + 30.5 X2 + 33.5 X3

Subject to
3x1 + 2x2+ x3 ≤ 90

4x1 + x3 ≤ 50

2x1 + 5x2+≤ 60

x1 = 12

x2 = 7

x1,x2,x3 ≥ 0

The TLDM solution is (xF
1 ,x

S
2,x

T
3 ) = (12, 7, 2) and F3 = 538.5.

The test function in Eq. (13) is used by the SLDM to determine whether or not the solution is acceptable.

‖F2(12,7,2)− F2 (12,7,2) )‖ 2

‖F2 (12,7,2)‖2

= 0.0 < 0.1

So, (xF
1 ,x

S
2,x

T
3 ) = (12, 7, 2) is acceptable solution to the SLDM.

Finally, (xF
1 ,x

S
2,x

T
3 ) = (12, 7, 2) is the compromised solution to the TLLPP.

Where F1 = 688.9 ,F2 = 586.8 , F3 = 538.5.

8 Conclusions

This paper presented a solution algorithm for solving TLNLPP with neutrosophic parameters in the objective functions.
The neutrosophic nature of the problem is transformed into its equivalent crisp model in the first stage of the solution
algorithm to reduce the complexity of the problem. In the second stage, an interactive algorithm is used to reach a
compromised solution for the TLLPP. Finally, a numerical example is demonstrated to show the accuracy of the
suggested solution algorithm.

Though, a number of points are open to future debate that should be examined and investigated in neutrosophic multi-
level linear optimization such as:

1.Multi-level large scale linear decision-making problems with neutrosophic parameters in both objective functions and
constraints.

2.Multi-level linear multi-objective decision-making problems with neutrosophic parameters in both objective functions
and constraints and with integrality conditions.
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