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Abstract: The stable symmetric family of distribution functions (DF’s) suggested by [1] is a family that contains the reverse of every

DF belonging to it. It is revealed that the stable families are capable of describing many types of statistical data. We introduce a new

stable family via a mixture of the skew-normal distribution and its reverse, after inserting a scale parameter and its reciprocal to the

skew-normal distribution and its reverse, respectively. We show that this family contains all the possible types of DFs. Besides, it has a

very remarkable wide range of the indices of skewness and kurtosis. Computational technique using EM algorithm is implemented for

estimating the model parameters. Moreover, an application with a real data set is presented.
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1 Introduction

In many applied areas like lifetime analysis, finance, insurance and biology, there is a clear need to find an appropriate
distribution that represents the data in the best way. Data modeling is a great challenge. Therefore, the distribution theory
was widely studied. The generalized families of distributions are appeared to provide great flexibility to model various
types of data. The generalized distributions are also useful in survival analysis, where the focus in this case is on the
survival and hazard rate functions; while in the data modeling, the focus is on the indices of skewness and kurtosis.

It is known that the kurtosis and skewness uniquely determine the type of the vast majority of the DFs. Therefore,
practically, any DF should belong (up to affine transformation) to one and only one of the following nine types:

(1) symmetric and mesokurtic, denoted by “00”;
(2) symmetric and leptokurtic (positive excess kurtosis or the DF has a more acute peak around the mean and fatter tails

than normal DF), denoted by “0+”;
(3) symmetric and platykurtic (negative excess kurtosis or the DF has a lower, wider peak around the mean and thinner

tails), denoted by “0−”,
(4) positive symmetric and mesokurtic, denoted by “+0”;
(5) positive symmetric and leptokurtic, denoted by “++”;
(6) positive symmetric and platykurtic, denoted by “+−”;
(7) negative symmetric and mesokurtic, denoted by “−0”;
(8) negative symmetric and leptokurtic, denoted by “−+”;
(9) negative symmetric and platykurtic, denoted by “−−”.

Therefore, the most essential factor of the quality of any generalized family of DFs is how much number of aforesaid
types of DFs are included in it. Usually, the generalized families of distributions are constructed by inserting one or more
additional shape parameter to a baseline distribution. Moreover, the generalized family is more flexible to analyze data
than its baseline distribution provided that the following conditions are fulfilled:

1. Inclusion a large number of the possible nine types 00,0+, 0−,+0,++,+−,−0,−+ ,−− of DFs.
2. Wide range of the indices of skewness and kurtosis.
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On the other hand, since the normal distribution is the only known distribution, which is of the type 00, then it is naturally
to take it as the base, or at least the family should include it as a DF.

For the time being, there are many generalized families of distributions that can be found in the literatures. Among
those famous generalized families is the Marshall and Olkin family, suggested by [2], which has the property that the
minimum of a geometric number of independent random variables (RVs) with a common distribution in the family has a
distribution again in the family. For more details about this family, the reader is referred to [3,4,5,6]. Moreover, one of
the foremost of the generalized families is the exponentiated family, which is obtained by raising the baseline distribution
to a positive power. The statistical properties of this family were studied in detail by [7], see also [8].

Another important generalized family is the beta-distribution family. This family was extensively studied by [9], it
is considered as a generalization of the exponentiated family. This family is obtained by substituting the independent
variable in the incomplete beta function by the baseline distribution. For more general results on this family, see [10,11,
12,13].

Cordeiro and Castro [14] suggested the Kumaraswamy (abbreviated by Kum) family as a more flexible generalized
family than beta-distribution family. The Kum-family is built by superseding the independent variable in the
Kum-distribution by any baseline distribution. The Kum-distribution has a simple form, which makes it much better
suited than the Beta distribution for computation-intensive activities like simulation modeling and the estimation of
models by simulation-based methods. For more general results on this family, the reader is referred to [15,16,17].

Azzalini [18] proposed an appropriate family, known as the skew-normal distribution, for the analysis of data which
is unimodal but exhibits some skewness. For more details about the Azzalini’s family, see [15,19,20].

It is known that in the mixture model, which is a convex combination of two, or more, probability density functions
(PDFs) is a powerful and flexible tool for modeling complex data for combining the properties of the individual PDFs.
The word mixture is used because the PDF of a random observation is a mixture of several (distinct) component density
functions of the form f (x) = ∑m

i=1 ai fi(x), with ∑m
i=1 ai = 1, ai > 0, for all i = 1,2, ...,m, and fi(x), i = 1,2, ...,m, are

distinct densities with known form. Moreover, each one of these densities is specified by one or more unknown parameters.
Finally, each observation comes from one of the m (distinct) component distributions with unknown membership status.

Barakat [1] suggested a new generalized family, denoted by ASSN (additive stable-symmetric normal), by inserting
a location parameter to the standard normal distribution, as a baseline DF, and inserting the same location parameter
with different sign to the reverse of the baseline distribution. By this way the used location parameter turns to a shape
parameter to maneuver the skewness and kurtosis of the resulted family. He also showed that the ASSN family contains
all the possible types of DFs, except the type 0+, besides it has very remarkable wide range of the indices of skewness
and kurtosis. Therefore, it is capable of describing many types of statistical data than many other known families.

Barakat and Khaled [21] called any generalized family that contains all the possible types of DFs (nine types), a full
family. Moreover, they suggested two full families, via a mixture of the ASSN family and the standard logistic or Laplace
distributions (note that both of these DFs are symmetric leptokurtic, i.e., have the type 0+). More recently Barakat et al.
[22] carried out a comparison of most capable families of distributions for modelling asymmetry. Kum-normal family,
ASSN and the two full families suggested by [21] were chosen, where the quality of the fit, the flexibility and the amount
of asymmetry parameters were factors used for comparison.

Barakat et al. [23] suggested a more tractable full family with three parameters, denoted by MSSN (multiplicative
stable-symmetric normal) family via mixture of normal distribution (ν,1),ν 6= 0 and its reverse, after multiplying and
dividing, respectively, them to the same scale parameter. They also showed that via the theoretical and practical studies
the MSSN family is more capable of fitting different types of data than the ASSN family. On the other hand, Barakat et
al. [24] introduced another full family with three parameters, denoted by ASSA (additive stable-symmetric Azzalini), by
using the standard skew-normal distribution instead of the standard normal distribution, in the definition of ASSN family.

In this paper, we suggest new full family with four parameters, denoted by MSSA (multiplicative stable-symmetric
Azzalini), via a mixture of the skew-normal distribution and its reverse, after inserting a scale parameter and its reciprocal
to the skew-normal distribution and its reverse, respectively. We show that the MSSA family is full and it has a very
remarkable wide range of the indices of skewness and kurtosis. Moreover, we show that it outperforms the ASSN, MSSN
and ASSA families via a successful application of a real data set.

2 An extension of the Azzalini distribution-MSSA family

Azzalini [18] introduced the skew-normal distribution by adding a shape parameter to the normal DF. Namely, the PDF
of the skew-normal distribution is given by

A (x;λ ) = 2φ(x)Φ(λ x), −∞ < λ < ∞,−∞ < x < ∞, (1)
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where φ and Φ are the standard normal PDF and DF, respectively. The DF of the skew-normal distribution is given by

A(x;λ ) = 2

∫ x

−∞

∫ λ t

−∞
φ(t)φ(u)dudt. (2)

Clearly A (x;0) = φ(x). Moreover, øvA(−x;λ ) = 1−A(−x;λ ) = A(x;−λ ), A(x;1) = Φ2(x) (which is the DF of the
maximum of i.i.d two RVs from Φ) and if W ∼ A(x;λ ), then W 2 = Z2, i.e., |W | ∼ |Z|, where Z ∼ Φ(x). This implies that
the even moments of W and Z are identical. Also, this implies the existence of the odd moments of W. Moreover, Azzalini
[18] derived the moment-generating function of W, which is given by

MW (t) = 2exp

(

t2

2

)

Φ(δ t), δ =
λ√

1+λ 2
. (3)

A RV Y is said to have a location-skew-normal distribution, with location at µ , denoted by Y ∼ SN(µ ,1,λ ) if its PDF
is given by

f (y; µ ,λ ) = 2φ(y− µ)Φ(λ (y− µ)), y ∈ ℜ (λ ,µ ∈ ℜ). (4)

If µ = 0, we obtain the standard skew-normal PDF (1), denoted by SN(λ ). Clearly, (4) yields the moment-generating
function of the RV Y as

MY (t) = 2exp(µt +
t2

2
)Φ(δ t), ∀ t ∈ ℜ. (5)

Moreover, by using (5), we can easily derive the mean, variance, the third and the fourth central moments, as

E(Y ) = µ
Y
= bδ + µ ,b =

√

2
π ,

E(Y − µ
Y
)2 = σ2

Y
=C

[2]
Y = 1− (bδ )2,

E(Y − µ
Y
)3 =C

[3]
Y = (2b2 − 1)bδ 3,

E(Y − µ
Y
)4 =C

[4]
Y = 3+(4δ 2− 3b2δ 2 − 6)b2δ 2.























(6)

For any 0 ≤ ᾱ = 1−α ≤ 1 and c > 0, the suggested new family, denoted by MSSA family, is defined via a mixture of the
DF A(x;−λ ) and its reverse øvA(−x;λ ) = A(x;−λ ), by

G(z;α,c,µ ,λ ) = αA(
z

c
− µ ,λ )+ ᾱĀ(−cz− µ ,λ )

= αA(
z

c
− µ ,λ )+ ᾱA(cz+ µ ,−λ ). (7)

In the sequel, we attach the DF G with its RV (say Z ) and write GZ(z;α,c,λ ) instead of G(z;α,c,λ ) (especially, when we
talk about the moments of G(z;α,c,λ )). In this case, the stochastic representation for the MSSA family is simply given
by Z = IY1 +(1− I)Y2, where I is a Bernoulli distributed RV with parameter α and the components Y1 (distributed as
A( z

c
−µ ,λ )) and Y2 (distributed as A(cz+µ ,−λ )) are independent of I. The PDF and the survival function of GZ(z;α,c,λ )

are given by

gZ(z;α,c,µ ,λ ) =
α

c
A (

z

c
− µ ,λ )+ ᾱcA (cz+ µ ,−λ )

=
2α

c
φ(

z

c
− µ)Φ(λ (

z

c
− µ))+ 2ᾱcφ(cz+ µ)Φ(−λ (cz+ µ)) (8)

and

ḠZ(z;α,c,µ ,λ ) = 1−GZ(z;α,c,µ ,λ ) = α + ᾱ −αA(
z

c
− µ ,λ )− ᾱĀ(−cz− µ ,λ )

= αĀ(
z

c
− µ ,λ )+ ᾱA(−cz− µ ,λ )

= αĀ(
z

c
− µ ,λ )+ ᾱĀ(cz+ µ ,−λ ),

respectively. The following lemma gives the mean, variance, coefficient of skewness and coefficient of kurtosis of the
MSSA family.

Lemma 1.For the MSSA family, we have

1.The mean is µ
Z
= (αc− ᾱ

c
)(bδ + µ).
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2.The variance is σ2
Z
= 1

c2 [(1+ c2)2(bδ + µ)2αᾱ +(1− (bδ )2)(αc4 + ᾱ)].
3.The coefficient of skewness is

γ [1]
Z

=
C
[3]
Z

σ3
Z

=
(1+ c2)3(bδ + µ)3αᾱ(1− 2α)

((1+ c2)2(bδ + µ)2αᾱ +(1− (bδ )2)(αc4 + ᾱ))3/2

+
3(1− (bδ )2)(1+ c2)(bδ + µ)αᾱ(c4 − 1)+ (2b2− 1)bδ 3(αc6 − ᾱ)

((1+ c2)2(bδ + µ)2αᾱ +(1− (bδ )2)(αc4 + ᾱ))3/2
.

4.The coefficient of kurtosis is

γ [2]
Z

=
C
[4]
Z

σ4
Z

=
(3+(4δ 2 − 3(bδ )2 − 6)(bδ )2)(αc8 + ᾱ)+ (1+ c2)4(bδ + µ)4αᾱ(ᾱ3 +α3)

((1+ c2)2(bδ + µ)2αᾱ +(1− (bδ )2)(αc4 + ᾱ))2

+
6(1− (bδ )2)(1+ c2)2αᾱ(bδ + µ)2(ᾱc4 +α)

((1+ c2)2(bδ + µ)2αᾱ +(1− (bδ )2)(αc4 + ᾱ))2
.

+
4(2b2 − 1)bδ 3(1+ c2)(bδ + µ)αᾱ(c6 + 1)

((1+ c2)2(bδ + µ)2αᾱ +(1− (bδ )2)(αc4 + ᾱ))2
.

Proof.The proof follows after some routine algebra by using the relation (6) and applying Theorem 2.1 in [23].

Theorem 1.The family MSSA is full. Moreover, it has a very remarkable wide range of the indices of skewness and kurtosis,

comparing with the skew-normal distribution.

Proof.By putting λ = 0 in (7), we can easily see that the MSSA family is converted to MSSN family. On the other hand,
since the family MSSN is full then the family MSSA is also full with wider range of the indices of skewness and kurtosis.

Table 1 presents some values of γ [1]
Z

and γ [2]
Z

that covered all possible types of DFs. For computing these moments,
we have constructed a simple code by Matlab 8.2 on laptop Intel 1.8GHZ processor. Table 1 does not only confirm
that the MSSA family contains all the possible types of DFs, i.e., it is a full family, but it possesses very remarkable

wide range of the indices of skewness and kurtosis. For example, γ [2]
Z

reaches to 23.6844, while the maximum value

of the coefficient of kurtosis of Azzalini’s family is 3.869. On the other hand, −2.61 ≤ γ [1]
Z

≤ 3.1007, while for the
skew-normal distribution, we have −0.995 ≤ the coefficient of skewness ≤ 0.995. Finally, since for the skew-normal
distribution, we have 3≤ the coefficient of kurtosis≤ 3.869 (cf., [18]), then the skew-normal distribution contains at most
{00,0+,+0,++,−0,−+} types of DFs. We include the graph of the PDF, defined by (8), of the MSSA family for some

selected values of γ [1]
Z

and γ [2]
Z

that covered all possible types of DFs. These graphs (Figure 1) show that this family is
extremely fertile and rich.

3 Statistical inference for the parameters of the MSSA family

In this section, we carry out a simulation study with different sample sizes and different parameter values of MSSA family
defined by (7). First we can write the family (7) in a more convenient form for the inferential purposes

G(z;α,c,µ ,λ ) = αA(
z

c
− µ ,λ )+ ᾱĀ(−cz− µ ,λ )

= αA(
z− c1

σ1

,λ )+ ᾱA(
z− c2

σ2

,−λ ), (9)

where

c1 = cµ , c2 =
−µ

c
, σ1 = c and σ2 =

1

c
=

1

σ1

,0 6 α 6 1. (10)

In this simulation study we focus on the shape parameters c and λ , besides the location parameter µ . We compute the
maximum likelihood estimates (MLE) of the parameters by using the simulated samples via the EM algorithm. The EM
algorithm is an iterative method for approximating the maximum of a likelihood function. It is worth mentioning that the
EM algorithm is guaranteed to monotonically converge to local optima under mild continuity conditions (cf. [25]).
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Table 1: Some selected values of γ [1]
Z

and γ [2]
Z

that covered all possible types of DFs

Types −∞ < λ < ∞ −∞ < µ < ∞ 0 ≤ α ≤ 1 0 < c < ∞ µ
Z

σ2
Z

γ [1]
Z

γ [2]
Z

00 0 1 0 0.5 -2 4 0 3

00 1 0 0.5 1 0 1 0 3

00 0 0.5 1 3 1.5 9 0 3

0+ 0 0 0.2 0.5 0 3.25 0 3.6391

0+ 0 0 0.1 2 0 0.625 0 12.72

0+ 0 0 0.9 2 0 3.625 0 3.2889

0− 1 0.5 0.5 1 0 1.8142 0 2.329

0− 1 1 0.5 1 0 3.1284 0 1.8289

0− 0 1.5 0.1 0.5 -2.625 4.8906 0 2.5486

+0 0 -1 0.413160144 0.5 0.9671 3.966 0.7801 3

+0 0 -1 0.788675135 1 -0.5773 1.6667 0.3578 3

+0 0 1 0.211324865 1 -0.5774 1.6667 0.3578 3

++ 0 1 0.1 3 0 1.25 3.1007 23.6844

++ 0.5 0.5 0.1 1.5 -0.3856 0.8556 1.5818 7.8617

++ 1 1 0.2 1 -0.9385 2.2476 0.8586 3.1881

+− 0.5 0.5 0.3 1 -0.3427 1.4894 0.2283 2.8151

+− 1 1 0.1 0.5 -2.7373 3.8474 0.1395 2.7198

+− 0 1 0.4 1 -0.1 1.24 0.0348 2.9313

−0 0 1 0.413160144 0.5 -0.9671 3.966 -0.7801 3

−0 0 1 0.788675135 1 0.5773 1.6667 -0.3578 3

−0 0 -1 0.211324865 1 0.5774 1.6667 -0.3578 3

−+ 1 0 0.9 0.5 0.141 0.6051 -2.61 15.2648

−+ 1 0.5 0.7 0.5 -0.266 2.4237 -1.602 5.0495

−+ 1 1 0.9 1 1.2514 1.5625 -1.0971 4.7071

−− 1 1 0.9 2 2.7373 3.8478 -0.1395 2.7198

−− 0.5 1 0.1 0.5 -2.3744 4.199 -0.038 2.567

−− 1 1 0.7 1 0.6257 2.7369 -0.5612 2.3598

It is worth mentioning that, the present study covers all the possible types of DFs. Actually, we select the second case
of each type in Table 1 (with given values of µ ,c,λ ). Moreover, for each case, we choose appropriate values of the two
locations parameters c1 and c2, in the model (9) (e.g, in the second case of the first type we should have−∞< c1 = c2 <∞).
Finally, by using the relations defined by (10), we compute the values of the remaining parameters µ , σ1. On the other
hand, we could now generate three groups of random samples each of size 100, 1000 and 5000 from the family (9).
Furthermore, we repeat this simulation 10 times for each group. For every replication in each group, we compute the
MLE of the parameters c1,c2,σ1,σ2,λ and again by using the relation defined by (10), we compute the estimate of µ .
Moreover, we compute the average estimate values for each parameter and group (each average estimate is computed for
the 10 replications of each group). Finally, we attach these averages (as the estimates of the parameters) with their mean
square errors (MSE). All the computation are carried out by using the package mixsmsn in the R package. The summary
of this study is shown in Table 2, where the MLEs average estimate of the parameters µ , c and λ are denoted by µ̂ , ĉ and

λ̂ .

The results in Table 2 show that with increasing the sample size the estimated values become more close to the true
values. Moreover, based on the MSE, the three best estimates (in order) are obtained for the types 0−,00 and −+, while
the worst estimates are appeared in the types 0+, +0 and −− .

Remark 3.1 One major concern in estimating the parameters of the mixture DFs is the identifiability problem. In our
case, the family (8) is not identifiable (for the definition, see [26]) if we have, for at least two values ῡ ′ and ῡ ′′ of the
vector ῡ = (α,c,µ ,λ ), gZ(z; ῡ ′) = gZ(z; ῡ ′′), while ῡ ′ 6= ῡ ′′, where gZ(z; ῡ) = gZ(z;α,c,µλ ). It is worth mentioning
that (cf. [26]) in the class of mixture of normal distributions is generally not identifiable (when we put λ = 0 in the
family (8)). This directly implies that the family (8) is, in general, not identifiable. However, in our study, the absence of
identifiability is not “bad” because our main focus is not the estimation problem itself, but to pick up a suitable family
(with estimated parameters) to describe the given data (even if this family is not unique).
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Fig. 1: MSSA family

4 Application

We have seen in Section 3, that at least theoretically the proposed MSSA family is capable of fitting a wide spectrum of
real-world data set as it contains all the possible types of data (i.e., it is a full family). Moreover, it possesses a very wide
range of the indices of skewness and kurtosis. In this section we can confirm its outperforming than the three competitors
ASSN, MSSN and ASSA families via an example of a real data concerning the air pollution. The location-scale ASSA,
ASSN and ASSM families are respectively defined by

G〈ASSN〉(x;α,c,µ ,σ) = αΦ(
x− c1

σ1

)+ ᾱΦ(
x− c2

σ2

), (11)

where σ1 = σ2 = σ , c1 = µ − c, c2 = µ + c 0 6 α 6 1, and

G〈MSSN〉(x;α,c,ν,µ) = αΦ(
x− c1

σ1

)+ ᾱΦ(
x− c2

σ2

), (12)
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Table 2: Simulation study

Types n µ µ̂ mse(µ̂) c ĉ mse(ĉ) λ λ̂ mse(λ̂ )
00 100 0 0.1687 0.2159771 1 0.8362 0.3055952 1 1.3039 0.6483723

00 1000 0 0.0459 0.0550754 1 0.9601 0.06505306 1 1.3261 0.3612989

00 5000 0 0.0379 0.04448033 1 0.976 0.04210463 1 1.3116 0.317714

0+ 100 0 -0.1226364 0.2661032 2 0.8576 1.25745 0 2.5368 2.870444

0+ 1000 0 0.0055 0.4526762 2 1.1 0.9197888 0 1.9411 1.973493

0+ 5000 0 -0.0648 0.3967876 2 1.0394 0.9623308 0 1.855 1.861411

0− 100 1 0.9527 0.1928422 1 1.146 0.463589 1 1.1935 0.6505823

0− 1000 1 1.01 0.03455431 1 1.0013 0.07467998 1 1.0081 0.2264215

0− 5000 1 1.0027 0.01583351 1 1.0077 0.03153569 1 0.9828 0.04612158

+0 100 -1 0.1604 1.209067 1 1.3427 0.9927521 0 1.0453 1.421823

+0 1000 -1 -0.0267 0.9868979 1 1.547 0.6998201 0 1.225 1.250351

+0 5000 -1 -0.0042 1.010152 1 2.853 0.6394886 0 1.1797 1.184315

++ 100 0.5 0.3196 0.3352471 1.5 1.0431 0.7066134 0.5 1.7261 1.5392

++ 1000 0.5 0.1389 0.3673964 1.5 1.4944 0.9336483 0.5 1.5601 1.244518

++ 5000 0.5 0.1656 0.0336376 1.5 1.277 0.7470195 0.5 1.4738 1.121107

+− 100 1 0.9234 0.4502755 0.5 1.7864 1.507245 1 1.7325 1.992738

+− 1000 1 0.94 0.1204085 0.5 1.0439 0.9725704 1 0.6645 0.5526503

+− 5000 1 0.9233 0.1066897 0.5 0.9452 0.9013832 1 0.6261 0.5544521

−0 100 1 0.2689 0.7635499 1 1.5023 1.72884 0 1.5537 1.817578

−0 1000 1 0.1605 0.8442079 1 1.6078 0.7009128 0 1.3271 1.345603

−0 5000 1 0.1946 0.806707 1 1.3533 0.4359857 0 1.1661 1.170687

−+ 100 0.5 0.7572 0.4314789 0.5 1.4727 1.342692 1 2.2115 1.668127

−+ 1000 0.5 0.5995 0.1701285 0.5 1.3584 1.107632 1 1.0691 0.1647626

−+ 5000 0.5 0.5106 0.0369107 0.5 1.4004 1.174064 1 1.0572 0.1558544

−− 100 1 0.4478 0.6891238 0.5 2.0671 1.890185 0.5 1.4973 1.593874

−− 1000 1 0.3976 0.631724 0.5 1.9716 1.581154 0.5 1.1119 0.896357

−− 5000 1 0.4859 0.5221564 0.5 2.0458 1.597412 0.5 1.0156 0.7762126

where c = σ1 =
1

σ2
, c1 = µ + cν, c2 = µ − ν

c
, 0 < α < 1.

G〈ASSA〉(x;α,c,λ ,µ ,σ) = αA(
x− c1

σ1

,λ )+ ᾱA(
x− c2

σ2

,−λ ), (13)

where σ1 = σ2 = σ , c1 = µ −σc, c2 = µ +σc and σ > 0,0 6 α, 6 1.
Example 4.1. We have compared the performances of the four families defined in (9), (11), (12) and (13) in fitting
a data set for air pollution from the London Air Quality Network (LAQN). This network is a unified resource for air
pollution measurements which are fundamental to support air quality administration. The greater part of London’s 33
districts supply estimations to the system and also this information is progressively supplemented by estimations from
neighborhood specialists encompassing London, in this manner giving a general point of view of air pollution in London
and the home countries .

The data are taken from the site Greenwich Plumstead high street, that monitors Nitrogen oxides, sulphur dioxide,
PM2.5 and climatology data. The hourly measurement of PM2.5 is recorded every hour. So a total of 53000 readings
have been obtained in the period from 1-1-2015 to 31-12-2015. These data can be downloaded by any researcher in the
form of a report every half hour, every hour or every day according to the type of study from the following site:
“www.londonair.org.uk/london/asp/datadownload.asp ”. The hourly of these data was used for application of these
models. The summary statistics for data set is given in Table 3. We have compared the performances of the four families
defined in (9), (11), (12) and (13) by using Akaike information criterion (AIC) (cf. [27]). This criterion is based on the
likelihood value of the model, the number of observations and the number of parameters thereof. The computations of
the estimates of the parameters and the values of AIC criterion are carried out by using the mix.print() function in the
mixsmsn Package in the R-Package (see Table 4). Table 4 shows that the MSSA family has the best performance.
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Table 3: summary statistics for data set

minimum maximum mean variance skewness kurtosis

1.3 95.1 14.74992 100.1687 2.758921 10.8712

Table 4: Comparison between the ASSN, MSSN, ASSA and MSSA families

Family Parameter estimations log-likelihood estimate AIC

ASSN ĉ1 = 27.538

ĉ2 = 11.078 -30217.37 60442.74

σ̂ = 13.349

MSSN ĉ1 = 11.083

ĉ2 = 27.513 -28804.38 57618.76

σ̂1 = 13.386 = 1
σ̂2

ASSA ĉ1 = 6.815

ĉ2 = 14.799 -34642.11 69294.22

σ̂ = 36.951

λ̂ = 2.744

MSSA ĉ1 = 6.815

ĉ2 = 14.799 -25984.84 51981.68

σ̂ = 36.951 = 1
σ̂2

λ̂ = 2.744
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